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What’s next?

Up to now we were dealing with free scalar
field. Ok, it can be used to describe the
famous Higgs boson. But You may ask:

What about other particles?

What about interactions?

Let us start with the first question ...
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Fields, Fields, Fields ...
We can describe fields involving several DOFs by adding more (and more)
indices 𝜑(x) → Φi

𝛼(x). One can split indices into two groups:

space-time (𝛼) and internal (i).

Φi
𝛼(x) =

1
(2𝜋)3/2

∑︀
s

∫︀ dp√
2𝜔p

[︁
us𝛼(p) (a

−
p )

i
s e

−ipx + v s𝛼(p)(b
+
p )

i
𝛽 e

+ipx
]︁annihilation operator guarantees (𝜕2 +m2)Φi

𝛼 = 0

polarization
“vector” for a state s

sum over all
polarization states

Lorentz transform Λ : Φ
′i
𝛼(Λx) = S𝛼𝛽(Λ)Φ

i
𝛽(x)

internal transform a : Φ
′i
𝛼(x) = U ij(a)Φj

𝛼(x)

Quarks are color fermions Ψi
𝛼 and, e.g., (a−p )

b
s annihilates blue quark

in spin state s. The latter is characterized by spinor us𝛼(p).
There are eight vector gluons G a

𝜇. So (a−p )
a
s annihilates gluon a in

spin state s having polarization us𝛼(p) → 𝜖s𝜇(p).
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Massive Vector Fields
Charged Vector Field (e.g., W-bosons) can be written as

W𝜇(x) =
1

(2𝜋)3/2

3∑︁
𝜆=1

∫︁
dp√︀
2𝜔p

[︁
𝜖𝜆𝜇(p)

(︀
a−𝜆 (p)e

−ipx + b+𝜆 (p) e
+ipx

)︀]︁
Massive spin-1 particle has 3 independent polarization vectors:

𝜖𝜆𝜇(p)𝜖
𝜆′
𝜇 (p) = −𝛿𝜆𝜆′

,

3∑︁
𝜆=1

𝜖𝜆𝜇𝜖
𝜆
𝜈 = −

(︁
g𝜇𝜈−

p𝜇p𝜈
m2

)︁
The Feynman propagator

⟨0|T (W𝜇(x)W
†
𝜈 (y))|0⟩ =

1

(2𝜋)4

∫︁
d4pe−ip(x−y)

[︃
−i
(︀
g𝜇𝜈−p𝜇p𝜈

m2

)︀
p2 −m2 + i𝜖

]︃p0 = 𝜔p

p0 arbitrary

spin sum

The Lagrangian

ℒ = −1

2
W †

𝜇𝜈W𝜇𝜈 +m2W †
𝜇W𝜇, W𝜇𝜈 ≡ 𝜕𝜇W𝜈 − 𝜕𝜈W𝜇

Ex: Find the explicit form of 𝜖𝜆𝜇 for p𝜇 = (E , 0, 0, p). Show that one of

the vectors 𝜖L𝜇 ≃ p𝜇/m +𝒪(m) diverges in the limit p𝜇 → ∞ (m → 0).
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Massless Vector Fields
Massless (say photon) Vector Field is usually represented by (𝜔p = |p|)

A𝜇(x) =
1

(2𝜋)3/2

3∑︁
𝜆=0

∫︁
dp√︀
2𝜔p

[︁
𝜖𝜆𝜇(p)

(︀
a−𝜆 (p)e

−ipx + a+𝜆 (p) e
+ipx

)︀]︁
.

with

𝜖𝜆𝜇(p)𝜖
𝜆′
𝜇 (p) = g𝜆𝜆′

, 𝜖𝜆𝜇(p)𝜖
𝜆
𝜈 (p) = g𝜇𝜈 , [a−𝜆 (p), a

+
𝜆′(p

′)] = −g𝜆𝜆′𝛿p,p′

The corresponding Feynman propagator is

⟨0|T (A𝜇(x)A𝜈(y))|0⟩ =
1

(2𝜋)4

∫︁
d4pe−ip(x−y)

[︂
−ig𝜇𝜈
p2 + i𝜖

]︂
But only 2 polarizations are physical!
This reflects the fact that the vector-field Lagrangian for m = 0

ℒ = −1

4
F𝜇𝜈F𝜇𝜈 , F𝜇𝜈 ≡ 𝜕𝜇A𝜈 − 𝜕𝜈A𝜇

is invariant under A𝜇 → A𝜇 + 𝜕𝜇𝛼(x) for arbitrary a(x) (gauge symmetry).
Additional conditions are needed to get rid of unphysical d.o.f.!
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Fermion Fields
Spin-1/2 fermion fields are given by

(𝜓 = 𝜓†𝛾0)

.

𝜓𝛼(x) =
1

(2𝜋)3/2

∫︁
dp√︀
2𝜔p

∑︁
s=1,2

[︀
u𝛼s (p)a

−
s (p)e

−ipx + v𝛼s (p)b
+
s (p)e

+ipx
]︀
,

𝜓(x) =
1

(2𝜋)3/2

∫︁
dp√︀
2𝜔p

∑︁
s=1,2

[︀
ūs(p)a

+
s (p)e

+ipx + v̄s(p)b
−
s (p)e

−ipx
]︀
.

Here the spinors us and vs satisfy 4× 4 matrix equations

(p̂ −m)us(p) = 0, (p̂ +m)vs(p) = 0, p̂ ≡ 𝛾𝜇p𝜇, p0 ≡ 𝜔p

and correspond to particles (us) or antiparticles (vs) with two spin states
(s = 1, 2). One can normalize the spinors as

ūs(p)ur (p) = 2m𝛿rs , v̄s(p)vr (p) = −2m𝛿rs ,

NB: Gamma-matrix (Clifford) algebra involve anticommutators:

[𝛾𝜇, 𝛾𝜈 ]+ = 2g𝜇𝜈1 ⇒ 𝛾20 = 1, 𝛾21 = 𝛾22 = 𝛾23 = −1.
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ūs(p)ur (p) = 2m𝛿rs , v̄s(p)vr (p) = −2m𝛿rs ,

NB: Gamma-matrix (Clifford) algebra involve anticommutators:

[𝛾𝜇, 𝛾𝜈 ]+ = 2g𝜇𝜈1 ⇒ 𝛾20 = 1, 𝛾21 = 𝛾22 = 𝛾23 = −1.

A. Bednyakov (JINR) QFT & EW SM 7 / 32



Fermions & Pauli Principle

𝜓(x) =
1

(2𝜋)3/2

∫︁
dp√︀
2𝜔p

∑︁
s=1,2

[︀
us,pa

−
s,pe

−ipx + vs,pb
+
s,pe

+ipx
]︀
.

Contrary to the case of scalar (boson) fields, the creation/annihilation
operators for fermions a±s,p and antifermions b±s,p anticommute.[︁

a−r ,p, a
+
s,p′

]︁
+
=
[︁
b−r ,p, b

+
s,p′

]︁
+
= 𝛿sr𝛿(p− p′)[︁

a±r ,p, a
±
s,p′

]︁
+
=
[︁
b±r ,p, b

±
s,p′

]︁
+
=
[︁
a±r ,p, b

±
s,p′

]︁
+
= 0

Due to this, fermions obey Pauli principle: a+r ,pa
+
r ,p = 0.

NB: One can explicitly show that quantization of bosons (integer spin)
with anticommutators and fermions (half-integer spin) with commutators
leads to inconsistencies (violates Spin-Statistics theorem).
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Fermions & Lorentz Symmetry
Fermion fields transform under Lorentz group x ′ = Λx as

𝜓′(x ′) = 𝒮Λ𝜓(x), 𝜓′(x ′)† = 𝜓(x)𝒮†
Λ.

The matrix 𝒮†
Λ ̸= 𝒮−1

Λ , but 𝒮−1 = 𝛾0𝒮†𝛾0.
Dirac-conjugated spinor 𝜓(x) ≡ 𝜓†𝛾0 enters

𝜓′(x ′)𝜓′(x ′) = 𝜓(x)𝜓(x), Lorentz scalar

𝜓′(x ′)𝛾𝜇𝜓
′(x ′) = Λ𝜇𝜈𝜓(x)𝛾𝜈𝜓(x), Lorentz vector.

and allows one to prove that the Dirac Lagrangian

ℒ = 𝜓
(︁
i𝜕 −m

)︁
𝜓

is also a Lorentz scalar = respects Lorentz symmetry.

Ex: Find the expression for P𝜇. Show that

P0 ≡ ℋ =

∫︁
dp
∑︁
s

𝜔p

(︀
a+s a

−
s + b+s b

−
s − 𝛿(0)

)︀
A. Bednyakov (JINR) QFT & EW SM 10 / 32



Left and Right Fermions: Chirality vs Helicity
Two independent solutions for particles (u1,2) can be chosen to correspond
to two different Helicities — projections of spin s onto direction of p:

ℋ = s · n, n = p/|p|

In free motion it is conserved.
But not Lorentz-invariant!

Left-Handed Right-Handed
p

s

p

s

Massive particles can be overtaken so that n → −n and ℋ → −ℋ.

Helicity for a massless particle is the same for all inertial observers and
coincides with Chirality, which is a Lorentz-invariant concept.

By definition Left (𝜓L) and Right (𝜓R) chiral spinors are eigenvectors of

𝛾5 = i𝛾0𝛾1𝛾2𝛾3 ⇒ [𝛾𝜇, 𝛾5]+ = 0, 𝛾25 = 1, 𝛾†5 = 𝛾5

𝛾5𝜓L = −𝜓L, 𝛾5𝜓R = +𝜓R .

Chirality and Helicity are not the same for massive particles!
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Fermions: Chirality and Mass
For any spinor 𝜓 we can define

𝜓 = 𝜓L + 𝜓R , 𝜓L/R = PL/R𝜓, PL/R =
1∓ 𝛾5

2
,

and rewrite the Lagrangian as

ℒ = i(𝜓L𝜕𝜓L + 𝜓R𝜕𝜓R⏟  ⏞  
conserve chirality

)−m(𝜓L𝜓R + 𝜓R𝜓L⏟  ⏞  
break chirality

)

The mass term mixes left and right components.
Ex: Prove that the mass term violates chiral symmetry (independent
rotation of left and right components):

𝜓 → e i𝛾5𝛼𝜓.

NB: We considered the Dirac mass term. For neutral fermions (neutrino)
there is another possibility — a Majorana mass. Charge-conjugation
𝜓 → 𝜓c flips chirality and we can use 𝜓c

L in place of 𝜓R to write

ℒ =
1

2
(i𝜓L𝜕𝜓L −m𝜓L𝜓

c
L) see lectures by Silvia Pascoli.
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Introducing Interactions

In HEP typical collision/scattering experiment deals with “free” initial and
final states and considers transitions between these states.
In Quantum Theory one introduces S-matrix with matrix elements

ℳ = ⟨𝛽|S |𝛼⟩, ℳ = 𝛿𝛼𝛽 + (2𝜋)4𝛿4(p𝛼 − p𝛽)iM𝛼𝛽

giving amplitudes for possible transitions between in |𝛼⟩ and out |𝛽⟩ states:

|𝛼⟩ = a+p1 ...a
+
pr |0⟩, |𝛽⟩ = a+k1 ...a

+
ks
|0⟩,

Differential probability to evolve from |𝛼⟩ to |𝛽⟩ is

dw =
n1...nr

(2𝜔p1)...(2𝜔pr )
|M𝛼𝛽|2dΦs , ni − particle densities

dΦs = (2𝜋)4𝛿4 (pin − kout)
dk1

(2𝜋)3(2𝜔k1)
...

dki
(2𝜋)3(2𝜔ki )
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|𝛼⟩ = a+p1 ...a
+
pr |0⟩, |𝛽⟩ = a+k1 ...a

+
ks
|0⟩,

Differential decay width dΓ of particle with mass m, and cross-section d𝜎
for 2 → s process can be calculated via:

dΓ = ΦΓ|M|2dΦs , ΦΓ =
1

2m
,

d𝜎 = Φ𝜎|M|2dΦs , Φ𝜎 =
1

4
√︁
(p1p2)2 − p21p

2
2
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Scattering Matrix

In QFT the S-matrix is given by

S = Te−i
∫︀
dxℋI (x) = Te i

∫︀
dxℒI (x).

Interaction Hamiltonian ℋI (Lagrangian ℒI ) is built from free* field
operators (certain combinations of a± and b±).

ℒI = ℒfull − ℒ0 is a sum of Lorentz-invariant terms involving more
than two fields and more 𝜕𝜇 than in the free ℒ0.

Time-ordering operation

TΦ1(x1)...Φn(xn) = (−1)kΦi1(xi1)...Φin(xin), x0i1 > ... > x0in ,

where (−1)k appears due to k permutations of fermions fields.

NB: Higgs self-interactions in the SM is described by ℒI = −𝜆𝜑4/4!

*More precisely, operators in the interaction picture.
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Interaction Lagrangians

Interaction Lagrangian should be hermitian and can include any scalar
combination of quantum fields, e.g.,

ℒI : g𝜑3(x), 𝜆𝜑4(x), y𝜓(x)𝜓(x)𝜑(x)

e𝜓(x)𝛾𝜇𝜓(x)A𝜇(x), G
[︀
(𝜓1𝛾𝜇𝜓2) (𝜓3𝛾𝜇𝜓4) + h.c.

]︀
The parameters (couplings) g , 𝜆, e, y , and G sets the strength of
interactions. Usually, we assume that couplings are small and we can treat
ℒI as a perturbation to ℒ0.

The T-shirt Lagrangian is unique, since all the
couplings there are dimensionless!
Ex: Show that [𝜑] = [A𝜇] = 1, [𝜓] = 3/2. Find
the (mass) dimensions of g , 𝜆, e, y , and G .

Hint: [ℒ] = 4

Well, V (𝜑) is not specified, but I am pretty sure that only 2 terms were implied. Which ones?

A. Bednyakov (JINR) QFT & EW SM 15 / 32



Perturbation Theory
Given ℒI we can calculate ⟨𝛼|S |𝛽⟩. In practise, one uses perturbative
expansion of the T-exponent and evaluates terms like (ℒI = −𝜆𝜑4/4!):

in

n!

[︂
𝜆

4!

]︂n
⟨0|a−k1 ...a

−
ks

∫︁
dx1...dxnT

[︀
𝜑(x1)

4...𝜑(xn)
4
]︀
a+p1 ...a

+
pr |0⟩,

The calculation is carried out by means of Wick theorem:

TΦ1...Φn =
∑︁

(−1)𝜎⟨0|T (Φi1Φi2)|0⟩...⟨0|T (Φim−1Φim)|0⟩ :Φim+1 ...Φin :,

where sum goes over all possible ways to pair the fields.
Remember normal ordering? Now it cares about fermions.

:a−1 a
+
2 a

−
3 a

−
4 a

+
5 a

−
6 := (−1)𝜎a+2 a

+
5 a

−
1 a

−
3 a

−
4 a

−
6

x y

→
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Feynman Rules: External States
We have to evaluate

⟨0|a−k1 ...a
−
ks

:Φim+1 ...Φin : a
+
p1 ...a

+
pr |0⟩.

To get a non-zero matrix element all a−(a+) in the normal product of
fields from the Lagrangian have to be “killed” by (commuted with)
a+(a−) from the initial (final) states.
For our generalized field

[︀
Φi
𝛼(x), (a

+
p )

i
s

]︀
=

e−ipx

(2𝜋)3/2
√︀

2𝜔p⏟  ⏞  
common to all fields

us𝛼(p), initial state polarization

[︀
(b−p )

i
s ,Φ

i
𝛼(x)

]︀
=

e+ipx

(2𝜋)3/2
√︀
2𝜔p

v s𝛼(p), final state polarization

All this machinery can be implemented in a set of Feynman rules, which
are used to draw (and evaluate) Feynman diagrams for the amplitudes.
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Feynman Rules: Propagators

Propagators (from ℒ0)

∫︁
d4p

(2𝜋)4
i

p2 −m2 + i𝜖

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1

p
𝜑

p̂ +m

p

𝜓

−g𝜇𝜈 + p𝜇p𝜈/m
2

𝜇 𝜈
p

W𝜇

External states (from ℒ0)

scalar 1
p

1
p

vector 𝜖𝜆𝜇(p)
𝜇

p

𝜖*𝜆𝜇 (p)
𝜇

p

incoming fermion us(p)

p

outgoing fermion ūs(p)

p

outgoing antifermion vs(p)

p

incoming antifermion v̄s(p)

p
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Feynman Rules: Vertices

Interaction Vertices (from ℒI or SI =
∫︀
dxℒI )

i
𝛿4SI [𝜑]

𝛿𝜑(p1)𝛿𝜑(p2)𝛿𝜑(p3)𝛿𝜑(p4)
⇒ (2𝜋)4𝛿4(p1 + p2 + p3 + p4)⏟  ⏞  

conservation of energy-momentum

× [−i𝜆]

In a typical diagram all (2𝜋)4𝛿(...) factors (but one) are removed by the
momentum integration originating from propagators.
p1

p2

p3

p5

p4

p6

q
(2𝜋)4𝛿4

(︃
3∑︁

i=1

pi −
6∑︁

i=4

pi

)︃
(−i𝜆)2

i

q2 −m2 + i𝜖

NB: All integrations (from propagators) are “killed” by 𝛿-functions (from
vertices) only in tree diagram (w/o loops)!

A. Bednyakov (JINR) QFT & EW SM 19 / 32



Feynman Rules: Vertices

More Examples:

ℒI = −y𝜓𝜓𝜑 ℒI = e𝜓𝛾𝜇𝜓A𝜇 ℒI = ieA𝜇

(︀
𝜑†𝜕𝜇𝜑− 𝜑𝜕𝜇𝜑

†)︀
𝜓

𝜓

𝜑

𝜓

𝜓

A𝜇

𝜑†

𝜑

A𝜇

p1

p2

−iy ie𝛾𝜇 ie(p1 + p2)𝜇

Now you can do tree-level calculations of amplitudes...
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From Amplitudes To Probabilities
To get probabilities we have to square matrix elements:

|M|2 = MM† ⇒

Sometimes we do not care about polarization states of initial or final
particles so we have to sum over final polarization and average over initial
ones. That is where spin-sum formulas become handy, e.g.∑︁

s

us(p1)ūs(p1) = p̂1 +m,
∑︁
s

vs(p2)v̄s(p2) = p̂2 −m

MM† →
∑︁
s,r

(ūsAvr )(v̄rA
†us) = Tr

[︁
(p̂1 +m)A(p̂2 −m)A†

]︁

ūs

vr

us

v̄r
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Loops and (UV) Divergences
In QFT particle propagators can form loops and we have integrals over
unconstrained momenta

q

k − q

I2(k) ≡
∫︁

d4q

[q2 + i𝜖][(k − q)2 + i𝜖]

∼
∫︁ ∞ |q|3d |q|

|q|4
∼ ln∞

which can lead to divergent (meaningless?) results. This is again UV
divergence, due to large momenta (“small distances”).

Q: Do we have to abandon QFT?

A: Nope, and there are reasons...

(Phys:) We do not know physics up to infinitely small scales.

(Math:) We are dealing with distributions, not functions.

NB: Overall degree of divergence can be deduced by power counting
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Parametrizing our Ignorance: Regularization

To make sense of formally divergent integrals we introduce some
regularization, e.g., a “cut-off” |q| < Λ

IΛ2 (k) = i𝜋2
[︂
ln

Λ2

k2
+ 1

]︂
+𝒪

(︂
k2

Λ2

)︂
= i𝜋2

[︂
ln

Λ2

𝜇2
− ln

k2

𝜇2
+ 1

]︂
+𝒪

(︂
k2

Λ2

)︂
Another convenient possibility is dimensional regularization
d = 4 → d = 4− 2𝜀

I 4−2𝜀
2 (k) = 𝜇2𝜀

∫︁
d4−2𝜀q

q2(k − q)2
= i𝜋2

(︂
1

𝜀
− ln

k2

𝜇2
+ 2

)︂
+𝒪(𝜀)

The crucial property of the divergent (Λ → ∞ or 𝜀→ 0) terms is that they
either do not depend on external momenta (k) at all or depend on k
polynomially*. This means that we can cancel them by adding local (yet
divergent) terms to ℒI (CounterTerms).
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Parametrizing our Ignorance: Renormalization

Indeed, we are interested in scattering amplitude in perturbation theory:

=

𝜆

+ +

−𝜆2

2

(︁
ln Λ2

𝜇2 − ln k2

𝜇2 + ...
)︁
perm. + more loops

We can defined bare coupling 𝜆B(Λ) that depends on Λ (or 𝜀):

𝜆B(Λ) = 𝜆(𝜇)

(︂
1 +

3

2
𝜆(𝜇) ln

Λ2

𝜇2
+ ...

)︂
,

The bare parameters can not be measured. But, we can (and do)
express them in terms of renormalized quantities 𝜆(𝜇) to get finite
results, which can be confronted with experiment.

A. Bednyakov (JINR) QFT & EW SM 24 / 32



Parametrizing our Ignorance: Renormalization
Indeed, we are interested in scattering amplitude in perturbation theory:

=

𝜆− 𝜆2

2 ln Λ2

𝜇2

+ +

−𝜆2

2

(︁
ln Λ2

𝜇2 − ln k2

𝜇2 + ...
)︁

perm. + more loops

𝜆B(Λ)

We can defined bare coupling 𝜆B(Λ) that depends on Λ (or 𝜀):

𝜆B(Λ) = 𝜆(𝜇)

(︂
1 +

3

2
𝜆(𝜇) ln

Λ2

𝜇2
+ ...

)︂
,

The bare parameters can not be measured. But, we can (and do)
express them in terms of renormalized quantities 𝜆(𝜇) to get finite
results, which can be confronted with experiment.
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Renormalization Group
The scale 𝜇 inevitably appears in any renormalization scheme.
Changing 𝜇 corresponds to finite renormalization (rescaling) of the
coupling, the latter becomes running

𝜆(𝜇0) → 𝜆(𝜇),
d

d ln𝜇
𝜆 = 𝛽𝜆(𝜆), 𝛽𝜆 =

3

2
𝜆2 + ..., RGE

The crucial point is that observables
(if all orders of PT are taken into
account) should not depend on the
choice of 𝜇.

The dependence on 𝜇 is given by
Renormalization Group Equations
that theory can predict (𝛽𝜆).

The value of 𝜆(𝜇0) is not predicted,
but extracted from experiment!

𝜇

𝜆(𝜇)

𝜇0 𝜇1

𝜆1

𝜆2

Physics
depends
on curve

Two values 𝜆1 and 𝜆2 correspond to

different Physics, if both
measured at 𝜇0

same Physics, if measured at 𝜇0

and 𝜇1, respectively.
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Renormalization Group: QCD Example

𝛽𝛼s = −
𝛼2
s

4𝜋

(︂
11−

2

3
nf

)︂
+ ...+𝒪(𝛼7

s ), nf − number of flavours

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)(–)

Experiments prove that Quantum ChromoDynamics is a consistent theory
of strong interactions for a wide range of scales...
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Renormalizable vs Non-Renormalizable

We were able to cancel UV-divergencies by counter-terms that have
the same structure as our initial Lagrangian. In general, each term in
ℒfull gets a renormalization constant Z to subtract relevant
divergence:

ℒfull =
Z2

2
(𝜕𝜑)2 − Zmm

2

2
𝜑2 + Z4

𝜆𝜑4

4!
=

1

2
(𝜕𝜑B)

2 −
m2

B

2
+
𝜆B𝜑

4
B

4!
,

where 𝜑B =
√
Z2𝜑, m

2
B = m2ZmZ

−1
2 , 𝜆B = 𝜆Z4Z

−2
2 are bare field,

mass and coupling.

(Divergent) Z -factors are chosen in such a way that the diverences in
amplitudes are removed order by order in perturbation theory.

If all divergences can be canceled by such a procedure
the model is called renormalizable!

One can determine whether a model is renormalizable by checking the
dimension of the couplings. Remember the T-shirt Lagrangian?
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Renormalizable vs Non-Renormalizable

What happens if we have a divergent amplitude but the structure of
the required subtraction does not have a counter-part in ℒ?
We can add the required structure to the Lagrangian...

Imagine that we couple a scalar (𝜑)
and a fermion (𝜓) via

ℒI ∋ 𝛿ℒY = −y𝜓𝜓𝜑

but forgot to consider

𝛿ℒ4 = −𝜆𝜑4/4!

But it is required to cancel
divergences due to fermion loops!

𝜑

𝜑 𝜑

𝜑

This divergent diagram will
force us to add 𝛿ℒ4 to ℒI .

New terms in ℒI will generate new diagrams, which can require new
interactions to be added to ℒI . Will this process terminate?

NB: Every fermion loop produces an additional minus sign! Why?
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Renormalizable vs Non-Renormalizable

If one has to add more and more terms to ℒI , this is a signal of
Non-Renormalizable model. Have to measure infinite number of
couplings to predict something!

Q: Is it BAD? Does it make sense?

A: It is not satisfactory...but still we can get something!

Non-Renormalizable models contrary to the Renormalizable ones
involves couplings Gi with negative mass dimension [Gi ] < 0!
Not all of them are important for predictions at low energies E

GiE
−[Gi ] ≪ 1.

This explains the success of the Fermi model of the 𝛽-decay
n → p + e− + 𝜈e :

ℒI = G Ψ̄p𝛾𝜌Ψn · Ψ̄e𝛾𝜌Ψ𝜈 + h.c.

A. Bednyakov (JINR) QFT & EW SM 29 / 32



Fermi Model: Harbinger of the EW theory

In 1957 R. Marshak & G.Sudarshan, R. Feynman & M. Gell-Mann
modified the original Fermi theory of beta-decay to incorporate 100 %
violation of Parity discovered by C.S. Wu in 1956

ℒFermi =
GF

2
√
2
(J+𝜇 J−𝜇 + h.c.),

J−𝜌 = (V − A)nucleons𝜌 +Ψe𝛾𝜌 (1− 𝛾5)Ψ𝜈e +Ψ𝜇𝛾𝜌 (1− 𝛾5)Ψ𝜈𝜇 + ...

This is current-current interactions with GF ≃ 10−5 GeV−1.
From dimensional grounds we can estimate

𝜎(𝜈ee → 𝜈ee) ∝ G 2
F s, s = (pe + p𝜈)

2.

× Non-Renormalizable theories eventually violate unitarity!
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From Fermi Model to EW theory

The modern view on the Fermi model treats it as an effective theory
with certain limits of applicability.

The value of the dimensionful coupling constant GF tells us
something about more fundamental theory (SM?):

Warning!

around G
−1/2
F ∼ 102 − 103 GeV there should be some “New Physics”.

QED is renormalizable. By analogy we introduce mediators -
electrically charged vector fields W±

𝜇 :

ℒFermi =
GF

2
√
2
(J+𝜇 J−𝜇 + h.c.)

→ ℒint = − g

2
√
2
(W+

𝜇 J−𝜇 + h.c.).

e− 𝜈e

𝜈e e−

W+
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From Fermi Model to EW theory

The field W𝜇 in

ℒint = − g

2
√
2
(J+𝜇 W−

𝜇 + h.c.).

should be massive to account for short-range weak interactions.

The scattering amplitude

T = i(2𝜋)4
g2

8
J+𝛼

[︂
g𝛼𝛽 − p𝛼p𝛽/M

2
W

p2 −M2
W

]︂
J−𝛽

reproduces the result due to the current-current interaction in the
limit |p| ≪ MW if we identify (“match”)

(effective theory)
GF√
2
=

g2

8MW
2

(more fundamental theory)

However, we have to be more clever, since the behavior of the
amplitude in the opposite limit (p ≫ MW ) is still the same.

The solution to this problem is to utilize gauge symmetry...
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