(Quantum) Field Theory
and
the Electroweak Standard Model
Lecture II

Alexander Bednyakov

Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear Research

The CERN-JINR European School of High-Energy Physics, Maratea, Italy - 20 June - 3 July 2018

Outline

- Lecture I
- What is the Standard Model?
- Introducing Quantum Fields
- Global Symmetries
- Lecture II
- Introducing Interactions
- Perturbation Theory
- Renormalizable or Non-Renormalizable?

■ Lecture III

- Gauge Symmetries
- Constructing the EW SM
- Experimental tests of the EW SM
- Issues and Prospects of the EW SM

What's next?

Up to now we were dealing with free scalar field. Ok, it can be used to describe the famous Higgs boson. But You may ask:

What's next?

Up to now we were dealing with free scalar field. Ok, it can be used to describe the famous Higgs boson. But You may ask:

■ What about other particles?

What's next?

Up to now we were dealing with free scalar field. Ok, it can be used to describe the famous Higgs boson. But You may ask:

■ What about other particles?
■ What about interactions?

What's next?

Up to now we were dealing with free scalar field. Ok, it can be used to describe the famous Higgs boson. But You may ask:

■ What about other particles?
■ What about interactions?

Let us start with the first question ...

Fields, Fields, Fields ...

We can describe fields involving several DOFs by adding more (and more) indices $\phi(x) \rightarrow \Phi_{\alpha}^{i}(x)$. One can split indices into two groups: space-time (α) and internal (i).

sum over all polarization states
polarization "vector" for a state s

$$
\begin{aligned}
& \text { Lorentz transform } \Lambda: \Phi_{\alpha}^{\prime i}(\wedge x)=S_{\alpha \beta}(\wedge) \Phi_{\beta}^{i}(x) \\
& \text { internal transform a: } \quad \Phi_{\alpha}^{\prime i}(x)=U^{i j}(a) \Phi_{\alpha}^{j}(x)
\end{aligned}
$$

- Quarks are color fermions Ψ_{α}^{i} and, e.g., $\left(a_{\mathbf{p}}^{-}\right)_{s}^{b}$ annihilates blue quark in spin state s. The latter is characterized by spinor $u_{\alpha}^{s}(\mathbf{p})$.
- There are eight vector gluons G_{μ}^{a}. So $\left(a_{\mathbf{p}}^{-}\right)_{s}^{a}$ annihilates gluon a in spin state s having polarization $u_{\alpha}^{s}(\mathbf{p}) \rightarrow \epsilon_{\mu}^{s}(\mathbf{p})$.

Massive Vector Fields

Charged Vector Field (e.g., W-bosons) can be written as

$$
W_{\mu}(x)=\frac{1}{(2 \pi)^{3 / 2}} \sum_{\lambda=1}^{3} \int \frac{d \mathbf{p}}{\sqrt{2 \omega_{p}}}\left[\epsilon_{\mu}^{\lambda}(\mathbf{p})\left(a_{\lambda}^{-}(\mathbf{p}) e^{-i p x}+b_{\lambda}^{+}(\mathbf{p}) e^{+i p x}\right)\right]
$$

Massive spin-1 particle has 3 independent polarization vectors:

$$
\begin{aligned}
& \epsilon_{\mu}^{\lambda}(\mathbf{p}) \epsilon_{\mu}^{\lambda^{\prime}}(\mathbf{p})=-\delta^{\lambda \lambda^{\prime}}, \quad \sum_{\lambda=1}^{3} \epsilon_{\mu}^{\lambda} \epsilon_{\nu}^{\lambda}=-\left(g_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{m^{2}}\right) \\
& \text { man propagator } \\
& \text { spin sum }
\end{aligned}
$$

The Feynman propagator

$$
\langle 0| T\left(W_{\mu}(x) W_{\nu}^{\dagger}(y)\right)|0\rangle=\frac{1}{(2 \pi)^{4}} \int d^{4} p e^{-i p(x-y)}\left[\frac{-i\left(g_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{m^{2}}\right)}{p^{2}-m^{2}+i \epsilon}\right]
$$

The Lagrangian
p_{0} arbitrary

$$
\mathcal{L}=-\frac{1}{2} W_{\mu \nu}^{\dagger} W_{\mu \nu}+m^{2} W_{\mu}^{\dagger} W_{\mu}, \quad W_{\mu \nu} \equiv \partial_{\mu} W_{\nu}-\partial_{\nu} W_{\mu}
$$

Ex: Find the explicit form of ϵ_{μ}^{λ} for $p_{\mu}=(E, 0,0, p)$. Show that one of the vectors $\epsilon_{\mu}^{L} \simeq p_{\mu} / m+\mathcal{O}(m)$ diverges in the limit $p_{\mu} \rightarrow \infty(m \rightarrow 0)$.

Massless Vector Fields

Massless (say photon) Vector Field is usually represented by $\left(\omega_{p}=|\mathbf{p}|\right)$

$$
A_{\mu}(x)=\frac{1}{(2 \pi)^{3 / 2}} \sum_{\lambda=0}^{3} \int \frac{d \mathbf{p}}{\sqrt{2 \omega_{p}}}\left[\epsilon_{\mu}^{\lambda}(\mathbf{p})\left(a_{\lambda}^{-}(\mathbf{p}) e^{-i p x}+a_{\lambda}^{+}(\mathbf{p}) e^{+i p x}\right)\right]
$$

with

$$
\epsilon_{\mu}^{\lambda}(\mathbf{p}) \epsilon_{\mu}^{\lambda^{\prime}}(\mathbf{p})=g^{\lambda \lambda^{\prime}}, \quad \epsilon_{\mu}^{\lambda}(\mathbf{p}) \epsilon_{\nu}^{\lambda}(\mathbf{p})=g_{\mu \nu}, \quad\left[a_{\lambda}^{-}(\mathbf{p}), a_{\lambda^{\prime}}^{+}\left(\mathbf{p}^{\prime}\right)\right]=-g_{\lambda \lambda^{\prime}} \delta_{\mathbf{p}, \mathbf{p}^{\prime}}
$$

The corresponding Feynman propagator is

$$
\langle 0| T\left(A_{\mu}(x) A_{\nu}(y)\right)|0\rangle=\frac{1}{(2 \pi)^{4}} \int d^{4} p e^{-i p(x-y)}\left[\frac{-i g_{\mu \nu}}{p^{2}+i \epsilon}\right]
$$

But only 2 polarizations are physical!
This reflects the fact that the vector-field Lagrangian for $m=0$

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F_{\mu \nu}, \quad F_{\mu \nu} \equiv \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

is invariant under $A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \alpha(x)$ for arbitrary $a(x)$ (gauge symmetry). Additional conditions are needed to get rid of unphysical d.o.f.!

Fermion Fields

Spin-1/2 fermion fields are given by

$$
\psi^{\alpha}(x)=\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d \mathbf{p}}{\sqrt{2 \omega_{p}}} \sum_{s=1,2}\left[u_{s}^{\alpha}(\mathbf{p}) a_{s}^{-}(\mathbf{p}) e^{-i p x}+v_{s}^{\alpha}(\mathbf{p}) b_{s}^{+}(\mathbf{p}) e^{+i p x}\right]
$$

Fermion Fields

Spin-1/2 fermion fields are given by ($\bar{\psi}=\psi^{\dagger} \gamma_{0}$).

$$
\begin{aligned}
\psi(x) & =\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d \mathbf{p}}{\sqrt{2 \omega_{p}}} \sum_{s=1,2}\left[u_{s}(\mathbf{p}) a_{s}^{-}(\mathbf{p}) e^{-i p x}+v_{s}(\mathbf{p}) b_{s}^{+}(\mathbf{p}) e^{+i p x}\right] \\
\bar{\psi}(x) & =\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d \mathbf{p}}{\sqrt{2 \omega_{p}}} \sum_{s=1,2}\left[\bar{u}_{s}(\mathbf{p}) a_{s}^{+}(\mathbf{p}) e^{+i p x}+\bar{v}_{s}(\mathbf{p}) b_{s}^{-}(\mathbf{p}) e^{-i p x}\right] .
\end{aligned}
$$

Here the spinors u_{s} and v_{s} satisfy 4×4 matrix equations

$$
(\hat{p}-m) u_{s}(\mathbf{p})=0, \quad(\hat{p}+m) v_{s}(\mathbf{p})=0, \quad \hat{p} \equiv \gamma_{\mu} p_{\mu}, \quad p_{0} \equiv \omega_{\mathbf{p}}
$$

and correspond to particles $\left(u_{s}\right)$ or antiparticles $\left(v_{s}\right)$ with two spin states $(s=1,2)$. One can normalize the spinors as

$$
\bar{u}_{s}(\mathbf{p}) u_{r}(\mathbf{p})=2 m \delta_{r s}, \quad \bar{v}_{s}(\mathbf{p}) v_{r}(\mathbf{p})=-2 m \delta_{r s},
$$

NB: Gamma-matrix (Clifford) algebra involve anticommutators:

$$
\left[\gamma_{\mu}, \gamma_{\nu}\right]_{+}=2 g_{\mu \nu} \mathbf{1} \quad \Rightarrow \gamma_{0}^{2}=\mathbf{1}, \quad \gamma_{1}^{2}=\gamma_{2}^{2}=\gamma_{3}^{2}=-\mathbf{1}
$$

Fermions \& Pauli Principle

$$
\psi(x)=\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d \mathbf{p}}{\sqrt{2 \omega_{p}}} \sum_{s=1,2}\left[u_{s, p} \mathrm{a}_{s, p}^{-} e^{-i p x}+v_{s, \mathbf{p}} b_{s, \mathbf{p}}^{+} \mathrm{e}^{+i p x}\right] .
$$

Contrary to the case of scalar (boson) fields, the creation/annihilation operators for fermions $a_{s, p}^{ \pm}$and antifermions $b_{s, \mathbf{p}}^{ \pm}$anticommute.

$$
\begin{aligned}
& {\left[a_{r, \mathbf{p}}^{-}, a_{s, \mathbf{p}^{\prime}}^{+}\right]_{+}=\left[b_{r, p}^{-}, b_{s, \mathbf{p}^{\prime}}^{+}\right]_{+}=\delta_{s r} \delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right)} \\
& {\left[a_{r, p}^{ \pm}, a_{s, \mathbf{p}^{\prime}}^{ \pm}\right]_{+}=\left[b_{r, p}^{ \pm}, b_{s, \mathbf{p}^{\prime}}^{ \pm}\right]_{+}=\left[a_{r, \mathbf{p}}^{ \pm}, b_{s, \mathbf{p}^{\prime}}^{ \pm}\right]_{+}=0}
\end{aligned}
$$

Due to this, fermions obey Pauli principle: $a_{r, p}^{+} a_{r, p}^{+}=0$.
NB: One can explicitly show that quantization of bosons (integer spin) with anticommutators and fermions (half-integer spin) with commutators leads to inconsistencies (violates Spin-Statistics theorem).

Fermions \& Lorentz Symmetry

Fermion fields transform under Lorentz group $x^{\prime}=\Lambda x$ as

$$
\psi^{\prime}\left(x^{\prime}\right)=\mathcal{S}_{\Lambda} \psi(x), \quad \psi^{\prime}\left(x^{\prime}\right)^{\dagger}=\psi(x) \mathcal{S}_{\Lambda}^{\dagger}
$$

The matrix $\mathcal{S}_{\Lambda}^{\dagger} \neq \mathcal{S}_{\Lambda}^{-1}$, but $\mathcal{S}^{-1}=\gamma_{0} \mathcal{S}^{\dagger} \gamma_{0}$. Dirac-conjugated spinor $\bar{\psi}(x) \equiv \psi^{\dagger} \gamma_{0}$ enters

$$
\begin{aligned}
\bar{\psi}^{\prime}\left(x^{\prime}\right) \psi^{\prime}\left(x^{\prime}\right) & =\bar{\psi}(x) \psi(x), & & \text { Lorentz scalar } \\
\bar{\psi}^{\prime}\left(x^{\prime}\right) \gamma_{\mu} \psi^{\prime}\left(x^{\prime}\right) & =\Lambda_{\mu \nu} \bar{\psi}(x) \gamma_{\nu} \psi(x), & & \text { Lorentz vector. }
\end{aligned}
$$

and allows one to prove that the Dirac Lagrangian

$$
\mathcal{L}=\bar{\psi}(i \hat{\partial}-m) \psi
$$

is also a Lorentz scalar $=$ respects Lorentz symmetry.
Ex: Find the expression for P_{μ}. Show that

$$
P_{0} \equiv \mathcal{H}=\int d \mathbf{p} \sum_{s} \omega_{p}\left(a_{s}^{+} a_{s}^{-}+b_{s}^{+} b_{s}^{-}-\delta(\mathbf{0})\right)
$$

Left and Right Fermions: Chirality vs Helicity

Two independent solutions for particles ($u_{1,2}$) can be chosen to correspond to two different Helicities - projections of spin \mathbf{s} onto direction of \mathbf{p} :

$$
\mathcal{H}=\mathbf{s} \cdot \mathbf{n}, \quad \mathbf{n}=\mathbf{p} /|\mathbf{p}|
$$

In free motion it is conserved.
But not Lorentz-invariant!
Left-Handed Right-Handed

Massive particles can be overtaken so that $\mathbf{n} \rightarrow-\mathbf{n}$ and $\mathcal{H} \rightarrow-\mathcal{H}$.
Helicity for a massless particle is the same for all inertial observers and coincides with Chirality, which is a Lorentz-invariant concept.

By definition Left $\left(\psi_{L}\right)$ and Right $\left(\psi_{R}\right)$ chiral spinors are eigenvectors of

$$
\begin{aligned}
\gamma_{5}=i \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3} & \Rightarrow\left[\gamma_{\mu}, \gamma_{5}\right]_{+}=0, \quad \gamma_{5}^{2}=1, \quad \gamma_{5}^{\dagger}=\gamma_{5} \\
\gamma_{5} \psi_{L} & =-\psi_{L}, \quad \gamma_{5} \psi_{R}=+\psi_{R} .
\end{aligned}
$$

Chirality and Helicity are not the same for massive particles!

Fermions: Chirality and Mass

For any spinor ψ we can define

$$
\psi=\psi_{L}+\psi_{R}, \quad \psi_{L / R}=P_{L / R} \psi, \quad P_{L / R}=\frac{1 \mp \gamma_{5}}{2}
$$

and rewrite the Lagrangian as

$$
\mathcal{L}=i(\underbrace{\left(\bar{\psi}_{L} \hat{\partial}_{L}+\bar{\psi}_{R} \hat{\partial} \psi_{R}\right.}_{\text {conserve chirality }})-m(\underbrace{\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}}_{\text {break chirality }})
$$

The mass term mixes left and right components.
Ex: Prove that the mass term violates chiral symmetry (independent rotation of left and right components):

$$
\psi \rightarrow e^{i \gamma_{5} \alpha} \psi
$$

NB: We considered the Dirac mass term. For neutral fermions (neutrino) there is another possibility - a Majorana mass. Charge-conjugation $\psi \rightarrow \psi^{c}$ flips chirality and we can use ψ_{L}^{c} in place of ψ_{R} to write

$$
\mathcal{L}=\frac{1}{2}\left(i \bar{\psi}_{L} \hat{\partial} \psi_{L}-m \bar{\psi}_{L} \psi_{L}^{c}\right) \quad \text { see lectures by Silvia Pascoli. }
$$

Introducing Interactions

In HEP typical collision/scattering experiment deals with "free" initial and final states and considers transitions between these states.
In Quantum Theory one introduces S-matrix with matrix elements

$$
\mathcal{M}=\langle\beta| S|\alpha\rangle, \quad \mathcal{M}=\delta_{\alpha \beta}+(2 \pi)^{4} \delta^{4}\left(p_{\alpha}-p_{\beta}\right) i M_{\alpha \beta}
$$

giving amplitudes for possible transitions between in $|\alpha\rangle$ and out $|\beta\rangle$ states:

$$
|\alpha\rangle=a_{\mathbf{p}_{1}}^{+} \ldots a_{\mathbf{p}_{r}}^{+}|0\rangle, \quad|\beta\rangle=a_{\mathbf{k}_{1}}^{+} \ldots a_{\mathbf{k}_{s}}^{+}|0\rangle,
$$

Differential probability to evolve from $|\alpha\rangle$ to $|\beta\rangle$ is

$$
\begin{aligned}
d w & =\frac{n_{1} \ldots n_{r}}{\left(2 \omega_{p_{1}}\right) \ldots\left(2 \omega_{p_{r}}\right)}\left|M_{\alpha \beta}\right|^{2} d \Phi_{s}, \quad n_{i}-\text { particle densities } \\
d \Phi_{s} & =(2 \pi)^{4} \delta^{4}\left(p_{\text {in }}-k_{\text {out }}\right) \frac{d \mathbf{k}_{1}}{(2 \pi)^{3}\left(2 \omega_{k_{1}}\right)} \cdots \frac{d \mathbf{k}_{i}}{(2 \pi)^{3}\left(2 \omega_{k_{i}}\right)}
\end{aligned}
$$

Introducing Interactions

In HEP typical collision/scattering experiment deals with "free" initial and final states and considers transitions between these states. In Quantum Theory one introduces S-matrix with matrix elements

$$
\mathcal{M}=\langle\beta| S|\alpha\rangle, \quad \mathcal{M}=\delta_{\alpha \beta}+(2 \pi)^{4} \delta^{4}\left(p_{\alpha}-p_{\beta}\right) i M_{\alpha \beta}
$$

giving amplitudes for possible transitions between in $|\alpha\rangle$ and out $|\beta\rangle$ states:

$$
|\alpha\rangle=a_{\mathbf{p}_{1}}^{+} \ldots a_{\mathbf{p}_{r}}^{+}|0\rangle, \quad|\beta\rangle=a_{\mathbf{k}_{1}}^{+} \ldots a_{\mathbf{k}_{s}}^{+}|0\rangle,
$$

Differential decay width $d \Gamma$ of particle with mass m, and cross-section $d \sigma$ for $2 \rightarrow s$ process can be calculated via:

$$
\begin{aligned}
d \Gamma=\Phi_{\Gamma}|M|^{2} d \Phi_{s}, & \Phi_{\Gamma}=\frac{1}{2 m}, \\
d \sigma=\Phi_{\sigma}|M|^{2} d \Phi_{s}, & \Phi_{\sigma}=\frac{1}{4 \sqrt{\left(p_{1} p_{2}\right)^{2}-p_{1}^{2} p_{2}^{2}}}
\end{aligned}
$$

Scattering Matrix

- In QFT the S-matrix is given by

$$
S=T e^{-i \int d x \mathcal{H}_{l}(x)}=T e^{i \int d x \mathcal{L}_{l}(x)}
$$

Interaction Hamiltonian \mathcal{H}_{l} (Lagrangian \mathcal{L}_{l}) is built from free* field operators (certain combinations of $a^{ \pm}$and $b^{ \pm}$).

- $\mathcal{L}_{I}=\mathcal{L}_{\text {full }}-\mathcal{L}_{0}$ is a sum of Lorentz-invariant terms involving more than two fields and more ∂_{μ} than in the free \mathcal{L}_{0}.
- Time-ordering operation

$$
T \Phi_{1}\left(x_{1}\right) \ldots \Phi_{n}\left(x_{n}\right)=(-1)^{k} \Phi_{i_{1}}\left(x_{i_{1}}\right) \ldots \Phi_{i_{n}}\left(x_{i_{n}}\right), \quad x_{i_{1}}^{0}>\ldots>x_{i_{n}}^{0},
$$

where $(-1)^{k}$ appears due to k permutations of fermions fields.
NB: Higgs self-interactions in the SM is described by $\mathcal{L}_{I}=-\lambda \phi^{4} / 4$!

[^0]
Interaction Lagrangians

Interaction Lagrangian should be hermitian and can include any scalar combination of quantum fields, e.g.,

$$
\begin{array}{rll}
\mathcal{L}_{I}: & g \phi^{3}(x), \quad \lambda \phi^{4}(x), & y \bar{\psi}(x) \psi(x) \phi(x) \\
& e \bar{\psi}(x) \gamma_{\mu} \psi(x) A_{\mu}(x), & G\left[\left(\bar{\psi}_{1} \gamma_{\mu} \psi_{2}\right)\left(\bar{\psi}_{3} \gamma_{\mu} \psi_{4}\right)+\text { h.c. }\right]
\end{array}
$$

The parameters (couplings) g, λ, e, y, and G sets the strength of interactions. Usually, we assume that couplings are small and we can treat $\mathcal{L}_{\text {I }}$ as a perturbation to \mathcal{L}_{0}.
The T-shirt Lagrangian is unique, since all the couplings there are dimensionless!
Ex: Show that $[\phi]=\left[A_{\mu}\right]=1,[\psi]=3 / 2$. Find the (mass) dimensions of g, λ, e, y, and G.

Hint: $[\mathcal{L}]=4$

Well, $V(\phi)$ is not specified, but I am pretty sure that only 2 terms were implied. Which ones?

Perturbation Theory

Given $\mathcal{L}_{\text {I }}$ we can calculate $\langle\alpha| S|\beta\rangle$. In practise, one uses perturbative expansion of the T -exponent and evaluates terms like ($\mathcal{L}_{I}=-\lambda \phi^{4} / 4$!):

$$
\frac{i^{n}}{n!}\left[\frac{\lambda}{4!}\right]^{n}\langle 0| a_{\mathbf{k}_{1}}^{-} \ldots a_{\mathbf{k}_{s}}^{-} \int d x_{1} \ldots d x_{n} T\left[\phi\left(x_{1}\right)^{4} \ldots \phi\left(x_{n}\right)^{4}\right] a_{\mathbf{p}_{1}}^{+} \ldots a_{\mathbf{p}_{r}}^{+}|0\rangle,
$$

The calculation is carried out by means of Wick theorem:

$$
T \Phi_{1} \ldots \Phi_{n}=\sum(-1)^{\sigma}\langle 0| T\left(\Phi_{i_{1}} \Phi_{i_{2}}\right)|0\rangle \ldots\langle 0| T\left(\Phi_{i_{m-1}} \Phi_{i_{m}}\right)|0\rangle: \Phi_{i_{m+1}} \ldots \Phi_{i_{n}}
$$

where sum goes over all possible ways to pair the fields.
Remember normal ordering? Now it cares about fermions.

$$
: a_{1}^{-} a_{2}^{+} a_{3}^{-} a_{4}^{-} a_{5}^{+} a_{6}^{-}:=(-1)^{\sigma} a_{2}^{+} a_{5}^{+} a_{1}^{-} a_{3}^{-} a_{4}^{-} a_{6}^{-}
$$

Feynman Rules: External States

We have to evaluate

$$
\langle 0| a_{\mathbf{k}_{1}}^{-} \ldots a_{\mathbf{k}_{s}}^{-}: \Phi_{i_{m+1}} \ldots \Phi_{i_{n}}: a_{\mathbf{p}_{1}}^{+} \ldots a_{\mathbf{p}_{r}}^{+}|0\rangle .
$$

To get a non-zero matrix element all $a^{-}\left(a^{+}\right)$in the normal product of fields from the Lagrangian have to be "killed" by (commuted with) $a^{+}\left(a^{-}\right)$from the initial (final) states.
For our generalized field

$$
\begin{aligned}
& {\left[\Phi_{\alpha}^{i}(x),\left(a_{\mathbf{p}}^{+}\right)_{s}^{i}\right]=\underbrace{\frac{e^{-i p x}}{(2 \pi)^{3 / 2} \sqrt{2 \omega_{p}}} u_{\alpha}^{s}(\mathbf{p})}_{\text {common to all fields }}} \\
& {\left[\left(b_{\mathbf{p}}^{-}\right)_{s}^{i}, \Phi_{\alpha}^{i}(x)\right]=\frac{e^{+i p x}}{(2 \pi)^{3 / 2} \sqrt{2 \omega_{p}}} v_{\alpha}^{s}(\mathbf{p})}
\end{aligned}
$$

initial state polarization

All this machinery can be implemented in a set of Feynman rules, which are used to draw (and evaluate) Feynman diagrams for the amplitudes.

Feynman Rules: Propagators

- Propagators (from \mathcal{L}_{0})

$$
\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-m^{2}+i \epsilon}\left\{\begin{array}{ccc}
1 & \xrightarrow{p} & \phi \\
\hat{p}+m & \stackrel{p}{\longrightarrow} & \psi \\
-g_{\mu \nu}+p_{\mu} p_{\nu} / m^{2} & \xrightarrow{\mu \xrightarrow{p} \nu} W_{\mu}
\end{array}\right.
$$

- External states (from \mathcal{L}_{0})

scalar	1	$\xrightarrow[-\overrightarrow{--}]{p}$	incoming fermion	$u_{s}(\mathbf{p})$	
	1		outgoing fermion	$\bar{u}_{s}(\mathbf{p})$	$\stackrel{p}{\longrightarrow}$
vector	$\epsilon_{\mu}^{\lambda}(\mathbf{p})$	$\xrightarrow[\sim]{p} \mu$	outgoing antifermion	$v_{s}(\mathbf{p})$	$\stackrel{p}{\longrightarrow}$
	$\epsilon_{\mu}^{* \lambda}(\mathbf{p})$	$\underset{\sim n}{\mu}$	incoming antifermion	$\bar{v}_{s}(\mathbf{p})$	\xrightarrow{p}

Feynman Rules: Vertices

- Interaction Vertices $\left(\right.$ from \mathcal{L}_{l} or $\left.S_{I}=\int d x \mathcal{L}_{l}\right)$

$$
i \frac{\delta^{4} S_{l}[\phi]}{\delta \phi\left(p_{1}\right) \delta \phi\left(p_{2}\right) \delta \phi\left(p_{3}\right) \delta \phi\left(p_{4}\right)} \Rightarrow \underbrace{(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}+p_{3}+p_{4}\right)}_{\text {conservation of energy-momentum }} \times[-i \lambda]
$$

In a typical diagram all $(2 \pi)^{4} \delta(\ldots)$ factors (but one) are removed by the momentum integration originating from propagators.

NB: All integrations (from propagators) are "killed" by δ-functions (from vertices) only in tree diagram (w/o loops)!

Feynman Rules: Vertices

More Examples:

Now you can do tree-level calculations of amplitudes...

From Amplitudes To Probabilities

To get probabilities we have to square matrix elements:

Sometimes we do not care about polarization states of initial or final particles so we have to sum over final polarization and average over initial ones. That is where spin-sum formulas become handy, e.g.

$$
\begin{aligned}
& \sum_{s} u_{s}\left(\mathbf{p}_{1}\right) \bar{u}_{s}\left(\mathbf{p}_{1}\right)=\hat{p}_{1}+m, \quad \sum_{s} v_{s}\left(\mathbf{p}_{2}\right) \bar{v}_{s}\left(\mathbf{p}_{2}\right)=\hat{p}_{2}-m \\
& M M^{\dagger} \rightarrow \sum_{s, r}\left(\bar{u}_{s} A v_{r}\right)\left(\bar{v}_{r} A^{\dagger} u_{s}\right)=\operatorname{Tr}\left[\left(\hat{p}_{1}+m\right) A\left(\hat{p}_{2}-m\right) A^{\dagger}\right]
\end{aligned}
$$

Loops and (UV) Divergences

In QFT particle propagators can form loops and we have integrals over unconstrained momenta

$$
\begin{aligned}
I_{2}(k) & \equiv \int \frac{d^{4} q}{\left[q^{2}+i \epsilon\right]\left[(k-q)^{2}+i \epsilon\right]} \\
& \sim \int^{\infty} \frac{|q|^{3} d|q|}{|q|^{4}} \sim \ln \infty
\end{aligned}
$$

which can lead to divergent (meaningless?) results. This is again UV divergence, due to large momenta ("small distances").

Q: Do we have to abandon QFT?
A: Nope, and there are reasons...

- (Phys:) We do not know physics up to infinitely small scales.
- (Math:) We are dealing with distributions, not functions.

NB: Overall degree of divergence can be deduced by power counting

Parametrizing our Ignorance: Regularization

To make sense of formally divergent integrals we introduce some regularization, e.g., a "cut-off" $|q|<\Lambda$
$I_{2}^{\Lambda}(k)=i \pi^{2}\left[\ln \frac{\Lambda^{2}}{k^{2}}+1\right]+\mathcal{O}\left(\frac{k^{2}}{\Lambda^{2}}\right)=i \pi^{2}\left[\ln \frac{\Lambda^{2}}{\mu^{2}}-\ln \frac{k^{2}}{\mu^{2}}+1\right]+\mathcal{O}\left(\frac{k^{2}}{\Lambda^{2}}\right)$
Another convenient possibility is dimensional regularization $d=4 \rightarrow d=4-2 \varepsilon$

$$
I_{2}^{4-2 \varepsilon}(k)=\mu^{2 \varepsilon} \int \frac{d^{4-2 \varepsilon} q}{q^{2}(k-q)^{2}}=i \pi^{2}\left(\frac{1}{\varepsilon}-\ln \frac{k^{2}}{\mu^{2}}+2\right)+\mathcal{O}(\varepsilon)
$$

The crucial property of the divergent ($\Lambda \rightarrow \infty$ or $\varepsilon \rightarrow 0$) terms is that they either do not depend on external momenta (k) at all or depend on k polynomially*. This means that we can cancel them by adding local (yet divergent) terms to \mathcal{L}_{I} (CounterTerms).

Parametrizing our Ignorance: Renormalization

Indeed, we are interested in scattering amplitude in perturbation theory:

perm. + more loops

$$
\lambda \quad-\frac{\lambda^{2}}{2}\left(\ln \frac{\Lambda^{2}}{\mu^{2}}-\ln \frac{k^{2}}{\mu^{2}}+\ldots\right)
$$

Parametrizing our Ignorance: Renormalization

Indeed, we are interested in scattering amplitude in perturbation theory:

perm. +
more loops

$$
\lambda-\frac{\lambda^{2}}{2} \ln \frac{\Lambda^{2}}{\mu^{2}} \quad-\frac{\lambda^{2}}{2}\left(\ln \frac{\Lambda^{2}}{\mu^{2}}-\ln \frac{k^{2}}{\mu^{2}}+\ldots\right)
$$

$\lambda_{B}(\Lambda)$

$■$ We can defined bare coupling $\lambda_{B}(\Lambda)$ that depends on $\Lambda($ or $\varepsilon)$:

$$
\lambda_{B}(\Lambda)=\lambda(\mu)\left(1+\frac{3}{2} \lambda(\mu) \ln \frac{\Lambda^{2}}{\mu^{2}}+\ldots\right)
$$

■ The bare parameters can not be measured. But, we can (and do) express them in terms of renormalized quantities $\lambda(\mu)$ to get finite results, which can be confronted with experiment.

Renormalization Group

- The scale μ inevitably appears in any renormalization scheme.

■ Changing μ corresponds to finite renormalization (rescaling) of the coupling, the latter becomes running

$$
\lambda\left(\mu_{0}\right) \rightarrow \lambda(\mu), \quad \frac{d}{d \ln \mu} \lambda=\beta_{\lambda}(\lambda), \quad \beta_{\lambda}=\frac{3}{2} \lambda^{2}+\ldots, \quad \mathrm{RGE}
$$

- The crucial point is that observables

Two values λ_{1} and λ_{2} correspond to

- different Physics, if both measured at μ_{0}
- same Physics, if measured at μ_{0} and μ_{1}, respectively.

Renormalization Group: QCD Example

$$
\beta_{\alpha_{s}}=-\frac{\alpha_{s}^{2}}{4 \pi}\left(11-\frac{2}{3} n_{f}\right)+\ldots+\mathcal{O}\left(\alpha_{s}^{7}\right), \quad n_{f}-\text { number of flavours }
$$

Experiments prove that Quantum ChromoDynamics is a consistent theory of strong interactions for a wide range of scales...

Renormalizable vs Non-Renormalizable

■ We were able to cancel UV-divergencies by counter-terms that have the same structure as our initial Lagrangian. In general, each term in $\mathcal{L}_{\text {full }}$ gets a renormalization constant Z to subtract relevant divergence:

$$
\mathcal{L}_{\text {full }}=\frac{Z_{2}}{2}(\partial \phi)^{2}-\frac{Z_{m} m^{2}}{2} \phi^{2}+Z_{4} \frac{\lambda \phi^{4}}{4!}=\frac{1}{2}\left(\partial \phi_{B}\right)^{2}-\frac{m_{B}^{2}}{2}+\frac{\lambda_{B} \phi_{B}^{4}}{4!}
$$

where $\phi_{B}=\sqrt{Z_{2}} \phi, m_{B}^{2}=m^{2} Z_{m} Z_{2}^{-1}, \lambda_{B}=\lambda Z_{4} Z_{2}^{-2}$ are bare field, mass and coupling.

- (Divergent) Z-factors are chosen in such a way that the diverences in amplitudes are removed order by order in perturbation theory.

If all divergences can be canceled by such a procedure the model is called renormalizable!

- One can determine whether a model is renormalizable by checking the dimension of the couplings. Remember the T-shirt Lagrangian?

Renormalizable vs Non-Renormalizable

- What happens if we have a divergent amplitude but the structure of the required subtraction does not have a counter-part in \mathcal{L} ?
- We can add the required structure to the Lagrangian...

Imagine that we couple a scalar (ϕ) and a fermion (ψ) via

$$
\mathcal{L}_{I} \ni \delta \mathcal{L}_{Y}=-y \bar{\psi} \psi \phi
$$

but forgot to consider

$$
\delta \mathcal{L}_{4}=-\lambda \phi^{4} / 4!
$$

But it is required to cancel divergences due to fermion loops!

This divergent diagram will force us to add $\delta \mathcal{L}_{4}$ to \mathcal{L}_{1}.
■ New terms in $\mathcal{L}_{\text {/ }}$ will generate new diagrams, which can require new interactions to be added to \mathcal{L}_{1}. Will this process terminate?

NB: Every fermion loop produces an additional minus sign! Why?

Renormalizable vs Non-Renormalizable

- If one has to add more and more terms to \mathcal{L}_{1}, this is a signal of Non-Renormalizable model. Have to measure infinite number of couplings to predict something!

Q: Is it BAD? Does it make sense?
A: It is not satisfactory...but still we can get something!
■ Non-Renormalizable models contrary to the Renormalizable ones involves couplings G_{i} with negative mass dimension $\left[G_{i}\right]<0$! Not all of them are important for predictions at low energies E

$$
G_{i} E^{-\left[G_{i}\right]} \ll 1
$$

■ This explains the success of the Fermi model of the β-decay $n \rightarrow p+e^{-}+\bar{\nu}_{e}$:

$$
\mathcal{L}_{I}=G \bar{\Psi}_{p} \gamma_{\rho} \Psi_{n} \cdot \bar{\Psi}_{e} \gamma_{\rho} \Psi_{\nu}+\text { h.c. }
$$

Fermi Model: Harbinger of the EW theory

In 1957 R. Marshak \& G.Sudarshan, R. Feynman \& M. Gell-Mann modified the original Fermi theory of beta-decay to incorporate 100 \% violation of Parity discovered by C.S. Wu in 1956

$$
\mathcal{L}_{\text {Fermi }}=\frac{G_{F}}{2 \sqrt{2}}\left(J_{\mu}^{+} J_{\mu}^{-}+\text {h.c. }\right)
$$

$$
J_{\rho}^{-}=(V-A)_{\rho}^{\text {nucleons }}+\bar{\Psi}_{e} \gamma_{\rho}\left(1-\gamma_{5}\right) \Psi_{\nu_{e}}+\bar{\Psi}_{\mu} \gamma_{\rho}\left(1-\gamma_{5}\right) \Psi_{\nu_{\mu}}+\ldots
$$

This is current-current interactions with $G_{F} \simeq 10^{-5} \mathrm{GeV}^{-1}$.
From dimensional grounds we can estimate

$$
\sigma\left(\nu_{e} e \rightarrow \nu_{e} e\right) \propto G_{F}^{2} s, \quad s=\left(p_{e}+p_{\nu}\right)^{2} .
$$

\times Non-Renormalizable theories eventually violate unitarity!

From Fermi Model to EW theory

- The modern view on the Fermi model treats it as an effective theory with certain limits of applicability.
- The value of the dimensionful coupling constant G_{F} tells us something about more fundamental theory (SM?):

Warning!

around $G_{F}^{-1 / 2} \sim 10^{2}-10^{3} \mathrm{GeV}$ there should be some "New Physics".
■ QED is renormalizable. By analogy we introduce mediators electrically charged vector fields $W_{\mu}^{ \pm}$:

$$
\begin{aligned}
\mathcal{L}_{\text {Fermi }} & =\frac{G_{F}}{2 \sqrt{2}}\left(J_{\mu}^{+} J_{\mu}^{-}+\text {h.c. }\right) \\
\rightarrow \mathcal{L}_{\text {int }} & =-\frac{g}{2 \sqrt{2}}\left(W_{\mu}^{+} J_{\mu}^{-}+\text {h.c. }\right)
\end{aligned}
$$

From Fermi Model to EW theory

- The field W_{μ} in

$$
\mathcal{L}_{\mathrm{int}}=-\frac{g}{2 \sqrt{2}}\left(J_{\mu}^{+} W_{\mu}^{-}+\text {h.c. }\right) .
$$

should be massive to account for short-range weak interactions.

- The scattering amplitude

$$
T=i(2 \pi)^{4} \frac{g^{2}}{8} J_{\alpha}^{+}\left[\frac{g_{\alpha \beta}-p_{\alpha} p_{\beta} / M_{W}^{2}}{p^{2}-M_{W}^{2}}\right] J_{\beta}^{-}
$$

reproduces the result due to the current-current interaction in the limit $|p| \ll M_{W}$ if we identify ("match")

$$
\text { (effective theory) } \frac{G_{F}}{\sqrt{2}}=\frac{g^{2}}{8 M_{W^{2}}} \quad \text { (more fundamental theory) }
$$

■ However, we have to be more clever, since the behavior of the amplitude in the opposite limit $\left(p \gg M_{W}\right)$ is still the same.
The solution to this problem is to utilize gauge symmetry...

[^0]: *More precisely, operators in the interaction picture.

