OUTLINE LECTURE 1

• in lecture 1:
 • flavor structure of the standard model
 • testing the Kobayashi-Maskawa mechanism
USEFUL REFERENCES

• some excellent introductions to flavor physics
 • Kamenik, 1708.00771
 • Nir, 0708.1872, 1605.00433
 • Grossman, Tanedo, 1711.03624
 • Gedalia, Perez, 1005.3106
 • Blanke, 1704.03753
 • Ligeti, 1502.01372
• why such hierarchical structure of SM fermions?

• Standard Model flavor puzzle
• what lies above the electroweak scale?
 • flavor physics a way to probe well above EW scale
LOW ENERGY PRECISION BOUNDS

• an impressive progress on flavor bounds in last 10 years
 \(|c\bar{u}| \rightarrow |\bar{b}\bar{s}| \)
• in \(D, B_s \) mixing
• also from \(\varepsilon_K \rightarrow \bar{d}s \)

\(\frac{1}{\Lambda^2} \left(\bar{b}_L \gamma_\mu d_L \right) \left(\bar{b}_L \gamma_\mu d_L \right) \)
FLAVOR STRUCTURE OF THE STANDARD MODEL

- in the SM flavor refers to the type/generation of fermion
- below electroweak scale the unbroken SM gauge group is $SU(3)_c \times U(1)_{em}$
 - three generations of fermions

3_{2/3} :	up type quarks;	u, c, t
3_{-1/3} :	down type quarks;	d, s, b
1_{-1} :	charged leptons;	e, μ, τ
1_{0} :	neutrinos;	ν_e, ν_μ, ν_τ
THE NAME

• origin of the name "flavor"

The term *flavor* was first used in particle physics in the context of the quark model of hadrons. It was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins ice-cream store in Pasadena. Just as ice-cream has both color and flavor so do quarks (Fritzsch, 2008).
THE NEXT FEW SLIDES...

• what defines a quantum field theory model
• how to count physical parameters
WHAT DEFINES A QFT MODEL?

- gauge group
- field content
- then write down the most general renormalizable Lagrangian
STANDARD MODEL

• SM defined by
 • the gauge group
 \[G_{\text{SM}} = SU(3)_c \times SU(2)_L \times U(1)_Y. \]
 • the field content (we set neutrino masses to zero!)
 \[H \sim (1, 2)_{1/2}, \]
 \[Q_{Li} \sim (3, 2)_{+1/6}, \quad u_{Ri} \sim (3, 1)_{+2/3}, \quad d_{Ri} \sim (3, 1)_{-1/3}, \]
 \[L_{Li} \sim (1, 2)_{-1/2}, \quad \ell_{Ri} \sim (1, 1)_{-1}, \]

• then write down the most general renormalizable Lagrangian
 \[\mathcal{L}_{\text{SM}} = \mathcal{L}_{\text{kin}} + \mathcal{L}_{\text{Yukawa}} + \mathcal{L}_{\text{Higgs}}. \]
FLAVOR IN THE SM

- the kinetic terms completely determined by covariant derivatives

\[D_\mu = \partial_\mu + i g_s G^a_\mu t^a + i g W^i_\mu \tau^i + i g' B_\mu Y. \]

- flavor blind - all three generations in the same gauge representations

\[\mathcal{L}_{\text{kin}}|_{Q_L} = i \tilde{Q}_L^i (\partial_\mu + i g_s G^a_\mu \frac{1}{2} \lambda^a + i g W^i_\mu \frac{1}{2} \sigma^i + i \frac{1}{6} g' B_\mu) \delta^{ij} Q^j_L, \]

\[\mathcal{L}_{\text{kin}}|_{u_R} = i \tilde{u}_R^i (\partial_\mu + i g_s G^a_\mu \frac{1}{2} \lambda^a + i \frac{2}{3} g' B_\mu) \delta^{ij} u^j_R, \]

- can rotate each of the fields by global $SU(3) \times U(1)$
 - SM large global flavor symmetry

\[\mathcal{G}_{\text{flavor}} = U(3)_q^3 \times U(3)_{\text{lep}}^2, \]
FLAVOR IN THE SM

• kinetic terms global flavor symmetry

\[G_{\text{flavor}} = U(3)_q^3 \times U(3)_{\text{lep}}^2, \]

\[U(3)_q^3 = U(3)_Q \times U(3)_u \times U(3)_d, \]

\[U(3)_{\text{lep}}^2 = U(3)_L \times U(3)_{\ell}, \]

• but broken by the Yukawa terms

\[\mathcal{L}_{\text{Yukawa}} = -Y_d^{ij} \bar{Q}^i_L H d^j_R - Y_u^{ij} \bar{Q}^i_L H^c u^j_R - Y_\ell^{ij} \bar{L}^i_L H \ell^j_R + \text{h.c..} \]

\[G_{\text{flavor}} \rightarrow U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau, \]

• is the source of quark and charge lepton masses

• after Higgs obtains a vev

\[\langle H \rangle = (0, v/\sqrt{2}), \; v = 246 \text{ GeV} \]
INTERMEZZO

• a Standard Model

vs.

the Standard Model
a (the) Standard Model

• a Standard Model
 • gauge group+field content \Rightarrow a\ renormalizable Lagrangian
 • has accidental symmetries: $U(1)_B \times U(1)_I^3$
 - this for any values of parameters in the Lagrangian
 - can be broken by non-renormalizable terms

• the Standard Model
 • with the actual values of the parameters
 • there can be approximate symmetries
ISOSPIN

• isospin is an approximate symmetry
• in QCD interactions can replace $u \leftrightarrow d$
 • because m_u, m_d small

\[
\frac{|m_u - m_d|}{\Lambda_{\text{QCD}}} \ll 1
\]
HOW DO WE COUNT PHYSICAL PARAMETERS

• SM has 18 parameters*
 ● 3 gauge couplings
 ● 3 lepton masses
 ● 6 quark masses
 ● 4 parameters in the CKM matrix
 ● 2 params in the Higgs sector

* and the strong CP parameter θ
PHYSICAL PARAMETERS

• what are physical parameters?
 • parameters that cannot be rotated away
 • for instance: charged lepton masses
DIAGONALIZING LEPTON YUKAWA

- lepton Yukawa can be made diagonal, real, positive

\[\mathcal{L}_{\text{Yukawa}} \supset -Y_{\ell}^{ij} \bar{L}_{L}^{i} H \ell_{R}^{j} + \text{h.c.} \]

\[L_{L} \rightarrow V_{L} L_{L}, \quad \ell_{R} \rightarrow V_{\ell} \ell_{R}, \]

- how many physical parameters?
 - \(Y_{\ell} \): 9 real + 9 imaginary #'s
 - \(V_{L}, V_{\ell} \): 2x(3 real+6 im.) #'s
 - when rotate \(L_{L}^{i} \) and \(l_{R}^{i} \) by the same phase no change in \(y_{i} \)
 - 3 phases (im. #'s) no effect
 - 9-2x3=3 real, 9-(2x6-3)=0 im. physical parameters

\[Y_{\ell} \rightarrow V_{L}^{\dagger} Y_{\ell} V_{\ell} = \text{diag}(y_{e}, y_{\mu}, y_{\tau}). \]
HOW DO WE COUNT PHYSICAL PARAMETERS

• the general rule

physical parameters = # parameters - # broken symmetry generators
AN EXAMPLE

• an example: spin in a magnetic field
 • if no magnetic field: SO(3) symmetry (3 generators)
 • two degenerate eigen-states
• if magnetic field: Zeeman effect, the states are split
 • the splitting depends on strength of magnetic field \(B \): 1 physical param.
• but \(B \) in general has three components
 • 3 parameters \(\mathbf{B} = B_x \hat{x} + B_y \hat{y} + B_z \hat{z} \).
• use rotat. around \(x \) and \(y \) axis to align \(B \) along \(z \) axis (set \(B_x = B_y = 0 \))
 • 2 broken generators

\[
\text{# physical parameters} = \text{# parameters} - \text{# broken symmetry generators}
\]

\(1 = 3 - 2 \)
Diagonalizing Quark Yukawas

- Use unitary transformations

\[\mathcal{L}_{\text{Yukawa}} \supset -Y_d^{ij} \bar{Q}^i_L H d_R^j - Y_u^{ij} \bar{Q}^i_L H^c u_R^j + \text{h.c.} \]

\[Q_L \rightarrow V_Q Q_L, \quad u_R \rightarrow V_u u_R, \quad d_R \rightarrow V_d d_R, \]

- Can bring the \(Y_u, Y_d \) Yukawas to the form

\[Y_d = \text{diag}(y_d, y_s, y_b), \quad Y_u = V^\dagger \text{diag}(y_u, y_c, y_t) \]

- How many physical parameters?
 - \(Y_d, Y_u \): 2x(9 real + 9 im.) #'s
 - \(V_Q, V_u, V_d \): 3x(3 real + 6 im.) #'s
 - One global phase no effect
 - 2x9-3x3=9 real, 2x9-(3x6-1)=1 im. physical parameters
 - 6 quark masses, 3 mixing angles, one phase
Diagonalizing quark Yukawas

\[\mathcal{L}_{\text{Yukawa}} \supset -Y_d^{ij} \bar{Q}_L^i H d_R^j - Y_u^{ij} \bar{Q}_L^i H^c u_R^j + \text{h.c.} \]

- Can bring the Y_u, Y_d Yukawas to the form

\[
Y_d = \text{diag}(y_d, y_s, y_b), \quad Y_u = V^\dagger \text{diag}(y_u, y_c, y_t)
\]

- How many physical parameters?
 - Y_d, Y_u: 2x(9 real + 9 im.) #’s
 - V_Q, V_u, V_d: 3x(3 real + 6 im.) #’s
 - One global phase no effect
 - 2x9-3x3=9 real, 2x9-(3x6-1)=1 im. physical parameters
 - 6 quark masses, 3 mixing angles, one phase

Unitary CKM matrix
ONALIZING QUARK YUKAWAS

\[
\mathcal{L}_{\text{Yukawa}} \supset -Y_d^{ij} \bar{Q}_L^i H d_R^j - Y_u^{ij} \bar{Q}_L^i H^c u_R^j + \text{h.c.}
\]

- can bring the Y_u, Y_d Yukawas to the form

\[Y_d = \text{diag}(y_d, y_s, y_b), \quad Y_u = V^\dagger \text{diag}(y_u, y_c, y_t) \]

- how many physical parameters?
 - Y_d, Y_u: 2x(9 real + 9 im.) #’s
 - V_Q, V_u, V_d: 3x(3 real + 6 im.) #’s
 - one global phase no effect
 - 2x9-3x3=9 real, 2x9-(3x6-1)=1 im. physical parameters
 - 6 quark masses, 3 mixing angles, one phase
\[V_{\text{CKM}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[s_{ij} = \sin \theta_{ij}, \quad c_{ij} = \cos \theta_{ij}, \]

- can bring the \(Y_u, Y_d \) Yukawas to the form

\[Y_d = \text{diag}(y_d, y_s, y_b), \quad Y_u = V^\dagger \text{diag}(y_u, y_c, y_t) \]

- how many physical parameters?
 - \(Y_d, Y_u \): 2x(9 real + 9 im.) #'s
 - \(V_Q, V_u, V_d \): 3x(3 real + 6 im.) #'s
 - one global phase no effect
 - 2x9-3x3=9 real, 2x9-(3x6-1)=1 im. physical parameters
 - 6 quark masses, 3 mixing angles, one phase
FLAVOR IN THE SM

- kinetic terms global flavor symmetry

\[G_{\text{flavor}} = U(3)_q^3 \times U(3)_{\text{lep}}^2, \]

\[U(3)_q^3 = U(3)_Q \times U(3)_u \times U(3)_d, \]

\[U(3)_{\text{lep}}^2 = U(3)_L \times U(3)_{\ell}, \]

- broken by the Yukawa terms

\[\mathcal{L}_{\text{Yukawa}} = -Y_d^{ij} \, \overline{Q}_L^i \, H d_R^j - Y_u^{ij} \, \overline{Q}_L^i \, H^c u_R^j - Y_{\ell}^{ij} \, \overline{L}_L^i \, H \ell_R^j + h.c.. \]

- since \(Y_{\ell} \neq 1 \): \(U(3)_L \times U(3)_{\ell} \rightarrow U(1)_e \times U(1)_\mu \times U(1)_\tau \), i.e., family lepton number,

- since \(Y_u \neq 1 \): \(U(3)_Q \times U(3)_u \rightarrow U(1)_u \times U(1)_c \times U(1)_t \), i.e., up-quark family number,

- since \(Y_d \neq 1 \): \(U(3)_Q \times U(3)_d \rightarrow U(1)_d \times U(1)_s \times U(1)_b \), down-quark family number,

- since \([Y_d, Y_u] \neq 0\): \(U(1)_q^6 \rightarrow U(1)_B \), i.e., the above quark \(U(1)s \) further break to a global baryon number.
FLAVORS IN THE SM

- kinetic terms generate flavor symmetry
 \[G_{\text{flavor}} = U(3)^3_q \times U(3)^2_{\text{lep}}, \]

- broken by the Yukawa terms
 \[L_{\text{Yukawa}} = -Y^{ij}_d \bar{Q}^i_L H d^j_R - Y^{ij}_u \bar{Q}^i_L H^c u^j_R - Y^{ij}_\ell \bar{L}^i_L H \ell^j_R + \text{h.c.}. \]

- since \(Y_\ell \neq 1 \): \(U(3)_L \times U(3)_\ell \to U(1)_e \times U(1)_\mu \times U(1)_\tau \), i.e., family lepton number,
- since \(Y_u \neq 1 \): \(U(3)_Q \times U(3)_u \to U(1)_u \times U(1)_c \times U(1)_t \), i.e., up-quark family number,
- since \(Y_d \neq 1 \): \(U(3)_Q \times U(3)_d \to U(1)_d \times U(1)_s \times U(1)_b \), down-quark family number,
- since \([Y_d, Y_u] \neq 0\): \(U(1)^6_q \to U(1)_B \), i.e., the above quark \(U(1)\)'s further break to a global baryon number.
FLAVOR IN THE SM

- the main message:
 - in the SM the flavor structure resides in the Yukawa interactions

\[\mathcal{L}_{\text{Yukawa}} \supset -Y_d^{ij} \bar{Q}_L^i H d_R^j - Y_u^{ij} \bar{Q}_L^i H^c u_R^j + \text{h.c.} \]

\[Y_d = \text{diag}(y_d, y_s, y_b), \quad Y_u = V^\dagger \text{diag}(y_u, y_c, y_t) \]

- can move flavor changing interactions to kinetic term by field redefinition

\[\mathcal{M}_q = Y_q \frac{(\nu + h)}{\sqrt{2}}. \]

\[Q_L \rightarrow \begin{pmatrix} V^\dagger u_L \\ d_L \end{pmatrix}, \]

- in the so-called mass basis

\[\mathcal{L}_{\text{SM}} \supset (\bar{q}_i D_{\text{NC}} q_i) + \frac{g}{\sqrt{2}} \bar{u}_L^i W^+ V_{\text{CKM}}^{ij} d_L^j + m_u \bar{u}_L^i u_R^i (1 + \frac{h}{\nu}) + m_d \bar{d}_L^i d_R^i (1 + \frac{h}{\nu}) + \text{h.c.}, \]
Flavor in the SM

- neutral currents are flavor conserving (at tree level)
 - photon, gluon, Z: have *flavor (generation) universal* interactions

- Higgs has *flavor diagonal* interactions
 - proportional to quark mass

- charged currents are *flavor changing*
- W couplings are flavor changing
FLAVOR IN THE SM

- neutral currents are flavor conserving (at tree level)
 - photon, gluon, Z: have flavor (generation) universal interactions

- Higgs has flavor diagonal interactions
 - proportional to quark mass

- charged currents are flavor changing
 - W couplings are flavor changing
• neutral currents are flavor conserving (at tree level)
 • photon, gluon, Z: have flavor (generation) universal interactions
 • Higgs has flavor diagonal interactions
 • proportional to quark mass
 • charged currents are flavor changing
 • W couplings are flavor changing
• neutral currents are flavor conserving (at tree level)
• photon, gluon, Z: have flavor (generation) universal interactions
• Higgs has flavor diagonal interactions
 • proportional to quark mass
• charged currents are flavor changing
• W couplings are flavor changing
Charged Currents vs. Neutral Currents

<table>
<thead>
<tr>
<th>Charged Currents</th>
<th>Neutral Currents</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s \rightarrow u\mu^-\nu$</td>
<td>$s \rightarrow d\mu^+\mu^-$</td>
</tr>
<tr>
<td>$\text{Br}(K^+_u \rightarrow \mu^+\nu) = 64%$</td>
<td>$\text{Br}(K^0_{sd,d\bar{s}} \rightarrow \mu^+\mu^-) = 7 \times 10^{-9}$.</td>
</tr>
<tr>
<td>$b \rightarrow c\ell\nu$</td>
<td>$b \rightarrow s\mu^+\ell^-\nu$</td>
</tr>
<tr>
<td>$\text{Br}(B^-_{b\bar{u}} \rightarrow D^0 \ell^+\ell^-) = 2.3%$</td>
<td>$\text{Br}(B^-_{b\bar{u}} \rightarrow K^{*-}\ell^+\ell^-) = 5 \times 10^{-7}$.</td>
</tr>
<tr>
<td>$c \rightarrow s\mu^-\nu$</td>
<td>$c \rightarrow u\ell^+\ell^-\nu$</td>
</tr>
<tr>
<td>$\text{Br}(D^\pm_{c\bar{d}} \rightarrow K^0 \mu^+\mu^-) = 9%$</td>
<td>$\text{Br}(D^0_{c\bar{u}} \rightarrow \pi^0 \mu^+\mu^-) < 1.8 \times 10^{-4}$</td>
</tr>
</tbody>
</table>
CHARGED CURRENTS VS. NEUTRAL CURRENTS

• no tree level Flavor Changing Neutral Currents (FCNCs) in the SM

charged currents

\[
\text{Br}(K^{+}_{ud} \to \mu^{+}\nu) = 64\%
\]

\[
\text{Br}(B^{-}_{bu} \to D^{0}_{cu}\ell\bar{\nu}) = 2.3\%
\]

\[
\text{Br}(D^{\pm}_{cd} \to K^{0}_{sd, d\bar{s}}\mu^{\pm}\nu) = 9\%
\]

neutral currents

\[
\text{Br}(K_L^{+} \to \mu^{+}\mu^{-}) = 7 \times 10^{-9}
\]

\[
\text{Br}(B^{-}_{bu} \to K^{*-}_{s\bar{u}}\ell^{+}\ell^{-}) = 5 \times 10^{-7}
\]

\[
\text{Br}(D^{0}_{cu} \to \pi^{0}_{u\bar{u}-dd}\mu^{+}\mu^{-}) < 1.8 \times 10^{-4}
\]
CKM MATRIX

- 3x3 matrix, is hierarchical

\[
V_{CKM} = \begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\sim \begin{pmatrix}
1 & 0.2 & 0.004 \\
0.2 & 1 & 0.04 \\
0.008 & 0.04 & 1
\end{pmatrix},
\]

- is unitary

\[
V_{CKM}^\dagger V_{CKM} = V_{CKM} V_{CKM}^\dagger = 1.
\]
$V_{\text{CKM}} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} 1 & 0.2 & 0.004 \\ 0.2 & 1 & 0.04 \\ 0.008 & 0.04 & 1 \end{pmatrix},$

- is unitary

$V_{\text{CKM}}^\dagger V_{\text{CKM}} = V_{\text{CKM}} V_{\text{CKM}}^\dagger = 1.$
CKM MATRIX

• hierarchical structure + unitarity
 • encoded in Wolfenstein parametrization

\[V_{\text{CKM}} = \begin{pmatrix}
1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\
-\lambda & 1 - \lambda^2/2 & A\lambda^2 \\
A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix} + \mathcal{O}(\lambda^4) \]

\[\lambda \equiv |V_{us}| \sim 0.22 \]

• CKM matrix depends on 3 real params, 1 phase
 • 3 mixing angles, 1 phase
 • in Wolfenstein param. trade for
 • 3 real params: \(\lambda, A, \rho, \)
 • 1 imag. param: \(\eta \)
CKM MATRIX

- hierarchical structure + unitarity
 - encoded in Wolfenstein parametrization

\[V_{\text{CKM}} = \begin{pmatrix}
1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\
-\lambda & 1 - \lambda^2/2 & A\lambda^2 \\
A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix} + \mathcal{O}(\lambda^4) \]

- CKM matrix depends on 3 real params, 1 phase
 - 3 mixing angles, 1 phase
 - in Wolfenstein param. trade for
 - 3 real params: \(\lambda, A, \rho,\)
 - 1 imag. param: \(\eta\)
CP VIOLATION IN THE STANDARD MODEL

- CP violation in the SM
 - all terms invariant apart from Yukawa terms

\[
Y_{ij} \bar{\psi}_L^i H \psi_R^j + Y_{ij}^* \bar{\psi}_R^j H^\dagger \psi_L^i \xrightarrow{\text{CP}} Y_{ij} \bar{\psi}_R^j H^\dagger \psi_L^i + Y_{ij}^* \bar{\psi}_L^i H \psi_R^j
\]

- CP conserved if Yukawas real
 \[Y_{ij}^* = Y_{ij}.\]

- in the SM the CP violation controlled by one parameter: \(\eta\), "the CKM phase"

- CPT conserved in Lorentz invariant QFTs
 - CP violation = T violation
JARLSKOG INVARIANT

- for existence of CPV in the SM crucial that 3 generations
 - if 2 generations of quarks: CKM matrix can be made real
 - \Rightarrow no physical phase, no CPV
- if Y_u, Y_d can be made diagonal with the same left-handed rotation (= they are "aligned"):
 - $\Rightarrow V_{\text{CKM}}=1 \Rightarrow$ no flavor violation \Rightarrow no CPV
- all the above statements can be encoded in a single parameter: the Jarlskog invariant

$$J_Y \equiv \text{Im} \left(\det \left[Y_d Y_d^\dagger, Y_u Y_u^\dagger \right] \right).$$

Cecilia Jarlskog in early 1980s
TEST CKM STRUCTURE

- all flavor transitions in SM depend only on 4 fundamental parameters λ, A, ρ, η
- overconstrain the system by making many measurements
- one way to visualise is through the standard CKM unitarity triangle
STANDARD CKM UNITARITY TRIANGLE

- a test of CKM matrix unitarity

\[V_{\text{CKM}}^\dagger V_{\text{CKM}} = V_{\text{CKM}} V_{\text{CKM}}^\dagger = 1. \]

\[V_{\text{CKM}} = \begin{pmatrix}
1 - \lambda^2 / 2 & \lambda & A\lambda^3(\rho - i\eta) \\
-\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\
A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix} + \mathcal{O}(\lambda^4) \]

\[V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 \]

\[\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} + 1 + \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} = 0 \]

\[- (\bar{\rho} + i\bar{\eta}) + 1 + (-1 + \bar{\rho} + i\bar{\eta}) = 0, \]

\[\bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \]
Standard CKM Unitarity

- \((\rho, \eta)\)

\[
\begin{vmatrix}
\frac{V_{ud}^* V_{ub}^*}{V_{cd}^* V_{cb}^*} \\
\frac{V_{td}^* V_{tb}^*}{V_{cd}^* V_{cb}^*}
\end{vmatrix}
\]

- \(\alpha = \phi_2\)
- \(\gamma = \phi_3\)
- \(\beta = \phi_1\)

(0,0) \rightarrow (1,0)

Figure 12.1: Sketch of the unitarity triangle.

\[V_{CKM} = \begin{pmatrix}
1 - \lambda^2 / 2 & A\lambda^2 & A\lambda^3 (1 - \rho - i\eta) \\
A\lambda^2 & 1 & A\lambda \\
A\lambda^3 (1 - \rho - i\eta) & A\lambda & 1 + O(\lambda^4)
\end{pmatrix}\]

\[V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0\]

\[
\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} + 1 + \frac{V_{td} V_{tb}^*}{V_{cd} V_{cb}^*} = 0
\]

\[-(\bar{\rho} + i\bar{\eta}) + 1 + (-1 + \bar{\rho} + i\bar{\eta}) = 0,\]

\[
\bar{\rho} + i\bar{\eta} = -\frac{V_{ud} V_{ub}^*}{(V_{cd} V_{cb}^*)}
\]
THE PLAYERS

• B-factories
 - Belle (1999-2010): $\sim 1.5 \times 10^9 B$ mesons
 - Babar (1999-2008): $\sim 0.9 \times 10^9 B$ mesons

• (super)B-factories
 - LHCb(2010-2030?): \sim up to 10^{11} (useful) B’s
 - Belle-II (2018- 2024?): $\sim 8 \times 10^{10} B$ mesons

• kaon physics experiments
 - in the past (2000s): KLOE, NA62
 - present: NA62 at CERN, KOTO at J-PARC
THE PLAYERS

• B-factories
 • Belle (1999-2010): ~ 1.5×10^9 B mesons
 • Babar (1999-2008): ~ 0.9×10^9 B mesons
• (super) B-factories
 • LHCb (2010-2030?): ~ up to 10^{11} B mesons
 • Belle-II (2018-2024?): ~ 8×10^{10} B mesons

B physics experiencing deflation:
in 2000s: ~50¢/B meson
in 2020s: <1¢/B meson

• kaon physics experiments
 • in the past (2000s): KLOE, NA62
 • present: NA62 at CERN, KOTO at J-PARC
1995
2009
2016
2016
THE FUTURE: TREE PROCESSES @ BELLE 2

Charles et al, 1309.2293
THE FUTURE: TREE PROCESSES @ BELLE 2

SM standard candle
THE UPHSHOT

• CPV an inherently quantum mechanical effect
 • governed by a phase in Lagrangian
• KM mechanism the dominant origin of CPV
 • measurements point to a consistent picture

\[A = 0.825(9), \quad \lambda = 0.2251(3), \quad \bar{\rho} = 0.160(7), \quad \bar{\eta} = 0.350(6). \]

• since \(\bar{\rho} \approx \bar{\eta} \) the CKM weak phase is large, O(1)

\[e^{i\gamma} = \frac{\bar{\rho} + i\bar{\eta}}{\bar{\rho}^2 + \bar{\eta}^2} = \arg(V_{ub}^*), \]

• tests will be significantly improved in the near future
Jarlskog Invariant

- since nonzero CPV means Jarlskog invariant is non-zero
 \[J_Y \equiv \text{Im} \left(\det \left[Y_d Y_d^\dagger, Y_u Y_u^\dagger \right] \right). \]
- explicitly it is
 \[J_Y = J_{\text{CP}} \prod_{i>j} \frac{m_i^2 - m_j^2}{v^2/2} \approx O(10^{-22}). \]

\[J_{\text{CP}} = \text{Im} \left[V_{us} V_{cb} V_{ub}^* V_{cs}^* \right] = c_{12} c_{23} c_{13}^2 s_{12} s_{23} s_{13} \sin \delta_{\text{KM}} \sim \lambda^6 A^2 \eta \sim O(10^{-5}). \]

\[\prod_{i>j} \frac{m_i^2 - m_j^2}{v^2/2} = \frac{(m_t^2 - m_c^2)}{v^2/2} \cdot \frac{(m_t^2 - m_u^2)}{v^2/2} \cdot \frac{(m_c^2 - m_u^2)}{v^2/2} \cdot \frac{(m_b^2 - m_s^2)}{v^2/2} \cdot \frac{(m_b^2 - m_d^2)}{v^2/2} \cdot \frac{(m_s^2 - m_d^2)}{v^2/2}. \]

- \(J_Y = 0 \), if any of the mixing angles zero or if \(\eta = 0 \)
- \(J_Y = 0 \), if any of up or down quark masses are degenerate
 - origin of the so called GIM mechanism: FCNCs in the SM vanish for equal masses \(\Rightarrow \) extra cancellations in SM amplitudes
CONCLUSIONS

- have looked at the flavor structure in the SM
- experiments shows it is predominantly due to Kobayashi-Maskawa mechanism
BACKUP SLIDES