
Review of R-Parity
The superpotential of the MSSM can be separated into

two parts:

WRp = heijLiH1Ēj + hdijQiH1D̄j

+huijQiH2Ūj + µH1H2,

W 6RP =
1

2
λijkLiLjĒk + λ′ijkLiQjD̄k

+
1

2
λ′′ijkŪiD̄jD̄k + κiLiH2.

WRp is what is usually meant by the MSSM.

Q: Why ban W 6RP?

A: “Proton decay”
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Definition of R-Parity
Q: How is W 6RP normally banned?

A: By defining discrete symmetry Rp

Rp = (−1)3B+L+2S.

→ SM fields have Rp = +1 and superpartners have Rp =

−1. There are two important consequences:

• Because initial states in colliders are Rp EVEN, we can

only pair produce SUSY particles
• The lightest superpartner is stable
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Proton decay
/Rp terms are either /L or /B. Γ(p→ e+π0) ≈ λ′211jλ

′′2
11j

16π2m̃4
dj

M 5
p

τ(p→ e+π0) > 1× 1034 yr

⇒ λ′11j · λ′′11j
<∼ 10−27

(
m̃dj

1 TeV

)2

.
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Motivation for /Rp

• It has additional search possibilities.
• Dark matter changes character: gravitino or hidden
• Neutrino masses and mixings testable at LHC

(mν)11 =
3

32π2
mdλ

′
111

2
sin 2θd ln

m2
d̃L

m2
d̃R
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Collider SUSY Production
Strong sparticle production and decay to dark matter

particles.

Any (light enough) dark matter candidate that couples

to hadrons can be produced at the LHC
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Search limits: be careful
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modes.
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Narrow Width Approximation

Take some scalar propagator mod-squared:

D(p2) =
1

(p2 −m2)2 +m2Γ2
.

limΓ/m→0D(p2) = π/(mΓ)δ(p2 −m2).

Thus (as is often the case in the MSSM), for particles

with narrow widths, we may approximate them assuming

they have p2 = m2, ie they are on-shell. The next order in

perturbation theory is O(m/Γ).

Ben Allanach (University of Cambridge) 8



Cascade Decay
pµ
l̃

= (ml̃, 0)

pµ
l± = (|p

l±
|, p

l±
)

pµ
χ01,2

= (
√
mχ01,2

2 + |p
χ01,2
|2, p

χ01,2
)

Work in l̃ rest frame. The invariant mass of the l+l− pair

is

m2
ll = (pl+ + pl−)µ(pl+ + pl−)µ = p2

l+
+ p2

l− + 2pl+ · pl−
= 2|p

l+
||p

l−
|(1− cos θ)≤ 4|p

l+
||p

l−
|.

Momentum conservation:

⇒ p
χ02

+ p
l+

= 0, p
l−

+ p
χ01

= 0.
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Energy conservation:
√
mχ02

2 + |p
χ02
|2 = ml̃ + |pl+|,

⇒ |p
l+
| =

m2
χ02
−m2

l̃

2m
l̃

. Similarly |p
l−
| =

m2
l̃
−m2

χ01
2m

l̃
.

Substituting into the original mll, we get

m2
ll ≤

(m2
χ02
−m2

l̃
)(m2

l̃
−m2

χ01
)

m2
l̃
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A Sharp Invariant Feature

Ben Allanach (University of Cambridge) 11



Extra Dimensions

Superstring theory requires them, but: why are we not

aware of them?

• We are stuck on a brane
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• Or they are curled up on themselves, tightly
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Scalar field in 5d

Consider a massless 5D scalar field ϕ(xM) , M =

0, 1, ..., 4 with action

S5D =

∫
d5x ∂Mϕ∂Mϕ .

Set the extra dimension x4 = y defining a circle of radius

r with y ≡ y + 2πr.

Our spacetime is now M4 × S1. Periodicity in y direction
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implies discrete Fourier expansion

ϕ(xµ, y) =
∞∑

n=−∞
ϕn(x

µ) exp

(
iny

r

)
.

Notice that the Fourier coefficients are functions of the

standard 4D coordinates and therefore are (an infinite

number of) 4D scalar fields. The equations of motion for

the Fourier modes are (in general massive) wave equations

∂M∂Mϕ = 0⇒
∞∑

n=−∞

(
∂µ∂µ −

n2

r2

)
ϕn(x

µ) exp

(
iny

r

)
= 0
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=⇒ ∂µ∂µϕn(x
µ) − n2

r2
ϕn(x

µ) = 0 .

These are then an infinite number of Klein Gordon

equations for massive 4D fields. This means that each

Fourier mode ϕn is a 4D particle with mass m2
n = n2

r2
. Only

the zero mode (n = 0) is massless. One can visualize

the states as an infinite tower of massive states (with

increasing mass proportional to n). This is called Kaluza

Klein tower and the massive states (n 6= 0) are called

Kaluza Klein- or momentum states, since they come from

the momentum in the extra dimension:
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2/r

Figure 1: The Kaluza Klein tower of massive states due to an extra S1

dimension. Masses mn = |n|/r grow linearly with the fifth dimension’s wave

number n ∈ Z.

In order to obtain the effective action in 4D for all these

particles, let us plug the mode expansion of ϕ into the
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original 5D action,

S5D =

∫
d4x

∫
dy

∞∑
n=−∞

(∂µϕn(x
µ) ∂µϕn(x

µ)∗

−n
2

r2
|ϕn|2

)
= 2π r

∫
d4x
(
∂µϕ0(x

µ) ∂µϕ0(x
µ)∗ + ...

)
= 2πrS4D + ...

This means that the 5D action reduces to one 4D action

for a massless scalar field plus an infinite sum of massive

scalar actions in 4D. If we are only interested in energies
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smaller than the 1
r scale, we may concentrate only on the

0 mode action.
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Vector Field

Vector fields go a similar way: AM = Aµ, A4 = φ, . . ..

Consider the action

S5D =

∫
d5x

1

g2
5D

FMN F
MN

with field strength

FMN = ∂MAN − ∂NAM

implying

∂M∂MAN − ∂M∂NAM = 0 .
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Choose a gauge, e.g. transverse

∂MAM = 0, A0 = 0⇒ ∂M∂MAN = 0 ,

then this obviously becomes equivalent to the scalar field

case (for each component AM) indicating an infinite tower

of massive states for each massless state in 5D. In order to

find the 4D effective action we once again plug this into

the 5D action:

S5D 7→ S4D

=

∫
d4x

(
2πr

g2
5D

F(0)
µν F(0)µν +

2πr

g2
5D

∂µρ0 ∂
µρ0 + ...

)
,

Therefore we end up with a 4D theory of a gauge particle
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(massless), a massless scalar and infinite towers of massive

vector and scalar fields. Notice that the gauge couplings

of 4- and 5 dimensional actions (coefficients of FMNF
MN

and FµνF
µν) are related by

1

g2
4

=
2πr

g2
5

.

In D spacetime dimensions, this generalizes to

1

g2
4

=
VD−4

g2
D

where Vn is the volume of the n dimensional compact

space (e.g. an n sphere of radius r).
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Electric (and gravitational)
potential

Gauss’ law implies for the electric field ~E and its

potential Φ of a point charge Q:

∮
S2

~E · d~S = Q⇒ ‖ ~E‖ ∝ 1

R2
,Φ ∝ 1

R
: 4D

∮
S3

~E · d~S = Q⇒ ‖ ~E‖ ∝ 1

R3
,Φ ∝ 1

R2
: 5D
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So in D spacetime dimensions

‖ ~E‖ ∝ 1

RD−2
,Φ ∝ 1

RD−3
.

If one dimension is compactified (radius r) like in M4×S1,

then

‖ ~E‖ ∝


1

R3
: R < r

1

R2
: R� r

.

Analogous arguments hold for gravitational fields and their

potentials.
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Gravitation

The spin 2h̄ graviton GMN becomes the 4D graviton

gµν, some gravivectors Gµn and some graviscalars Gmn,

where m,n = 4, . . . , D−1 along with their infinite towers.

M 2
Pl = MD−2

D VD−4 ∼MD−2
D rD−4

is a derived quantity. Fixing D, we can fix MD and r to get

the correct result of MPl ∼ 1019 GeV. So far, we require

MD > 1 TeV and r < 10−16 cm from Standard Model

measurements since no signature of extra dimensions has

been set yet.
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Brane Worlds

We are trapped on a 3+1 surface in a D+1 dimensional

bulk space-time. There are two cases here: large extra

dimensions and warped space-times. Here, since gravity

is so weak, the constraints on it are much weaker: r < 0.1

mm or so, much larger than the 10−16cm of the Standard

Model.

large extra dimensions: Let’s try to solve the hierarchy

problem: put MD ∼ 1 TeV. The idea is that this is the

fundamental scale: there is no high scale associated with

MPl fundamentally - it is an illusion.
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With 5D, MPl2 = MD−2
D VD−4 ⇒ r ∼ 108 km, clearly

ruled out. Already with 6D though, r = 0.1 mm -

consistent with experiment. This really then changes the

hierarchy problem to the question “why are the extra

dimensions so large compared with 10−16cm?”

Graviton phenomenology: each Kaluza-Klein mode
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couples weakly ∝ 1/MPl, but there are so many modes

that after summing over them, you end up with 1/MD

suppression only! One can approximate them by a

continuum of modes with a cut-off. The graviton

tower propagates into the bulk and takes away missing

momentum leading to a pp→ j + ~pmiss
T signature by eg:
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warped (or ‘Randall-Sundrum’ space-times: This is

where the metric exponentially warps along the extra

dimension y:

ds2 = e−|ky|ηµν dx
µ dxν + dy2.
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The metric changes from y = 0 to y = πr via ηµν 7→
e−kπrηµν. Here, we set MD = MPl, but this gets warped
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down to the weak brane:

Λπ ∼MPle
−kπr ∼ TeV

if r ∼ 10/k. Here, k is of order MPl and so we have a small

extra dimension, but the warping explains the smallness of

the weak scale. Note that we still have to stabilise the

separation between the branes, which can involve extra

tuning unless extra physics is added.

The interaction Lagrangian is

LI = −GµνTµν/Λπ

, where Tµν is the stress energy tensor, containing products

of the other Standard Model fields. Λπ ∼ TeV, so the
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interaction leads to weak cross-sections, not gravitationally

suppressed ones. Thus, you can produce the resonance:

you’ll tend to produce the lightest one more often in the

LHC. The ratios of masses of higher modes are given by

zeros of Bessell functions, so they are not as regular as in

large extra dimensions.

Randall-Sundrum phenomenology: one looks for the

TeV scale first resonances, which are weakly coupled to

Standard Model states. If only gravity travels in the extra

dimensions, then it is the ‘RS graviton’: it has universal

coupling to all particles and so can decay into qq̄, WW ,

ZZ, γγ, gg, l+l− or h0h0 with similar branching ratios.
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Flavour considerations imply that this isn’t the end of

the story: one requires additional flavour structure, or

the model violates flavour bounds from experiment. One
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common way of doing this is to allow the other particles

into the bulk, but have different profiles of fermions

with the weak brane, where the Higgs field is localised

(proportional to their Yukawa couplings). Then, one can

look for the first Kaluza Klein modes of gauge bosons and

fermions, too.
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Effective Field Theories

At low momenta pµ, we can model the effects of particles

with a much heavier mass M 2 � p2 with effective field

theory. This squeezes a propagator down to a point:

1

p2 −M 2
≈ − 1

M 2
,

in a fairly model independent way.
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Couplings

Thus, for example a W coupling like

L = − g

2
√

2
ēγρ(1− γ5)Wρνe −

g

2
√

2
ν̄µγ

ρ(1− γ5)Wρµ

becomes

L ≈ −GF√
2

(ēγρ(1− γ5)νe) (ν̄µγ
ρ(1− γ5)Wρµ) ,

where GF =
√

2g2/(8M 2
W).
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