
Contact Operators

At pµ around or bigger than MW , this approximation is bad

and the rest of the propagator should be included. This

method can be useful for parameterising searches for new

physics at low momentum: these four-fermion operators
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are often called contact operators, e.g. for dark matter

L = (q̄γµq)(χγµχ). However, for dark matter production

at the LHC (e.g. in the monojet channel), the energies

are often higher than the messenger mass and so a more

precise (simplified?) model is needed.
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Anomalous Magnetic Moment
of the Muon

This is a particular interaction between the photon and

the muon: the Dirac equation predicts a muon magnetic

moment

~M = gµ
e

2mµ

~S,

and at tree level, gµ = 2. However, it can be measured

very precisely by storing muons in a ring with magnetic

fields, then measuring the precession frequency of their

spins. The ‘anomalous’ part comes from loops involving

Ben Allanach (University of Cambridge) 3



various particles:

aµ ≡
gµ − 2

2
.

aexp
µ = 11659209.1(5.4)(3.3)× 10−10,

aSM
µ = 11659180.3(4.2)(2.6)× 10−10.

∆aµ = aexp
µ − aSM

µ = 28.8(6.3)(4.9)× 10−10.

The measurement is thus discrepant at around the ∼ 3.6σ
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level, and has been for 20 years. There should be news on

it from Fermilab, soon.
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R−Parity Violation

Allanach’s conjecture:

“Any excess can be explained with R−parity

violating supersymmetry.”
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“The Last Refuge of The Scoundrel”

WLV = λ′j11L1Q1D̄1 + λ′2klL2QkD̄l

LsoftLV = Aj22l̃j l̃2µ̃
+
R + (H.c.)

No leptons in final state

Allanach, Dev, Sakurai arXiv:1511.01483
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Neutrinoless Double β Decay
Is banned in the Standard Model because it breaks

lepton number: Z → (Z + 2)e−e− Present bound from

GERDA is T 0ν
1/2 > 2.1 × 1025 yr. It should increase by a

factor 10 in the next year or so.
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Discovering solutions to B
physics anomalies

• FCNC decays loop suppressed and rare in the Standard

Model

• New heavy particles in could appear in competing

diagrams can affect the branching ratio and angular
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distributions
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B0→ K∗0(→ K+π−)µ+µ−
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P ′5

P ′5 = S5/
√
FL(1− FL), leading form factor uncertainties

cancel. Tension already in 1 fb−1 and confirmed in 3 fb−1

LHCb-CONF-2015-002
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Hadronic Uncertainties
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R
(∗)
K in Standard Model

RK =
BR(B → Kµ+µ−)

BR(B → Ke+e−)
, RK∗ =

BR(B → K∗µ+µ−)

BR(B → K∗e+e−)
.

These are rare decays (each BR∼ O(10−7)) because they

are absent at tree level in SM.
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RK(∗) Measurements
LHCb results from 7 and 8 TeV: q2 = m2

ll.
q2/GeV2 SM LHCb 3 fb σ

RK [1, 6] 1.00± 0.01 0.745+0.090
−0.074 2.6

RK∗ [0.045, 1.1] 0.91± 0.03 0.66+0.11
−0.07 2.2

RK∗ [1.1, 6] 1.00± 0.01 0.69+0.11
−0.07 2.5
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Wilson Coefficients c̄lij
In SM, can form an EFT since mB �MW :

Ol
ij = (s̄γµPib)(l̄γµPjl) .

Leff ⊃
∑
l=e,µ,τ

∑
i=L,R

∑
j=L,R

clij
Λ2
l,ij

Ol
ij ,

=
∑
l=e,µ,τ

VtbV
∗
ts

α

4πv2

(
c̄lLLOl

LL + c̄lLROl
LR

+c̄lRLOl
RL + c̄lRROl

RR

)
⇒ c̄lij = (36 TeV/Λ)2clij.

clij ∼ ±O(1) all predicted by weak interactions in SM.
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Which Ones Work?

Options for a single BSM operator:

• c̄eij operators fine for RK(∗) but are disfavoured by global

fits including other observables.
• c̄µLR disfavoured: predicts enhancement in both RK and

RK∗

• c̄µRR, c̄µRL disfavoured: they pull RK and RK∗ in opposite

directions.
• c̄µLL = −1.33± 0.34 fits well globally1.

1D’Amico et al, 1704.05438.
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Statistics2

c̄µLL
√
χ2
SM − χ2

best

clean −1.33± 0.34 4.1

dirty −1.33± 0.32 4.6

all −1.33± 0.23 6.2

Cµ
9 = (c̄µLL + c̄µLR)/2

√
χ2
SM − χ2

best

clean −1.51± 0.46 3.9

dirty −1.15± 0.17 5.5

all −1.19± 0.15 6.7

Table 1: A fit to flavour anomalies for ‘clean’ (RK, RK∗,

Bs→ µµ) and ‘dirty’ (100 others) observables

2D’Amico, Nardecchia, Panci, Sannino, Strumia, Torre, Urbano 1704.05438
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Simplified Models for cµLL
At tree-level, we have:

At loop-level, there are many more possibilities but the

particles are 4π lighter: they are much easier to detect.

Principle of Maximal Pessimism
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LHC Upgrades

High Luminosity (HL) LHC: go to 3000 fb−1 (3 ab−1).

High Energy (HE) LHC: Put FCC magnets (16 Tesla rather

than 8.33 Tesla) into LHC ring: roughly twice collision

energy: 27 TeV.
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RD(∗) = BR(B−→ D(∗)τν)/BR(B−→ D(∗)µν)
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BSM Explanation

. . . has to compete with

Leff = − 2

Λ2
(c̄Lγ

µbL) (τ̄LγµντL) +H.c.

Λ = 3.4 TeV

A factor 10 lower than required for RK(∗) ⇒ different

explanation?

PMP⇒we ignore RD(∗).
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Z ′ µµ ATLAS 13 TeV 36 fb−1

ATLAS analysis: look for two track-based isolated µ,

pT > 30 GeV. One reconstructed primary vertex. Keep

only highest scalar sum pT pair3.

m2
µ1µ2

= (pµ1 + pµ2)
(
p1µ + p2µ

)
CMS also have released4 a similar 36 fb−1 analysis.

31707.02424
41803.06292
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ATLAS µµ limits

1607.03669
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Limit Extrapolotion
Have 95% CL limits on [σ × BR](s0, L0; MZ′) at

eg
√
s0 = 13 TeV and L0 = 3.2 fb−1. Want to

extrapolate to s = 100 TeV, L = 1 ab−1, producing

new [σ ×BR](s, L; mZ′) curves.

Limits5 for nS in a narrow resonance are driven by

number of background events B(s0, L0, M
0
Z′) under it.

For each MZ′, we find “equivalent mass” M 0
Z′ that gave

the same number of background events at s0: solve

B(s, L, MZ′) = B(s0, L0, M
0
Z′).

NB Assumes efficiency/acceptance doesn’t change
5Thamm, Torre, Wulzer, 1502.01701; Salam, Weiler “Collider Reach”
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Now B = σBL and

σB(M, s) ∝
∑
i,j

∫ M2(1+∆)

M2(1−∆)

dŝ
dLij
dŝ

σij(ŝ).

dLij
dŝ

=
1

s

∫ 1

ŝ/s

dx

x
fi
(
x, µ2

)
fj

(
ŝ

sx
, µ2

)
is approximately constant and σij(ŝ) ≈ Cij/ŝ, where Cij is

a constant

⇒ σB(M, s) ≈ ln[(1 + ∆)/(1−∆)]
∑
i,j

Cij
dLij
dŝ

(M, s).
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Our equal backgrounds equation becomes

L0

∑
i,j

Cij
dLij
dŝ

(M0, s0) ≈ L′ ·
∑
i,j

Cij
dLij
dŝ

(M ′, s′).

We solve this for M ′, and we know what the limit on nS is

there: it’s the same as the reference search. This is easily

turned into a limit on σS ×BR by dividing by L′.
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Caveats

There is agreement to factor 2 in σ × BR limit from

di-lepton bump search6. ∆m much smaller.

Extrapolated exclusion depends on L0/L
′.

• If L′ = L0, M ′
min = M0min.

• If L′ > L0, M ′
min much higher.

• If L′ < L0, M ′
min much lower.

Thus, starting point is arbitrary. We vary lumi up to L′

and take strongest limit for each mass: only affects masses

< M ′
min: weaker than a realistic limit.

6Thamm et al, arXiv:1502.01701
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Z ′ Models
Näıve model: only include couplings to b̄s/bs̄ and µ+µ−

(less model dependent).

Lmin.
Z′ ⊃

(
gsbLZ

′
ρs̄γ

ρPLb+ h.c.
)

+ gµµL Z
′
ρµ̄γ

ρPLµ ,

which contributes to the Oµ
LL coefficient with

c̄µLL = − 4πv2

αEMVtbV ∗ts

gsbL g
µµ
L

M 2
Z′
,

⇒ gsbL g
µµ
L

(
36 TeV

MZ′

)2

= −1.33± 0.34 (clean).
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13 TeV ATLAS 3.2 fb−1 µµ
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Other Constraints

Bs − B̄s Mixing: ḡsbL
<∼
√

2MZ′/210 TeV.

Z ′
s

b̄

s̄

b

Perturbativity: No Landau pole below MPl

ΓZ′

MZ′
<

π

2 log(MPl/MZ′)
.

Strengthened by scalars/fermions (weakened by vectors)
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33µµ model

We start with a /Z
′

coupling to the third generation of

LH quarks and the second generation of LH leptons in the

weak eigenbasis:

L33µµ
Z′ ⊃ i

1

2

[
gqLQL3/Z

′
QL3 + gµµL L2/Z

′
L2]
]

+H.c.

Assuming that CKM mixing is due purely to mixing of

down quarks and PMNS is due purely to neutrino mixing.
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33µµ model

L33µµ
Z′ ⊃ i

1

2

[
gqL

(
t̄ /Z
′
PLt+ |Vtb|2b̄ /Z ′PLb+ |Vtd|2d̄ /Z ′PLd

+|Vts|2s̄ /Z ′PLs+ VtbV
∗
tsb̄ /Z

′
PLs+ V ∗tsVtdd̄ /Z

′
PLs

+VtbV
∗
tdb̄ /Z

′
PLd

)
+gµµL

µ̄ /Z ′PLµ+
∑
i,j

ν̄iUiµ/Z
′
PLU

∗
µjνj

+H.c.

We introduce this model to provide contrast to the näıve

model:

Q: How different are the results to näıve model?
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LQ Models

Scalar7 S3 = (3̄, 3, 1/3) of SU(2)× SU(2)L × U(1)Y :

L = . . .+ y3QLS3 + yqQQS
†
3 + h.c.

Vector V1 = (3̄, 1, 2/3) or V3 = (3, 3, 2/3)

L = . . .+ y′3V
µ

3 Q̄γµL+ y1V
µ

1 Q̄γµL+ y′1V
µ

1 d̄γµl + h.c.

⇒ c̄µLL = κ
4πv2

αEMVtbV ∗ts

|yi|2
M 2

.

κ = 1,−1,−1 and y = y3, y1, y
′
3 for S3, V1, V3.

7Capdevila et al 1704.05340, Hiller and Hisandzic 1704.05444, D’Amico et al
1704.05438.
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CMS 8 TeV 20fb−1 2nd gen
CMS-PAS-EXO-12-042: M > 1.07 TeV.
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Other Constraints
Note that the extrapolation is very rough for pair

production. Fix M = 2MLQ, assuming they are produced

close to threshold: ∆ = 0.1.

Bs − B̄s mixing is at one-loop:

Lb̄sb̄s = k
|ybµy∗sµ|2

32π2M 2
LQ

(
b̄γµPLs

)
(s̄γµPLb) + h.c.

y = y3, y1, y
′
3 and k = 5, 4, 20 for S3, V1, V3.

Data ⇒ cbbLL < 1/(210TeV)2. Recently, some8 used a

Fermilab MILC lattice determination of fB which makes

the SM differ from experiment at the 2σ level.
8Lenz et al, 1712.06572
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8 TeV CMS 20fb−1 2nd gen
LQ

Up to 14 TeV LQs with 100 TeV 10 ab−1 FCC-hh. MLQ < 41 TeV.
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LQ Mass Limits

S3 41 TeV

V1 41 TeV

V3 18 TeV

From Bs − B̄s mixing and fitting b−anomalies.

Pair production has a reach up to 12 TeV.

The pair production cross-section is insensitive to the

representation of SU(2) in this case.
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Single Production

Depends upon LQ coupling as well as LQ mass

Current bound by CMS from 8 TeV 20 fb−1: MLQ > 660

GeV for sµ coupling of 1. We include b as well from

NNPDF2.3LO (αs(MZ) = 0.119), re-summing large logs

from initial state b. Integrate σ̂ with LHAPDF.
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σs for S3 with ysµ = ybµ = y.
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Other Flavour Models

Realising9 the vector LQ solution based on PS =

[SU(4) × SU(2)L × SU(2)R]3. SM-like Higgs lies in

third generation PS group, explaining large Yukawas

(others come from VEV hierarchies). Get U(2)Q × U(2)L
approximate global flavour symmetry.

9Di Luzio Greljo, Nardecchia arXiv:1708.08450, Bordone, Cornella, Fuentes-
Martin, Isidori, arXiv:1712.01368
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Bs→ µ+µ−

Lattice QCD provides important input to

BR(Bs→ µµ)SM = (3.65± 0.23)× 10−9,

BR(Bs→ µµ)exp) = (3.0± 0.6)× 10−9.

BR(Bs→ µµ)

BR(Bs→ µµ)SM
=

∣∣∣∣ (c̄µLL + c̄µRR − c̄µLR − c̄µRL)tot

(c̄µLL + c̄µRR − c̄µLR − c̄µRL)SM

∣∣∣∣2 .
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“The road of excess leads to the palace of wisdom.”

William Blake, The Marriage of Heaven and Hell
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Conclusions

• Focused on tree-level explanations of RK(∗) as they are

usually harder to discover: Z ′ and leptoquarks.
• More realistic models tend to be easier to discover than

these pessimistic scenarios: then HE-LHC and HL-LHC

rule.
• Loop holes: wide resonances, multiple messengers.
• News on R

(∗)
K expected in 2019. At the current central

value, RK would reach 5σ discrepancy with the SM

alone by 2020. RK∗ would be close to10 5σ.
• RK(∗) ⇒ HL-LHC, HE-LHC and FCC-hh

10Albrecht et al, 1709.10308
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Backup
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HL-LHC/HE-LHC LQs
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