Outline

• Lecture 1
 • Introduction
 • The Frequentist Principle
 • Confidence Intervals
 • The Profile Likelihood
• Lecture 2
 • Hypothesis Tests
 • Bayesian Inference
• Lecture 3
 • Introduction to Machine Learning
Hypothesis Tests – 1

The Basic Idea:

1. Decide which hypothesis is to be rejected and call it the null hypothesis. At the LHC, this is usually the background-only hypothesis.

2. Construct a function of the data called a test statistic, such that large values of it would cast doubt on the veracity of the null hypothesis.

3. Choose a test statistic threshold above which you are inclined to reject the null. Do the experiment, compute the statistic, and reject the null if the threshold is breached.
Hypothesis Tests – 2

There are two closely related approaches:

1. **Fisher**: reject the null if the test statistic is large enough.

2. **Neyman**: compare the null to an alternative hypothesis using a statistic that depends on both hypotheses. Reject the null if the alternative is preferred.
Fisher’s Approach: \textit{Null} hypothesis (H_0), e.g., background-only

The null hypothesis is \textit{rejected} if the p-value is judged to be small enough.

\[p(x|H_0) \]

\[p\text{–value} = P(x \geq x_0|H_0) \]

x_0 is the observed value of the test statistic.
Example: **Hypothesis Test (No Unc.)**

Background, $B = 9.4$ events (ignoring uncertainty)

\[p(N|H_0) = \text{Poisson}(N, B = 9.4) \]

$N = 25$ observed count

\[
p\text{-value} = \sum_{k=N}^{\infty} \text{Poisson}(k, 9.4) = 1.76 \times 10^{-5}
\]
Example: Hypothesis Test (No Unc.)

Background, $B = 9.4$ events (ignoring uncertainty)

$p(N|H_0) = \text{Poisson}(N, B = 9.4)$

$p\text{-value} = 1.76 \times 10^{-5}$

$N = 25$ observed count

Since a small p-value is a bit non-intuitive, we usually map it to a Z-value, that is, the number of standard deviations away from the null if the distribution were a Gaussian.

This yields $Z = 4.14$ (see notebook 11_16_hzz4l.ipynb).
Hypothesis Tests – 4

Neyman’s Approach: *Null* hypothesis (H_0) + alternative (H_1)

Neyman argued that it is *necessary* to consider alternative hypotheses.

$$\alpha = p-value(x_\alpha)$$ Choose a *fixed* value of α *before* data are analyzed, which depends on *both* hypotheses.

Reject the null in favor of the alternative if the p-value $< \alpha$.

α is called the *significance* (or size) of the test.
In Neyman’s approach, hypothesis tests are a contest between significance and power, i.e., the probability to accept a true alternative.

\[
\alpha = \int_{x_\alpha}^{\infty} p(x \mid H_0) \, dx
\]

significance of test

\[
p = \int_{x_\alpha}^{\infty} p(x \mid H_1) \, dx
\]

power of test
The Neyman-Pearson Test

The optimal test for fully specified hypotheses, the so-called, simple hypotheses, is to reject the null if the ratio $p(x|H_1)/p(x|H_0) > \lambda$ for some threshold λ.

$p(x|H_0)$

$p(x|H_1)$

x x_α

$\alpha = \int_{x_\alpha}^{\infty} p(x|H_0) \, dx$

significance of test

$p = \int_{x_\alpha}^{\infty} p(x|H_1) \, dx$

power of test
The Neyman-Pearson Test

Power curve
power vs. significance.
Note: in general, *no analysis* is uniformly the most powerful.

Blue is the more powerful below the cross-over point and green is the more powerful above.

\[\alpha = \int_{x_\alpha}^{\infty} p(x|H_0) \, dx \]

significance of test

\[p = \int_{x_\alpha}^{\infty} p(x|H_1) \, dx \]

power of test
Hypothesis Tests – 5

Any non-trivial analysis contains nuisance parameters. We need to get rid of them in order to perform an hypothesis test.

There two primary ways:

Method 1: Use the profile likelihood.

Method 2: Use a likelihood integrated over the nuisance parameters.
Example: Hypothesis Test (1)

Method 1:
In our example, the likelihood is a 2-parameter function
\(L(s, b) \equiv p(D \mid s, b) \) in which we replace \(b \) by \(\hat{b}(s) \) to get the profile likelihood \(L_p(s) = L(s, \hat{b}(s)) \).

Recall that the quantity
\[
t(s) = -2 \ln[L_p(s)/L_p(\hat{s})]
\]
can be used to compute approximate confidence intervals.

It can also be used to test hypotheses.
Example: Hypothesis Test (1)

We’ll use $t(s)$ to test the null hypothesis, $s = s_0 = 0$.

Wilks’ theorem, applied to the Higgs boson example, states that for large samples the density of the signal estimate \hat{s} will be approximately Gaussian.

Moreover, if s_0 is also the true value, then the distribution of $t(s_0)$ will be approximately a χ^2 density of one degree of freedom.

This implies that the density of $t(s_0)$ is independent of all the parameters of the problem!
Since we know the form of the probability density of $t(s_0)$, we can calculate the p-value:

$$p\text{-value} = P[t(s_0) \geq t_{obs}(s_0)]$$

given the observed value $t_{obs}(s_0)$, of $t(s_0)$. Then, if the p-value < α, the agreed upon significance of our test, we reject the s_0 hypothesis. In addition, we should report the p-value.

But, since $Z = \sqrt{t_{obs}(s_0)}$, we can sidestep the calculation of the p-value and just report Z.

Example: Hypothesis Test (1)
Example: Hypothesis Test (1)

Background, $B = 9.4 \pm 0.5$ events. For this example, $t_{\text{obs}}(0) = 17.05$

therefore, $Z = \sqrt{t_{\text{obs}}(0)} = 4.13$

$L_p(s) = L(s, \hat{b}(s))$

$t(s) = -2 \ln[L_p(s)/L_p(\hat{s})]$

$\hat{b}(s) = \frac{g + \sqrt{g^2 + 4(1+k)Ms}}{2(1+k)}$

$g = N + M - (1 + k)s$

Exercise 12: Verify this calculation
Example: Hypothesis Test (2)

Method 2: We eliminate \(b \) from the problem through integration*:

\[
p(D \mid s) = \int_{0}^{\infty} \text{Poisson}(N \mid s + b) \, \text{Poisson}(M \mid kb) \, d(kb)
\]

\[
= \frac{(1 - x)^2}{M} \sum_{r=0}^{N} \text{beta}(x, r + 1, M) \, \text{Poisson}(N - r, s)
\]

where, \(x = \frac{1}{1+k} \), and \(\text{beta}(x, a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \, x^{a-1} (1 - x)^{b-1} \)

Exercise 13: Show this

\(p(D \mid s) \) is called a **marginal (or integrated) likelihood**.

Example: Hypothesis Test (2)

Note that $p(D \mid s) = p(N, M, k \mid s)$ satisfies the sum rule

$$\sum_{n=0}^{\infty} p(n, M, k \mid s) = 1$$

Notice also that the likelihood for the null hypothesis, $s = 0$, is

$$p(N \mid H_0) \equiv p(D \mid s = 0) = \frac{(1 - x)^2}{M} \sum_{r=0}^{N} \text{beta}(x, r + 1)$$

while the likelihood for the alternative hypothesis, $s \neq 0$, is

$$p(N \mid H_1) \equiv p(D \mid s \neq 0)$$
Example: Hypothesis Test (2)

Background, $B = 9.4 \pm 0.5$ events

$$p(N|H_0) \equiv p(D | s = 0)$$

$$p\text{-value} = \sum_{k=N}^{\infty} p(k|H_0) = 1 - \sum_{k=0}^{N-1} p(k|H_0) = 2.53 \times 10^{-5}$$

This is equivalent to 4.05σ effect, to be compared with the 4.14σ obtained earlier.

Exercise 14: Verify this calculation
An Aside on s / \sqrt{b}

The quantity s / \sqrt{b} is often used as a rough measure of significance on the “n-σ” scale. But, it should be used with caution.

In our example, $s \sim 25 - 9.4 = 15.6$ events.

So according to this measure, the CMS result is a $15.6/\sqrt{9.4} \sim 5.1\sigma$ effect, which is to be compared with 4.1σ!

So, beware of s / \sqrt{b}!
Outline

• Lecture 1
 • Introduction
 • The Frequentist Principle
 • Confidence Intervals
 • The Profile Likelihood

• Lecture 2
 • Hypothesis Tests
 • Bayesian Inference

• Lecture 3
 • Introduction to Machine Learning
Bayesian Inference – 1

Definition:

A method is Bayesian if

1. it is based on the *degree of belief* interpretation of probability and if
2. it uses Bayes’ theorem

\[
p(\theta, \nu | D) = \frac{p(D | \theta, \nu) \pi(\theta, \nu)}{p(D)}
\]

for *all* inferences.

- \(D\) observed data
- \(\theta\) parameter of interest
- \(\nu\) nuisance parameters
- \(\pi\) *prior density*
Nuisance parameters are removed by marginalization:

\[
p(\theta | D) = \int p(\theta, \nu | D) d\nu = \frac{\int p(D | \theta, \nu) \pi(\theta, \nu) d\nu}{p(D)}
\]

in contrast to profiling, which, however, can be regarded as marginalization with respect to a specific prior, namely, \(\pi(\theta, \nu) = \delta(\nu - \hat{\nu}(\theta)) \).

Many frequentist procedures can be cast as Bayesian procedures with suitable priors.
Bayesian Inference – 3

Bayes’ theorem can be used to compute the probability of a model or hypothesis H.
To do so, first compute the full posterior density:

$$
p(\theta_H, \nu, H | D) = \frac{p(D | \theta_H, \nu, H) \pi(\theta, \nu, H)}{p(D)}
$$

- D observed data
- H model or hypothesis
- θ_H parameters of model H
- ν nuisance parameters
- π prior density
Bayesian Inference – 4

Then,

1. factorize the priors: \(\pi(\theta_H, \nu, H) = \pi(\theta_H, \nu | H) \pi(H)\)

2. and, for each model, \(H\), compute the function

\[
p(D | H) = \int \int p(D | \theta_H, \nu, H)\pi(\theta_H, \nu | H) d\theta_H d\nu
\]

3. finally, compute the probability of each model, \(H\)

\[
p(H | D) = \frac{p(D | H)\pi(H)}{\sum_H p(D | H)\pi(H)}
\]
In order to compute $p(H | D)$, however, two things are needed:

1. Priors that integrate to one over the parameter spaces

$$\int \int \pi(\theta_H, \nu | H) d\theta_H d\nu = 1$$

2. The priors $\pi(H)$.

In practice, we compute the Bayes factor:

$$\frac{p(H_1 | D)}{p(H_0 | D)} = \frac{\frac{p(D | H_1)}{\pi(H_1)}}{\frac{p(D | H_0)}{\pi(H_0)}}$$

which is the ratio in the first bracket, denoted by B_{10}.
Example: Bayesian Analysis \(H \to 4l \)

Step 1: Construct a probability model for the observations

\[
p(D|s, b) = \frac{(s+b)^N e^{-(s+b)}}{N!} \cdot \frac{(kb)^M e^{-kb}}{\Gamma(M+1)}
\]

Knowns:
- \(N = 25 \) observed event count
- \(M = 353.4 \) effective background event count
- \(k = 37.6 \) effective background scale factor

Unknowns:
- \(b \) expected background count
- \(s \) expected signal count
- \(d = s + b \) expected event count
Example: Bayesian Analysis $H \rightarrow 4l$

Step 2: Write down Bayes’ theorem:

$$p(s, b|D) = \frac{p(D | s, b) \pi(s, b)}{p(D)}$$

and specify the prior:

$$\pi(s, b) = \pi(b|s) \pi(s)$$

It is often convenient first to compute the marginal likelihood (as we did earlier) by integrating over the nuisance parameter, b.

$$p(D|s) = \int_0^\infty p(D | s, b) \pi(b|s) db$$
Example: Bayesian Analysis $H \rightarrow 4l$

The Prior:

What does

$$\pi(s, b) = \pi(b|s) \pi(s)$$

represent?

The prior encodes what we know, or assume, about the mean background and signal in the absence of new observations. We shall assume that s and b are non-negative.

Unfortunately, there is no unique way to encode such vague information.
Example: Bayesian Analysis $H \rightarrow 4l$

For simplicity, we shall take $\pi(b \mid s) = 1$, though one can do better*.

We have already calculated the integral and found

$$p(D \mid s) = \frac{(1 - x)^2}{M} \sum_{r=0}^{N} \text{beta}(x, r + 1, M) \text{ Poisson}(N - r, s)$$

where, $x = \frac{1}{1+k}$.

Example: Bayesian Analysis $H \rightarrow 4l$

$L(s) = P(25 \mid s)$ is the marginal likelihood for the expected signal s.

Here, we compare the marginal and profile likelihoods. For this problem they are found to be almost identical.

But, this does not always happen!
Example: Bayesian Analysis $H \rightarrow 4l$

Given the marginal likelihood $p(D \mid s)$ we can compute the posterior density

$$p(s \mid D) = \frac{p(D \mid s)p(s)}{p(D)}$$

Again, for simplicity, assume $\pi(s) = 1$, then

$$p(s \mid D) = \frac{\sum_{r=0}^{N} \beta(x, r + 1, M) \text{Poisson}(N - r, s)}{\sum_{r=0}^{N} \beta(x, r + 1, M)}$$

Exercise 15: Derive an expression for $p(s \mid D)$ assuming a gamma prior $\Gamma(qs, U + 1)$ for $\pi(s)$.
Example: **Bayesian Analysis** $H \rightarrow 4l$

Computing Credible (or Bayesian Confidence) Intervals

By solving,

$$
\int_{0}^{l(N)} p(s \mid D) \, ds = (1 - CL)/2
$$

$$
\int_{0}^{u(N)} p(s \mid D) \, ds = (1 + CL)/2
$$

with $CL = 0.683$, we obtain $s \in [11.5, 21.7]$ at 68% CL.

Since this is a Bayesian calculation, this statement means:

the probability that s lies in $[11.5, 21.7]$ is 0.68.
Example: **Bayesian Analysis** $H \rightarrow 4l$
Finally, we can test which of the two hypotheses, \(s = 0 \), or \(s \neq 0 \), is preferred. First calculate

\[
p(D \mid H_1) = \int_0^\infty p(D \mid s, H_1)\pi(s \mid H_1)\,ds
\]

But recall, to do so, we need to specify a *proper* prior for the signal, that is, a prior \(\pi(s \mid H_1) \) that integrates to one.

The simplest such prior is a \(\delta \)-function, e.g.:

\[
\pi(s \mid H_1) = \delta(s - 15.6),
\]

which yields

\[
p(D \mid H_1) \equiv p(D \mid s = 15.6) = 7.91 \times 10^{-2}.
\]

Note also that

\[
p(D \mid H_0) \equiv p(D \mid s = 0) = 1.59 \times 10^{-5}
\]
Example: Bayesian Analysis $H \rightarrow 4l$

From
\[
p(D \mid H_1) = 7.91 \times 10^{-2} \quad \text{and} \quad p(D \mid H_0) = 1.59 \times 10^{-5}
\]

we conclude that the odds in favor of the hypothesis $s = 15.6$ has \textit{increased} by ~ 5000 relative to the prior odds.

The increased odds can be converted to a Z-value (S. Sekmen, HBP) roughly equivalent to the frequentist measure using
\[
Z = \text{sign}(\ln B_{10}) \sqrt{2[\ln B_{10}]}
\]
This yields $Z = 4.13$.

Exercise 16: Verify this number
Generalization to Multiple Bins

The generalization to so-called “shape” analyses, that is, to multiple bins introduces no new concepts.

Here is a model for M independent bins, each with N sources:

1. Mean count in i^{th} bin: $d_i = \sum_{j=1}^{N} p_j a_{ji}$, where each bin contains N sources with mean counts a_{ji}. The p_j are parameters such as the signal strength μ.

2. Likelihood for i^{th} bin: $p(D_i|d_i) = \text{Poisson}(D_i, d_i)$.

3. Likelihood for i^{th} bin of j^{th} source:
 $$p(A_{ji}|r_{ji} a_{ji}) = \text{Poisson}(A_{ji}, r_{ji} a_{ji})$$
 where r_{ji} are known scale factors.
Generalization to Multiple Bins

The overall probability model is

\[
p(D|a) = \prod_{i=1}^{M} p(D_i|d_i) \prod_{j=1}^{N} p(A_{ji}|r_{ji}a_{ji})
\]

which can be marginalized with respect to \(a_{ji}\) exactly*:

\[
p(D|p_j, r_{ji}) = \prod_{i=1}^{M} \sum_{k_1,...,k_N=0}^{D_i} \prod_{j=1}^{N} \left(A_{ji}+k_j\right) p_j^{k_j} r_{ji}^{A_{ji}+k_j} (p_j + r_{ji})^{-k_j}
\]

with \(k_1 + \cdots + k_N = D_i\).

If the scale factors \(r_{ji}\) are not known precisely, the above can be extended to incorporate the appropriate uncertainties.

*FSU undergraduate Robert Orlando.
Foundation of Statistics: Probability

Two main interpretations:
1. Degree of belief
2. Relative frequency

Likelihood Function
Main ingredient in any full scale statistical analysis.

Frequentist Principle
Construct statements such that a fraction \(f \geq C.L. \) of them will be true over an infinite ensemble of statements.
Summary – 2

Frequentist Approach

1. Use likelihood function only.
2. Eliminate nuisance parameters by profiling.
3. Decide on a fixed threshold α for rejection and reject null if p-value < α, but do so only if rejecting the null makes scientific sense, e.g.: the probability of the alternative is judged to be high enough.

Bayesian Approach

1. Model *all* uncertainty using probabilities and use Bayes’ theorem to make *all* inferences.
2. Eliminate nuisance parameters through marginalization.