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INTRODUCTION



AlphaGo 4, Homo Sapiens 1

2016 — Google’s AlphaGo program beats Go champion Lee
Sodol.
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ARTICLE

doi:10.1038/nature24270

Mastering the game of Go without
human knowledge

David Silver'*, Julian Schrittwieser'*, Karen Simonyan'#*, loannis Antonoglou’, Aja Huang', Arthur Guez',
Thomas Hubert!, Lucas Baker', Matthew Lai', Adrian Bolton', Yutian Chen', Timothy Lillicrap', Fan Hui', Laurent Sifre',
George van den Driessche', Thore Graepel' & Demis Hassabis'

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in
challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The
tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were
trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce
an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game
rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also
the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality
move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved
superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo.
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Follow the Yellow Brick Road!

Giusti et al. treat the problem of trail navigation as a

classification problem!

: 8 hours of \7’5—'

1920 x 1080 301fps ‘\?’
video using 3 GoPro
cameras.

{, /t_’ trail direction

viewpoint

view direction _,

W(Volume LIssue: 2, July 2016 )


http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7083369
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7419970

What is Machine Learning?

The use of computer-based algorithms for constructing useful
models of data.

Machine learning algorithms fall into five broad categories:
1. Supervised Learning

Semi-supervised Learning

Unsupervised Learning
Reinforcement Learning

A

Generative Learning



Machine Learning

Choose
Function space F={f(x,w)}
Constraint C F
Loss function™ L C(w)
£ (e w¥)
Method

Find 1 (x) by minimizing the empirical risk
1
R(f) == Yicy Ly f (2, W)

subject to the constraint C(w)

*The loss function measures the cost of making a bad choice
of function from the function space.

10



Machine Learning

Many methods use the
quadratic loss L(y, ) = (y — f)*

and choose f (x, w*) by minimizing the
constrained empirical risk (that 1s, the_average loss)

1 N
R() == > Ls f(xiw)) + Cw)
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Machine Learning

Minimization via Gradient Descent

A “loss function” defines a “landscape” in the space of
parameters, or equivalently in the space of functions.

The goal 1s to find the lowest point in the landscape, usually
by moving 1n the direction of the local negative gradient:

OR (W)

l l an

Most minimization algorithms are variations on this theme
Stochastic Gradient Descent (SGD), uses

random subsets of the training
data to provide goisy estimates of

the gradient.
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A BIT OF THEORY



Minimizing Quadratic Loss

Consider the quadratic risk function in the limit N — oo
N
1
RW) == > (3, = [, w)? + C(w)
i=1

S [dx [dy(y — e, w)) p(y, %)
= [dxp)|[dy(y — )*p(y|x)]

where p(y|x) = p(y,x)/p(x) and where we have assumed

the influence of the constraint (in this limit) 1s negligible.

R 1s a functional R[ f'] of f (x, w), that 1s, R depends on
(infinitely) many values of /.
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Minimizing Quadratic Loss

If we change the function f by a small arbitrary function é f
a small change

SR =2 [dxp()8f|fdy(y — Hip(y|x)]
will be induced in R. In general, 6R # 0.

But, 1f the function f'is flexible enough we shall be able to
reach the minimum of R, where 6R = 0.

This 1s to hold for all variations 6 f and for all values of x.
This can happen if the quantity in brackets 1s zero, that 1s, 1f

Fe) = [ ypw 10 dy
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Classification

Recall that Bayes’ theorem 1s
p(xly) p(y)

pLyIx) = [pCx 1y) p(y)dy

Now, let’s assign the target value y = 1 to objects of class s
and target value y = 0 to objects of class b.

Then

fx) = f yp(y | %) dx = p(1]%)

= p(slx)
That 1s, the function approximates the class probability.
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Classification

In 1990%*, the result
) ) p(x|s)p(s)
flx) =plslo) = p(x|s)p(s) + p(x|b)p(b)

was derived 1n the context of neural networks. But, the result
1S, 1n fact, independent of the nature of the function f (x, w)
provided that:
1. we have sufficient training data T and

2. we have a sufficiently flexible function f (x, w).

* Ruck et al., IEEE Trans. Neural Networks 4,296-298 (1990); Wan,
IEEE Trans. Neural Networks 4, 303-305 (1990);

Richard and Lippmann, Neural Computation. 3, 461-483 (1991)
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Classification

If p(s) = p(b), we arrive at the discriminant

p(x|s) _ s(x)

D) =TH T pxlD) — 56 + b(x)

This 1s an extremely useful result because 1t suggests many
potential machine learning applications.

Ask me during discussion sessions!
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BOOSTED DECISION TREES



Decision Trees

Decision tree:
a sequence of 1f then else
statements.

Good
Basic idea: recursively | 0.81

partition the space into

regions of diminishing impurity.

This i1s a simple example of an

automated wine taster...more
details later.

Bad Good
0.36 0.59
SO2tota
79.0

> <
alcohol
11.8 g
Bad
0.27
alcohol

10.7 /'
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Decision Trees

For each variable, find the
partition (“cut”) that gives

the greatest decrease 1n

Bad
0.36

impurity:

Good
0.81

Impurity (parent bin)

— Impurity (“left”-bin)

— Impurity (“right”-bin)

Then, choose the best
partition among all

partitions, and repeat w
each child bin.

ith

>

alcohol
11.8

<

SO2tota
79.0

alcohol
10.7

Good
0.59

Bad
0.27




Decision Trees

The most common impurity
measure 1s the Gini index

(Corrado Gini, 1884-1965):

Gini index =p (1 — p)
where p 1s the purity
p=S/(S+B)

Good
0.81

p =0 or 1 = maximal purity

p=0.5 = maximal impurity

Bad Good
0.36 0.59
SO2tota
79.0

> <
alcohol
11.8 g
Bad
0.27
alcohol
10.7

<
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alcohol (% vol.)

Decision Trees

Geometrically, a decision tree
1s a d-dimensional histogram

in which the bins are
created recursively.

14

12

10

0 100 200 300
SO, (mg/dm®)

Good
0.81

Bad Good
0.36 0.59
SO2tota
79.0

> <
alcohol
11.8 g
Bad
0.27
alcohol
10.7 <



A Silk Purse from a Sow’s Ear!

In 1997, AT&T researchers Freund and Schapire [Journal of
Computer and Sys. Sc1. 55 (1), 119 (1997)] showed that 1t
was possible to build highly effective classifiers by
combining a large number of mediocre ones!

The Freund-Schapire algorithm, which they called AdaBoost,
was the first successful method to boost (1.e., enhance)

the performance of

poorly performing

ClaSSiﬁerS by A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting*
averaging their outputs. Vo Frewad snd Rober E. Schap
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Ensemble Methods

In 1997, AT&T researchers Y. Freund and R.E. Schapire
[Journal of Computer and Sys. Sci. 55 (1), 119 (1997)],
showed that 1t was possible to build highly effective
classifiers by combining many weak ones!

This was the first successful method to improve (i.e., boost)

the performance of poorly performing classifiers by averaging
them. JOURNAL OF COMPUTER AND SYSTEM SCIENCES 58, 119139 (1997

0, SSVT 1S4

A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting*

Yoav Freund and Robert E. Schapire’

ATRT Labs, 180 Park Avenwe, Florham Park, New Jersey 07932

Received December 19, 1996
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Ensemble Methods

Suppose you have an ensemble of classifiers f (x, wy), which,
individually, perform only marginally better than random
guessing. Such classifiers are called weak learners.

It 1s possible to build highly effective classifiers by gvergeoinge
their outputs:

N

FOO = ay+ ) a, fxuw,)

n=1

Jerome Friedman & Bogdan Popescu (2008)
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Ensemble Methods

The most popular methods (used mostly with decision trees) are:

° Bagging: each tree is trained on a bootstrap™
sample drawn from the training set

® Random Forest: bagging with randomized trees

® Boosting: each tree trained on a different
reweighting of the training set

* A bootstrap sample is a sample of size N drawn, with replacement, from
another of the same size. Duplicates can occur and are allowed.
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Adaptive Boosting

The AdaBoost algorithm of Freund and Schapire uses
decision trees f (x, w) with weights w assigned to each
object to be classified, and each assigned a target value of
either y =+1, or -1, e.g., +1 for signal, —1 for background.

The value assigned to each leaf of f (x, w) is also 1.

Consequently, for object n, associated with values (y,, x,,)

f(x,,w)y,>0 for a correct classification
f(x,w)y, <0 for an incorrect classification

Y. Freund and R.E. Schapire. Journal of Computer and Sys. Sc1. 55 (1), 119 (1997)
28



Adaptive Boosting

Initialize weights w 1n training set (e.g., setting each to 1/NV)
for k=1 to K:

1. Create a decision tree f (x, w) using the current weights.

2. Compute its error rate € on the weighted training set.

3. Computead=In(l-€)/€ andstoreas a,=«a

4. Update each weight w, 1n the training set as follows:
w, =w,exp[-a f(x,, w)y,] /A, where A 1s a
normalization constant such that > w, = 1. Since

f(x,, w)y,<0 for an incorrect classification, the weight of
misclassified objects 1s increased.

At the end, compute the average f (x) = > a; f (x, wy)

Y. Freund and R.E. Schapire. Journal of Computer and Sys. Sc1. 55 (1), 119 (1997)
29



Adaptive Boosting

AdaBoost 1s a highly non-intuitive algorithm. However, soon
after its invention, Friedman, Hastie and Tibshirani
showed that the algorithm 1s mathematically equivalent to
minimizing the following average loss function

R(F) = jp(x, y) exp(—y F(x) dx dy

where F(x) = XY _1a, f(x,,w,),
Minimizing this loss function yields
D(x) = logistic(2F) = 1/(1 + exp(—2 F(x))

which can be interpreted as a probability, even though F
cannot!

J. Friedman, T. Hastie and R. Tibshirani, “Additive logistic regression: a statistical
view of boosting,” The Annals of Statistics, 28(2), 377-386, (2000)
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EXAMPLE: WINE TASTING



Wine Tasting

Wine tasting 1s big business. But, can a machine do 1t?
In principle, yes, 1if we can establish the l

physical attributes that define “good” wine, l
such as this one for $117,000 a bottle! |

. BN
' \S:,‘y: "

@Urtun-(l{ haelemal®

ey 0 F COCHE-DURY
‘.‘x"'\"llllll\"
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Wine Tasting

We’ll use AdaBoost to build a classifier that can distinguishes
good wines from bad wines

B vinho verde
. Douro
from
Vinho Verde

in Portugal.
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Wine Tasting

Let’s define a good wine as one with expert rating > 0.6 on a
scale from O to 1, where 1 1s a wine from Heaven and 0 1s a
wine from Hell!

We’ll use data from

Cortez et al. *

* P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.

Modeling wine preferences by data mining from physicochemical properties.
In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236
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Wine Tasting: Data

Data: [Cortez et al., 2009].

variables

acetic
citric

sugar
salt

SO2free
SO2tota
pH
sulfate
alcohol

quality

description

acetic acid
citric acid
residual sugar
NaCl

free sulfur dioxide
total sulfur dioxide
pH

potassium sulfate
alcohol content

(between 0 and 1)
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citic

sulfate

sulfate

suger

alcohol

sulfate

sulfate

alcohol

sulfate




Wine Tasting: Variables

Variables:

SO2tota:

alcohol:

Input variable: SO2tota

$ 0.018

©0.016

P

© 0.014

P

= 0.012
0.01

0.008F

0.006

0.004f

ignal ' o '

/77| Background &
3 =
- =]
- o
3 £
o p=
- ]
' 1
- )
: 4
é

15

Input variable: alcohol

alcohol content (% volume)

(1/N) dN /0.142

’
A
A
’
’
’
’
’
A
’
’
/
il
10
’
"

7
/4
i

\\\\‘\\\\\\\\\\\‘

[ C TR ]

the total sulfur dioxide content (mg/dm?)

13 14
alcohol

WO-flow (S,B): (0.0, 0.0)% /(0.0, 0.0)%
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alcohol

Wine Tasting: First 6 Decision Trees

alcohol

= 14
2
3
@
12
10+ - 10
8 4 8 8 L L
0 100 200 300 0 100 200 300
SO2tota SO2twota SO2tota
[=) °
I —~ N —
g 3
3 3

0 100 200 300 0 100 200 300
SO2iota

SQ2wota SO2tota




Wine Tasting: Results

X = SO2tota
y = alcohol

Background rejection versus Signal efficiency

01 02 03 04 05 06 07 08 09 1
04 03 02 01 0 01 02 03 04 Signal efficiency

IMVA
TMVA response for classifier: BDT 1 T e e
n §
% 7ilsiglrllélllllIIllllllllllllllllllllIll]lllllll- g 0.9:
> = o -
2 Background ] 3 osf \‘
> oF - -
€ °t - 3 \
= S 07F N
= -
o =
2 @ 06F
) 05 F s
2 - \ =
-] 0.4F 5
s E  MVA Methad: \E
) 0.3 =y BDT \-
) C 3
3 0.2-..|| PRRIRTINT N NN TN SN TN SO0 UL TN S NN SO0 U IO S SN TN NN NV OO N Y 1
3 0
5

BDT response

BDT Distribution

99

BDT(x,) = ) @ f(x,7,w,)

k=0

Fraction of bad wine rejected
for a given fraction of good
wine accepted.




Wine Tasting: Resul

alkcoho

The upper figures

1zr

are density plots of

the training data. ol

d go

The lower plots are %

approximations of

1 1 1 1
50 100 150 200 250
SO,

:
the discriminant 5

D(X, y) 12:

The left, uses 2-D

histograms, the right
uses the BDT.

10

8

0

L 1L 1 L
50 100 150 200 250
SO,

ts

alcohol

alcohol

14

1zyr

10F

8

14

12

10

8

0

1
50

1 1 1
100 150 200 250
SO,

—
L
. .
L

L

0

1L
50

1 L
100 150 200 250
SO,
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NEURAL NETWORKS



A Bit of History: Hilbert’s 13" Problem

(One version of Problem 13): Prove
that it 1s impossible to do the following:

JO1s.c0xn) = FCgi(xXys- -5 Xm))s- - -5 Z(X1)s- - > X(m)))
for m <n for all n.
In 1957, Kolmogorov proved that 1{augs possible with m = 3.

Today, we know that functions of the form

fk(xw)—ak+zwk] (b +2 )

can provide arbltrarlfy accurate approx1mat10ns of
’J/

real functions of / real variables.
(Hornik, Stinchcombe, and White, Neural Networks 2, 359-366 (1989))
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Deep Neural Networks

input layer layer 0 layer 1 layer 2




Deep Neural Networks

input layer layer 0 layer 1 layer 2

A 3-layer DNN
o=g9g(b, +wyh(by +wih(by +wyx)))

h(z) = ReLU(z) [= max(0, z)], tanh(z)
g(z) = Identity(z), logistic(z) = 1/[1 + exp(-2)]



Deep Neural Networks

® In 2006, University of Toronto researchers Hinton, Osindero,
and Teh (HOT*) succeeded 1n training a deep neural network
for the first time. Each layer was trained to produce a
representation of its inputs that served as the training data for

the next layer. Then the entire network was adjusted using
gradient descent.

® This breakthrough seemed to provide compelling evidence
that the training of deep neural networks requires careful

initialization of parameters and sophisticated machine
learning algorithms.

* Hinton, G. E., Osindero, S. and Teh, Y. (HOT), A fast learning algorithm
for deep belief nets, Neural Computation 18, 1527-1554.
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Deep Neural Networks

® But, 1n 2010, Ciresan ef al.* showed that such cleverness was
not needed! The authors succeeded in training a DNN with

architecture (784, 2500, 2000, 1500, 1000, 500, 10) that
classified the hand-written digits in the MNIST database.

® The database comprises 60,000 28 X 28 = 784 pixel images
for training and validation, and 10,000 for testing.

® The error rate of their ~12-million parameter DNN was 35

images out of 10,000. The misclassified images are shown on
the next slide.

* Cirgsan DC, Meier U, Gambardella LM, Schmidhuber J. , Deep, big,

simple neural nets for handwritten digit recognition. Neural Comput. 2010 Dec;
22 (12): 3207-20. http://yann.lecun.com/exdb/mnist/
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Deep Neural Networks
1 2 ? q o ﬁ e ,q e 1:;5 % o
17 74 e
3 5 4 : 4 -
tr-f’r 5 ?'El F c: 9 ? a _f:'

94
L 5 ‘f 4 E:’ 0 é & 1,; & 1 i j’ i
16 94 60 0 & =
9 0 5 8 | =~ 9 "5 7 1
i:g S;D 535 25 'f?g !1 7 I
? 7 3"‘"8 ';12 ;’f; = JS f 4 #D
27 58 78 16 65 Q4 6 [
Upper right: correct answer; lower left answer of highest DNN output;

lower rigl_lt answer of next highest DNN output.
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(784, 2500, 2000, 1500, 1000, 500, 10)

SHENENEEA S
EM\ILERENE ALY

9 4

S48 6 *";Z”

9 4

i,gan 55? ,I}:-;I I1

4 9 =20 98 79 1.'-"
?F" 5.__._3 ” ;"..-':'EI JS f #D
2 F 50 1 6 B 5 9 4 =l

Upper right: correct answer; lower left answer of highest DNN output;
lower right answer of next highest DNN output.
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Convolutional Neural Networks

Many of the remarkable breakthroughs in tasks such as face
recognition use a type of DNN called a convolutional neural
network (CNN).

CNNs are functions that compress data and classify objects
using their compressed representations via a standard fully
connected NN. The compression dramatically reduces the
dimensionality of the space to be searched.

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

1
1

1 . ] —— ~~wo__ dog(0.01)
—— . I- 1 cat (0.04)
‘ L - boat (0.94)
_ I im lH bird (0.02)
N i (s 1 I e m g

Source:
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https://www.clarifai.com/technology

Convolutional Neural Networks

A CNN comprises three types of processing layers: 1.
convolution, 2. pooling, and 3. classification.
1. Convolution layers

The mput layer 1s “convolved” with one or more matrices

using element-wise products that

, 1]1]1]o0]o0

are then summed. In this example, [o[1[1[1]0| [2
since the sliding matrix fits 9 8‘1 g i i (1)

times, we compress the input from [of1[z]oo

a5 x5toatoa3x 3 matrix. mage  Convolved

Feature

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

cat (0.04)
boat (0.94)
bird (0.02)

’l
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Convolutional Neural Networks

2. Pooling Layers
After convolution, and a pixel by pixel non-linear map
(using, e.g., the function y = max(0, x) = ReLU(x)) a
coarse-graining of the layer 1s performed

called max pooling in which the maximum
values within a series of small windows
are selected and become the output of

a pooling layer. o (O

Max(1,1,5,6)=6

max pool with 2x2 filters
and stride 2 6 8

W = NN

A O 0
w
H

Convolution Pooling Convolution Pooling Fully
Connect

y

Rectified Feature Map

2 -~ UURE |V.Uij
cat (0.04)
boat (0.94)
bird (0.02)
O ol
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Convolutional Neural Networks

3. Classification Layers
After an alternating sequence of convolution and pooling
layers, the outputs go to a standard neural network, either
shallow or deep. The final outputs correspond to the

different classes and like all flexible classifiers, a CNN
approximates,

p(Celx) = P(ICIP(C)/ )| PEXICIP(Cr)

Fully Output Predictions

- ~——._ dog(0.01)
cat (0.04)
boat (0.94)
] T -
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THE FUTURE OF MACHINE
LEARNING



McKinsey&Company

A FUTURE THAT WORKS:

EXECUTIVE SUMMARY




“Almost half the activities people are paid almost $16 trillion
in wages to do 1n the global economy have the potential to be
automated by adapting currently demonstrated technology,
according to our analysis of more than 2,000 work activities

across 800 occupations.”

McKinsey & Company,
A FUTURE THAT WORKS: AUTOMATION, EMPLOYMENT, AND

PRODUCTIVITY
Executive Summary January 2017



The Future of Machine Learning

By 2056, the following might be 1in routine use:

1
2
3.
4,
5
6

personal predictive medical systems

personal tutors

autonomous physician’s assistant
autonomous house servant

autonomous pet sitter

autonomous vehicles that can drive safely in Italy!

The potential of Al is vast and exciting.

But 1t 1s argued (e.g, Bill Gates, Elon Musk, the late Stephen
Hawking) that the dangers are also potentially vast: Al

autonomous, self-aware, soldiers, AI micro-drone swarms....

56



