

Software Testing

12/6/2017 EDMS 1884325 2

Basics and integration testing of J2EE applications

EAM/EDMS development workshop

Software Testing

12/6/2017 EDMS 1884325 3

Basics and integration testing of J2EE applications

EAM/EDMS development workshop

What do we mean by testing?

• Software testing has many flavors: unit

testing, integration testing, functional testing,

stress testing, black/white box, monkey

testing...

• Not all tests are created equal

• The basic purpose of tests is to provide

verification and validation of software

12/6/2017 Document reference 4

Validation versus verification

• Verification: did we build the software right?

Does it fulfill its original requirements?

• Validation: did we build the right software?

Does the project meet the users’ needs?

• Unit, integration tests, static analysis provide

verification

• User acceptance tests (UAT) provide

validation

12/6/2017 Document reference 5

Code coverage

• One of the measures used for systematic

software testing

• Tries to answer the question: how much of

my code is run in my tests?

• The assumption is:

the more code is executed

the smaller the chance is of a bug emerging

12/6/2017 Document reference 6

Code coverage

• Of course, a 100% code coverage doesn’t

mean 100% working software

• A talented developer can have multiple bugs

in fully covered code – the construction of

the test cases matters

12/6/2017 Document reference 7

Test Driven Development (TDD)

• A methodology of developing code which is

based on writing tests first

• The TDD mantra is:

red green refactor red...

12/6/2017 Document reference 8

12/6/2017 Document reference 9

Pros and cons

Conclusion: TDD is good Conclusion: TDD is bad

• Forces modularity and

testability of the code

• Induces confidence among

team members (even if

you break something, the

tests will let them know)

• Obvious mistakes are

harder to commit

• Forces good code

coverage

• Tests can be hard to

write

• Adds a layer of

complexity which needs

to be maintained

• Gives false confidence if

the test is badly written

12/6/2017 Document reference 10

Unit tests

• Low-level

• Usually testing one method/class, ideally

limiting dependencies on other

methods/classes and components

12/6/2017 Document reference 11

Integration tests

• Take into account the broader context of the
application (database, external APIs,
filesystem, concurenncy

• Verify that the – ideally unit tested - building
blocks (methods, classes, modules etc), work
well together.

• Unlike unit tests, which should run at build-time
and should be very quick to run, integration
tests require a deployment step

• Usually will touch significantly more code than
unit tests

12/6/2017 Document reference 12

Humor

12/6/2017 Document reference 13

Integration tests in practice

• Java EE or Spring applications can make
heavy use of dependency injection or other
container services

• Whether an application works well within the
container is crucial, since the containter
provides the implementation for the services
defined e.g. in the JEE standard

• The system configuration is equally as
important (have we moved everything from
DEV to TEST?)

12/6/2017 Document reference 14

Arquillian

• De facto industry standard for J2EE
integration testing; also works with Spring,
although it’s not as popular

• Allows to run integration tests within the
context of a fully configured application
server as a build step

• Arquillian Warp is an extension which allows
to use a client-side testing framework and to
inspect server state at the same time

• Works well with Junit

12/6/2017 Document reference 15

Arquillian test

1. Start an instance of the container

2. Deploy an archive to the server.

3. Run the test cases (JUnit/TestNG integration)

4. Undeploy the archive and kill the instance.

The configuration of the application server is
preserved. Running the test on a running instance
of a server is as simple as

mvn clean test
including the deployment and undeployment of the
test package.

12/6/2017 Document reference 16

How a test is written

12/6/2017 Document reference 17

Let’s dissect it...

12/6/2017 Document reference 18

This JUnit annotation tells

the engine to use a

different runner than the

default

This annotation specifies

the deployment archive for

Arquillian

Using ShrinkWrap to package our classes into a web archive

It’s also possible to use a Maven dependency resolver – no need to specify

any classes or packages, they are read from the pom.xml

Let’s dissect it...

12/6/2017 Document reference 19

Ordinary EJB annotation

to lookup a bean in JNDI

Standard JUnit syntax!

Also possible with Spring...

12/6/2017 Document reference 20

Nice showcase:

https://github.com/arquillian/arquillian-

showcase/tree/master/spring

Surely it takes long!

12/6/2017 Document reference 21

This time includes the packaging, deployment, running the aforementioned

tests and undeploying the package.

Arquillian Warp

• „Fills the void between client-side and

server-side testing”

• Allows to mock client-side actions in order to

inspect server state

• Can be used with e.g. Selenium WebDriver

• Example coming….

12/6/2017 Document reference 22

12/6/2017 Document reference 23

Arquillian

• Configuration is somewhat non-trivial and is

done in XML files; however, for J2EE

projects there are archetypes which provide

Arquillian support „out of the box”

• Sharing the project among team members

requires to set an environmental variable

• Can be run with maven test - easy to

integrate into a Maven build

12/6/2017 Document reference 24

