
Andrea Bolognesi, EN/ACE/AMM

andrea.bolognesi@cern.ch

Contents

• JSF

• https://gitlab.cern.ch/abologne/dev-jsf.git

• Angular

• https://gitlab.cern.ch/abologne/dev-a.git

• React

• https://gitlab.cern.ch/abologne/dev-r.git

• Polymer

• https://gitlab.cern.ch/abologne/dev-p.git

• Comparison

Example

JavaServer Faces JSF

• Server side objects (managed
backing beans) associated
with UI components used in
the page.

• Managed beans are
JavaBeans components
• Define Ui component properties

bound to component’s value

• Define methods that perform
functions associated with a
component (validation, event
handling, navigation processing).

MVC Pattern

Components

• Taken from https://courses.edx.org/courses/course-v1:Microsoft+DEV216x+2T2017

Directives

• Directives allow the injection of custom
behavior into existing HTML elements:
• Component directives:

<h1>Demo Grid Data</h1>

<datagrid-component></datagrid-component>

• Attribute directives change the behavior or
appearance of an element.

<div [ngStyle]="{`color`:object.color}">

• Structural directives show or hides an element.
<tr *ngFor="let object of objects">

Interpolation

Allows to weave HTML markup and dynamic data:
<tr *ngFor="let object of objects">

<th scope="row">{{object.code}}</th>

<td>{{object.desc}}</td>

</tr>

Weaves calculated strings into the text between

HTML element tags and within attribute

assignments:

Two-way binding

• The [(ngModel)] data binding syntax enables

a two-way binding scenario.

• In a two-way binding scenario,

• our property's value is updated in our

component class whenever the user makes a

change in the UI.

• our UI is inversely updated if we change the

value of the property in the component class.

Modular Application Design

• Architectural Goals:

• Software components must be modular and

reusable throughout your application

• Modular components should be testable in

isolation

• Modules could be changed easily without

rewriting the entire application

React and Composition

• React is a declarative, efficient, and flexible

JavaScript library for building user

interfaces.

• https://reactjs.org/

• The key feature of React is composition of

components.

• Components written by different people should

work well together.

JavaScript XML (JSX)
• Describes what the UI should look like.

• May remind you of a template language, but it comes with the full power of
JavaScript.

function formatName(user) {

return user.firstName + ' ' + user.lastName;

}

const user = {

firstName: 'Harper',

lastName: 'Perez'

};

const element = (

<h1>

Hello, {formatName(user)}!

</h1>

);

ReactDOM.render(

element,

document.getElementById('root')

);

Interactive Component

<button onClick={() => alert('click')}>

{this.props.value}

</button>

JavaScript XML (JSX)

• JSX is an XML-like syntax extension to

ECMAScript.

• It's NOT intended to be implemented by

engines or browsers.

• It's NOT a proposal to incorporate JSX into

the ECMAScript spec itself.

• It's intended to be used by various

preprocessors (transpilers) to transform

these tokens into standard ECMAScript.

React Component

import React from 'react';

import DataGridRow from './DataGridRow';

const DataGrid = (props) => (

<table className="table table-striped table-bordered"><tbody> {

props.objects.map((object, index) => (

<DataGridRow

key={object.code}

object={object}

count={index + 1}

/>

))

} </tbody></table>

);

export default DataGrid;

Polymer

• Google Polymer is a library that provides syntactic
sugar and polyfills for building elements and
applications with web components.
• https://www.webcomponents.org

• https://www.polymer-project.org

• Web components are reusable widgets that can be
assembled like building blocks in web documents
and apps.

• Good Reference to get started:
• https://auth0.com/blog/build-your-first-app-with-polymer-

and-web-components

Web Components
Web Components are a set of browser features that are being
added to the W3C HTML and DOM specification.

• https://www.w3.org/standards/techs/components#w3c_all
2014-03-18 HTML Templates

Describes a method for declaring inert DOM subtrees in HTML and

manipulating them to instantiate document fragments with identical

contents
2017-09-05 Shadow DOM

Describes a method of establishing and maintaining functional

boundaries between DOM subtrees and how these subtrees interact

with each other within a document tree.
2016-10-13 Custom Elements

This document describes the method for enabling the author to define

and use new types of DOM elements in a document.
2016-02-25 HTML Imports

This document defines a way to include and reuse HTML documents

in other HTML documents.

https://www.w3.org/standards/history/html-templates
http://www.w3.org/TR/2014/NOTE-html-templates-20140318/
https://www.w3.org/standards/history/shadow-dom
https://www.w3.org/TR/2017/WD-shadow-dom-20170905/
https://www.w3.org/standards/history/custom-elements
https://www.w3.org/TR/2016/WD-custom-elements-20161013/
https://www.w3.org/standards/history/html-imports
http://www.w3.org/TR/2016/WD-html-imports-20160225/

Web Components

• Allow us to architect and import custom
elements that automatically associate JS
behavior with templates and can utilize shadow
DOM to provide CSS scoping and DOM
encapsulation.

• Could be used natively without any additional
libraries or toolsets.
• However, not all features are supported by all

browsers.

• Need library like Polymer or polyfills, such as
webcomponents.js, to bridge the gap between the
current state of browser support and the future.

Web Components

• Shadow DOM is difficult and costly to polyfill,

so Polymer uses Shady DOM to implement

the features of Shadow DOM in browsers

that lack support.

• https://github.com/webcomponents/shadydom

Comparison

Adoption

• Angular, Polymer, and React are supported

and used by big companies.

• Facebook, Instagram and Whatsapp are

using React for their pages.

• Google uses Angular in a lot of projects: for

example, the new Adwords UI was

implemented using Angular & Dart.

• Google uses Polymer in Google Keep,

YouTube.

Tools and Languages

• In Angular TypeScript is the de-facto

language for building Angular apps.

• React focuses on the use of Javascript ES6.

• Polymer is based on Web standards,

components are built with HTML and

JavaScript.

• In Polymer 2 and later, the default language

level is ES6, which will get transpiled down to

ES5 by the CLI to support older browsers.

Passing state between component

• Angular 2+ keeps the state in a shared service,
available to components that need it through
dependency injection.

• React has a single central store using Redux
that components can bind to.

• With Polymer, the component-based
development model offered by Web
Components is flexible enough that you can
build complex applications using the browser as
your framework.

Templates and Data Binding
• Angular

• Templates are enhanced HTML with special Angular language

• One-way and two-way data binding

• Dependency Injection (DI) system that makes it easier to hook
up services, especially when testing.

• RxJS and Observables for handling data, especially for
asynchronous HTTP communication.

• React
• Uses JSX is an optional preprocessor for HTML-like syntax

which will be compiled in Javascript later.

• Polymer
• On top of the Web Components standards

• simple data binding system that supports both one-way and
two-way binding of data.

Debugging

• Debugging Polymer applications can be

done using the browser developer tools.

• The Angular CLI build creates source maps

that allow you to debug the TypeScript code

in the browser.

Application Routing

• Since Angular, React and Polymer are

component-based, the general application

structure is similar.

• Angular has a feature-rich router that

supports arbitrarily deeply nested routes.

• lazy load code for modules until needed.

• Polymer has an optional router (app-route)

that can be used to map between URLs and

components.

Styling

• Polymer

• harder to customize in terms of look and feel

because Web Components are designed to

encapsulate their implementations.

Testing

• Angular

• Karma

• Jasmine

• React

• Jest

• Enzyme

Framework vs. library

• Angular is a framework rather than a library.

• React and Polymer are libraries, although

with the right extension can be seen as a

framework (especially for React).

Mobile Support

• Angular and React

• Web applications and native applications
(although native support requires you to write a
separate implementation of the view).

• Ionic Framework (Angular)

• React-native (React)

• Polymer

• PWA is the only mobile strategy. This is in line
with Polymer’s goal of building on Web
standards to expand what you can do on the
Web.

Maintainability

• Angular and Polymer did not show a stellar API
stability:
• Polymer had a very rough transition period leading

from version 0.5 until 1.0.

• Angular 2 went through an extended period of API
changes during development.

• The good news is that both teams have taken note
and are planning for smoother upgrade paths in the
future. Polymer 2,

• Polymer and the W3C standards it builds on will
provide a more stable foundation for apps that
need to be maintained for longer periods.

References

• https://reactjs.org

• https://angular.io

• https://www.polymer-project.org

• https://medium.com/unicorn-supplies/angular-
vs-react-vs-vue-a-2017-comparison-
c5c52d620176

• https://vaadin.com/blog/comparing-polymer-
and-angular-from-a-developer-s-perspective

• https://courses.edx.org/courses/course-
v1:Microsoft+DEV216x+2T2017

• https://completereactcourse.com

