

What can we learn from femtoscopy and angular correlations in ALICE?

Łukasz Graczykowski for the ALICE Collaboration

XIII Polish Heavy-Ion Workshop Wrocław, Poland 7/01/2018

Femtoscopy – going beyond the system size

Correlations of baryons

K⁰_sK[±] and other correlations

Disclaimer: some plots are labeled "Work in progress" They will not be kept on Indico conference page

Femtoscopy technique

from M. Lisa and S. Pratt

- Femtoscopy measures space-time characteristics of the source using particle correlations in <u>momentum space</u>
- Main sources of correlations:
 - Quantum statistics (QS)
 - bosons (i.e. pions) Bose-Einstein QS
 - fermions (i.e. protons) Fermi-Dirac QS
 - Final-state interactions (FSI)
 - strong interaction
 - Coulomb repulsion or attraction

$$C(q) = \int S(r) |\Psi(q,r)|^2 d^4r$$

In the experiment:

$$C(q) = A(q)/B(q)$$

$$A(q)$$
 - signal distribution ("same" events)

$$B(q)$$
 - background distribution ("mixed" events)

How does it look like?

Correlation functions have different shapes, depending on the pair type (interaction involved), collision system and energy, pair transverse momentum, etc.

Beyond the system size

increase of (anti)correlation

Beyond the system size

$$\Psi = \exp(-i \, k^* \, r) + f \, \frac{\exp(i k^* \, r)}{r} \text{approximation}$$

$$f^{-1}(k^*) = \frac{1}{f_0} + \frac{1}{2} \, d_0 \, k^{*2} - i k^* \quad \text{effective range approximation}$$

If only Strong Final State Interaction (FSI) the result of integration:

$$C(k^*) = 1 + \sum_{S} \rho_{S} \left[\frac{1}{2} \left| \frac{f^{S}(k^*)}{R} \right|^{2} \left(1 - \frac{d_{0}^{S}}{2\sqrt{\pi}R} \right) + \frac{2\Re f^{S}(k^*)}{\sqrt{\pi}R} F_{1}(2k^*R) - \frac{\Im f^{S}(k^*)}{R} F_{2}(2k^*R) \right]$$
 Lednicky, Lyuboshitz, Sov. J. Nucl. Phys., 35, 770 (1982)

where ρ_s are the spin fractions

- The correlation function is characterized by **three parameters**:
 - radius R, scattering length f₀, and effective radius d₀
 - cross section σ (at low k*) is simply: $\sigma = 4\pi |f|^2$

Potential applications

- Input to models with re-scattering phase (eg. UrQMD):
 - annihilation cross sections only measured for pp, pn, and pd pairs UrQMD currently **guesses it for other systems** from pp pairs
- Structure of baryons/search for CPT violation STAR, Nature 527, 345-348 (2015)
- Search for H-dibaryon
 ALICE, PLB 752 (2016) 267-277
- Hypernuclear structure theory Nucl.Phys. A914 (2013) 377-386
- Neutron star equation of state Nucl.Phys. A804 (2008) 309-321
- Relativistic heavy-ion collisions at LHC or RHIC produce very similar number of baryons and antibaryons, "matter-antimatter pair factories"

Baryon-baryon correlations

- ALICE particle identification capabilities allow us to measure correlations of different baryons
- Except for pairs like proton-proton or protonneutron, cross sections for other baryons practically not known
 - eg. only ~30 points for proton-lambda interaction measurements exist

ALICE can constrain cross sections for these systems at low relative momentum k*

- Assuming LO and NLO scattering parameter predictions in the fit (from Nucl. Phys. A915, 24-58)
- Preliminary results of simultaneous fit to protonproton and proton-lambda correlation functions:
 - extracted source size: $R=1.31\pm0.02$ fm
 - NLO predictions seems to be slightly more accurate, however we still lack statistics
 - we hope to have more accurate results after analysing 13 TeV LHC Run2 data

Oliver Arnold, PhD thesis k^* (GeV/c) OM 2017

Jeremi Niedziela, PhD thesis ŁG, ISMD 2017

Baryon-antibaryon correlations

Explanation of the fitting procedure:

- χ² is calculated from a "global" fit to all functions:
 - 2 data sets, 3 pair combinations, 6 centrality bins (total 36 functions)
- simultaneous fit accounts for parameters **shared** between different systems (such as $\Lambda\overline{\Lambda}$ scattering length)
- radii scale with multiplicity for a given system $R_{inv} = a \cdot \sqrt[3]{N_{ch}} + b$
- for different systems we assume radii
 scaling with m_T
- Fractions of residual pairs taken from AMPT

PRC 92(2015) 054908

Łukasz Graczykowski (WUT)

Baryon-antibaryon correlations

Conclusions from fitting:

- Interaction parameters are measurable
- Scattering parameters for all baryon-antibaryon pairs are similar to each other (UrQMD assumption is valid)
 - We observe a **negative real part of scattering length** → repulsive
 strong interaction or creation of a
 bound state (existence of baryonantibaryon bound states?)
- Significant positive imaginary
 part of scattering length –
 presence of a non-elastic channel
 annihilation

Next steps: try to look for baryon-antibaryon bound states

Baryon-antibaryon correlations

Conclusions from fitting:

- Interaction parameters are measurable
- Scattering parameters for all baryon-antibaryon pairs are similar to each other (UrQMD assumption is valid)
- We observe a negative real part
 of scattering length → repulsive
 strong interaction or creation of a
 bound state (existence of baryon antibaryon bound states?)
- Significant positive imaginary
 part of scattering length –
 presence of a non-elastic channel
 – annihilation

Next steps: try to look for baryon-antibaryon bound states

Other possibilites

What about other types of correlations?

Let's look at angular space

$\Delta \eta \Delta \phi$ of baryons

- We found that all baryon-baryon pairs show a depression instead of a typical near-side peak
- (New) It is present for all collision energies and collision systems

$\Delta \eta \Delta \phi$ of baryons

Małgorzata Janik, ŁG

- Projections show how similar are baryon-baryons pairs to each other
- Similarity between pairs, to a lesser extent, is also observed in the baryon-antibaryon case

Possible explanations:

- Fermi-Dirac Quantum Statistics? NO (non-identical particles)
- Coulomb repulsion? NO (uncharged particles)
- Strong Final-State Interactions? (see next slides)

$\Delta \eta \Delta \phi$ of baryons

Eur.Phys.J. C77 (2017) 8, 569

- None of studied MC models (PYTHIA, PHOJET, EPOS, HERWIG) agrees with the data even qualitatively
- What can be the explanation of this effect?

Let's look at similar studies in e^+e^- collisions at \sqrt{s} = 29 GeV (SLAC-PEP) from late 80's

Rapidity correlations in e⁺e⁻

Models for e⁺e⁻ agree with observations seen in data

Hypothesis from e^+e^- studies at $\sqrt{s} = 29$ GeV at SLAC-PEP:

- Depletion is a manifestation of "local" baryon number conservation
- Production of 2 baryons in a single jet would be suppressed if the initial parton energy is small when compared to the energy required to produce 4 baryons in total (2 in the same mini-jet + 2 anti-particles) fine explanation at 29 GeV collision energy, but why at 7 TeV?!

We have seen from both measurements that baryons are interesting indeed

So, are there any direct connections between femtoscopic and angular correlations?

1) Possible origin of the "small peak"

$\Delta \eta \Delta \phi$ of protons vs p_T

Femto correlations of protons

Possible origin of the small peak: QS(Fermi-Dirac) +Coulomb+Strong

- Visible in femtoscopic correlation function
- Dominant effect around $q_{inv} = 0.04 \text{ GeV/c}$

- **Strong interaction** the only source of positive correlation

Femto correlations of protons

• Direct transformation from $C(q_{inv})$ to $C(\Delta \eta \Delta \phi)$ not possible

Małgorzata Janik, ŁG

- One can use a simple Monte Carlo procedure:
 - generate random η and φ values from uniform distributions (for 2 particles: η_1 , η_2 , ϕ_1 , ϕ_2)
 - generate random p_T value from measured p_T distribution (for 2 particles: p_{T1} , p_{T2})
 - calculate q_{inv} from generated η_1 , η_2 , φ_1 , φ_2 , p_{T1} and p_{T2} (the longest step)
 - randomly select q_{inv} and take a corresponding value from measured femtoscopic correlation and apply it as a weight while filling the numerator of $\Delta\eta\Delta\phi$ correlation

Femto correlations of protons

Results:

 Femto correlation produces spike at (Δη,Δφ)=(0,0)

Peaks: 1-bin wide projection on Δφ (subtract minimum)

- Both the height and the width of two peaks comparable
- Strong interaction does not cause the wide depletion

Eur.Phys.J. C77 (2017) 8, 569

2) Non-femtoscopic correlations

Non-femtoscopic correlations

- Non-femtoscopic correlations visible in small systems for pions and kaons:
 - Grow with increasing k_™
 - Grow with decreasing multiplicity
 - Significant source of systematics in the fitting procedure
- So far only **hypothesis** of (mini-)jet origin

How do baryon correlations look like in pp?

Angular vs femto corr. fctn.

Femtoscopy – going beyond the system size

Correlations of baryons

K⁰_sK[±] correlations

Motivation for $K_s^0K^\pm$ analysis

- · Which sources of correlations are present in kaon systems?
 - Quantum Statistics (QS) both K⁰_sK⁰_s and K[±]K[±]
 - Coulomb FSI K[±]K[±]
 - Strong FSI $K_s^0 K_s^0$ (via $f_0(980)/a_0(980)$ resonances)
- Why are K⁰_sK[±] pairs interesting?
 - only Strong FSI:
 - $f_0(980)$ resonance is isospin = $0 \rightarrow \text{no } f_0(980)$ strong interaction
 - $a_0(980)$ resonance is isospin = 1 as is the kaon pair \rightarrow only $a_0(980)$ strong interaction present
- We can study the properties of the a₀(980) resonance, which is a proposed tetraquark state (PRC 75 (2007) 045206)
- $a_0(980)$ mass and coupling par. (in GeV) from fits to φ decay exp.: $\gamma_{a_0 \to K\bar{K}}$

$f(k^*)=$	$\gamma_{a_0 \to K \bar{K}}$
/ (K)—	$\overline{m_{a_0}^2 - s - i \gamma_{a_0 \to K\bar{K}} k^* - i \gamma_{a_0 - \pi \eta} k_{\pi \eta}}$

	m_{a0}	Y _{a0→KK}	Υ _{a0→πη}	Reference
"Martin"	0.974	0.3330	0.2220	Nucl. Phys. B 121, 514 (1977)
"Antonelli"	0.985	0.4038	0.3711	arXiv: hep/ex- 0209069 (2002)
"Achasov1"	0.992	0.5555	0.4401	Phys. Rev. D 68, 014006 (2003)
"Achasov2"	1.003	0.8365	0.4580	Phys. Rev. D 68, 014006 (2003)

Motivation for $K^0_s K^\pm$ analysis

PHYSICAL REVIEW D **79,** 074014 (2009)

Global aspects of the scalar meson puzzle

Amir H. Fariborz, 1,* Renata Jora, 2,† and Joseph Schechter 3,‡

TABLE II. m_a and $m_{a'}$ are inputs. Typical predicted properties of scalar states: $\bar{q}q$ percentage (2nd column), $\bar{q}\bar{q}qq$ (3rd column) and masses (last column).

State	$ar{q}q\%$	$ar{q}ar{q}qq\%$	m (GeV)
a	24	76	0.984
a'	76	24	1.474
κ	8	92	1.067

a₀ predicted to be 76% tetraquark PDG still lists it as a light meson

How femtoscopy can help to determine which state it is?

 $\lambda' = \lambda_{K^0K^-}/\lambda_{KK}$ for $\overline{u}s\overline{s}d$ vs. $\overline{u}d$ a_0^- expected from geometry

Diquark a₀-

For details read the paper: PLB 774 (2017) 64-77

Measured correlation functions

Results of the fit

- "Martin" parameter fits much lower
- Present results favor higher a₀(980) parameters (eg. "Achasov" parameters)
- Results support the a₀ tetraquark hypothesis
 (similar conclusions drawn from recent analysis in pp collisions)

News

ALICE studies possible light tetraquark

The $a_0(980)$ resonance is formally classified by the Particle Data Group as a light diquark (quark + antiquark) ICE meson similar to the pion.

However, it has long been considered as a candidate tetraquark state made up of two quarks and two antiquarks. Existing experimental evidence based on the radiative decay of the ϕ meson has not been convincing, so the ALICE collaboration took a different approach to study the a_0 by measuring K_s⁰ – K[±] correlations in lead–lead collisions at the LHC. Since the kaons are not identical there is no Hanbury-Brown-Twiss interferometry enhancement, and since the K_s^0 is uncharged there is no Coulomb effect. Nevertheless, because the rest masses of the two kaons reach the threshold to produce the a_0 it is expected that there is a strong final-state interaction between the two kaons through the a₀ resonant channel.

Using the data from central lead-lead collisions with a nucleon–nucleon energy of 2.76 TeV, ALICE fitted the experimental two-kaon yield to extract the radius and emission strength of the kaon source assuming only a final-state interaction through the a_0 (see figure).

Both the radii and the emission strength from the $K_s^0 - K^{\pm}$ analysis agree with the identical kaon results, suggesting that the final-state interaction between the K_s⁰ and K[±] goes solely through the a₀ resonance without any competing non-resonant channels. A tetraquark a₀ is expected to couple more strongly to the two kaons, since it has the same quark content, while the formation of a diquark state requires the annihilation of the strange quarks, which is suppressed due to geometric effects and a selection rule. Although there are no quantitative predictions for the magnitude of this suppression that would result for a diquark form of a_0 , the qualitative expectation is that this would open up non-resonant channels that would compete with the a₀ final-state interaction, making it smaller than the

Radius parameters versus average transverse kaon-pair momentum determined from K_s^0 - K^{\pm} correlations and identical-kaon correlations in central ALICE lead-lead collisions.

identical-kaon values. The ALICE result of the final-state interaction going solely via the a_0 thus favours the interpretation of the a_0 as a tetraquark state.

Further reading

ALICE Collaboration 2017 Phys. Lett. B 774 64.

Summary

- ALICE can probe strong interaction cross sections with femtoscopy
- Correlations of baryons reveal interesting features and baryons in general seem to be of great importance:
 - Unique experimental environment at RHIC and LHC → "matterantimatter pair factories"
 - Femtoscopic correlation functions sensitive to strong interaction potential, including annihilation, possible $b\bar{b}$ bound states?
 - Angular correlations reveal unexpected behavior no two or more baryons in a single (mini-)jet?
- K⁰_sK[±] femtoscopic correlations measured for the first time:
 - $a_0(980)$ FSI gives excellent description of the signal
 - No difference wrt identical kaons if larger mass and coupling a₀(980) parameters used ("Achasov1" and "Achasov2") e.g. "a₀(1000)" favored over "a₀(980)" → supports a tetraquark hypothesis
- Clear connection between femtoscopic and angular correlations:
 - "Small peak" in angular correlations consistent with strong interaction studied with femtoscopy and does not explain the depletion

Example correlation function

- Real and imaginary part of scattering length have distinctively different contributions
- Contribution from Re(f₀) is either positive or negative but
 very narrow (up to 100 MeV/c) in k*
- The $Im(f_0)$ accounts for baryon-antibaryon annihilation and produces a **wide** (hundreds of MeV) **negative correlation**

Other interesting pairs

- Many other interesting correlations not covered in this talk
- Lambda-kaon (both charged and neutral) pairs
 - scattering parameters
 measured for the first time -PREL 125934
- ΛK⁺ shows greater suppression at low k* compared to: ΛK⁻:
 - effect arising from ss

 annihilation compared to uu?
 - or S=0 ΛK⁺ system has more _{0.9}
 interaction channels than _{1.05}
 S=-2 ΛK⁻?
- For details see Quark Matter 0.95
 2017 poster by J. Buxton 0.9
 http://cern.ch/go/qwF7

Rapidity correlations in e⁺e⁻

A Parametrization of the Properties of Quark Jets R.D. Field, R.P. Feynman (Caltech)

Nucl. Phys. B136 (1978) 131

From mechanism of jet production:

Two primary hadrons with the same

baryon number (or charge or strangeness) **are separated** by at least two steps in rank ("rapidity").

We are not likely to find two baryons or two antibaryons at the same rapidity

Fig. 10. Transparency from a talk Feynmen gave on our model for how quarks fragment into hadrons at the International Symposium on Multiparticle Dynamics (ISMD), Kaysersberg, France. June 12, 1977.

Models for e⁺e⁻ agree with observations seen in data

3//33

$\Delta \eta \Delta \phi$ of identified particles

Eur.Phys.J. C77 (2017) 8, 569

Angular vs femto corr. fctn.

Au-Au: pp and pp correlations @ STAR

Figure \P presents the first measurement of the antiproton-antiproton interaction, together with prior measurements for nucleon-nucleon interactions. Within errors, the f_0 and d_0 for the antiproton-antiproton interaction are consistent with their antiparticle counterparts – the ones for the proton-proton interaction. Our measurements provide parameterization input for describing the

 Exactly the same methodology was used by STAR to measure pp interaction (Nature paper)

Conclusions:

- LHC and RHIC are "baryon-antibaryon pair factories" - unique opportunities
- Both ALICE and STAR, with their perfect PID, are the only experiments where such measurements are possible

STAR Collaboration Nature 527,345-348 (2015)

Residual correlations in pp

 The excess about 50 MeV/c in k* is explained by residual correlations, from main decay channel leading to protons:

$$\Lambda \rightarrow p + \pi^{-}$$

 Fitting function is a combination of theoretical pp and p∧ functions:

$$\begin{split} C_{\textit{meas}}(k^*) &= 1 + \lambda_{\textit{pp}}(C_{\textit{pp}}(k_{\textit{pp}};R) - 1) + \\ &\quad \lambda_{\textit{p}\Lambda}(\int C_{\textit{p}\Lambda}(k_{\textit{p}\lambda};R)T(k_{\textit{p}\lambda},k_{\textit{pp}}) - 1) \end{split}$$

- Assume Gaussian source, $R_{pp}/R_{p\Lambda}$ ratio, decay kinematics taken into account.
- Results with RC effect taken into account published in:

Phys. Rev. C 92, 054908 (2015)

Residual correlations in pp – transformation matrix

- The transformation matrix T from parent pair k*
 to the daughter pair k* determined by random
 decay, bound by decay momenta
- When only one particle decays, it has a rectangular shape, for pairs when both particles decay it is smeared more F. Wang, S. Pratt; Phys. Rev. Lett. 83, 3138 (1999)

Conservation Laws Model (CALM): Simple MC

Jet correlations dominate the correlation function shape

Anti-correlation shape can be easily reproduced with a toy Monte Carlo with conservation laws included (no other physics)

$\Delta \eta \Delta \phi$ of identified particles – pp 13 TeV

ΔηΔφ of identified particles – p-Pb 5.02 TeV

ΔηΔφ of identified particles – p-Pb 8.16 TeV

ΔηΔφ of identified particles – Pb-Pb 2.76 Run1

pions – Pb-Pb 2.76 Run1

LHC10h

Cosine shape characteristic for flow + narrow spike in (0,0)

- Narrow spike in both like- and unlike-sign pairs
 - splitting?
 - gamma conversion?
 - any ideas?

To be done:

- Study how does the spike depend on two-track cuts

kaons – Pb-Pb 2.76 Run1

Cosine shape characteristic for flow + narrow dip in (0,0) for like-sign kaons

Detector effect?

protons – Pb-Pb 2.76 Run1

Dip for protons \sim (0,0)

- for unlike-sign protons: **annihilation**? (narrow dip centralized in (0,0))
- for like-sign protons: the same effect as for pp and p-Pb?
 (wide anti-correlation similar to one observed in smaller systems)