From electromagnetic effects to fire-streaks in heavy ion collisions

Mirosław Kiełbowicz

H. Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

kielbowicz.miroslaw@gmail.com

Plot by I. Sputowska

In collaboration with: Andrzej Rybicki Antoni Szczurek

6 Jan 2018

Outline

- Introduction.
- Electromagnetic effects in heavy ion collisions.
- Formation distance of π meson from the spectator system, d_F.
- Fire-streaks.
- Conclusions.

Plot by I. Sputowska

Introduction

Heavy ion collisions Pb+Pb @ $\sqrt{s_{MN}}$ = 17.3 GeV

- electromagnetic fields.
- These modify charged pion spectra in the final state.
- We use this effect as a new source of information on the space-time evolution of the system.
- This brings us to a specific energy-momentum conservation picture in the initial stage.

6 Jan 2018

(Fire-streaks)

Electromagnetic effects

- EM effects influence the emission of π mesons, namely modify the ratio of π^+/π^- .
- Dependence on p_{T} .
- Visible as a drop of π^+/π^- ratio at low p_{T} and pion velocity close to spectator velocity.
- A.Rybicki and A.Szczurek Phys. Rev. C75, 054903 (2007).

Fire-streaks (1)

• Attempt to use E-p conservation to understand the behavior of d_{r} as a function of rapidity

Plot by I. Sputowska

• Formation distance of π meson from spectator system d_{F} , decreases with increase of rapidity y of emitted pion.

Fire-streaks (2)

 Standard Glauber model, collision divided into participant and spectator zone.

Nuclei ≈ 3D mass distributions

• Different approach to the collision of two nuclei, not by means of nucleon-nucleon collisions (as in the Glauber model) but on the basis of their mass distribution.

Plots by I. Sputowska

10 May 2017 IFJ PAN press release Google out: fire streaks Based on publication: A. Szczurek, A. Rybicki, M. Kiełbowicz, Phys. Rev. C95, 024908 (2017)

See also: W. D. Myers, Nucl. Phys. A 296, 177 (1978)

Model formulation

- We divide the 3D nucleus mass distribution into "bricks" in the perpendicular plane (brick size: $1 \times 1 \text{ fm}^2$).
- Assumption: the colliding bricks "stick together" and can be treated as a single object - called a fire-streak
- The energy of the fire-streaks is greater (in its c.m.s.) than the rest mass of the two bricks, so there is some kind of excitation!
 - The fire-streak excitation energy E_s^* and rapidity y_s can be obtained from E – p conservation.

- independently into pions
- $\frac{-[(y-y_s)^2+\varepsilon^2]^{\overline{2}}}{n\,\sigma_y^n}$ $\frac{dn}{dr} = A \cdot (E_s^* - m_s) \cdot \exp(\frac{dn}{dr}) \cdot \exp(\frac{dn}{dr})$ summed rest mass

excitation energy

of the two bricks

Model formulation

- We divide the 3D nucleus mass distribution into "bricks" in the perpendicular plane (brick size: 1 x 1 fm²).
- Assumption: the colliding bricks "stick together" and can be treated as a single object called a fire-streak.
- The energy of the fire-streaks is greater (in its c.m.s.) than the rest mass of the two bricks, so there is some kind of excitation!
 - The fire-streak excitation energy E_s^* and rapidity y_s can be obtained from E p conservation.

excitation energy

of the two bricks

Fire-streaks characteristics

- Very narrow (if any) "stopped" region in peripheral collisions.
- Much smaller spread in rapidity of the fire-streaks in central reactions.
- In peripheral collisions two spectator regions are visible.
- Central reactions: broader "hot" region, with higher excitation energies.

Fire-streaks characteristics

6 Jan 2018

XIII Polish Workshop on Relativistic Heavy-Ion Collisions, Wrocław

11/16

6 Jan 2018

XIII Polish Workshop on Relativistic Heavy-Ion Collisions, Wrocław

12/16

Parameter stability

Parameter stability

⁶ Jan 2018

Conclusions and remarks (1)

- Spectator induced electromagnetic effects brought us from the final state of the reaction...
- ...into a picture of the longitudinal evolution of the system at the initial stage at SPS energies, largely governed by local energy-momentum conservation.

Conclusions and remarks (2)

- Our approach is based on nuclear 3D mass distribution and local E-p conservation.
- The fire-streak model gives a confirmation of what we see in EM effects: emission distance of particles from spectator system decreases with increase of rapidity.
- The fire-streaks concept can be used (again) to study heavy ion collisions.
- On that basis, longitudinal evolution of the system may be interpreted as a consequence of E-p conservation.

Conclusions and remarks (2)

- Our approach is based on nuclear 3D mass distribution and local E-p conservation.
- The fire-streak model gives a confirmation of what we see in EM effects: emission distance of particles from spectator system decreases with increase of rapidity.
- The fire-streaks concept can be used (again) to study heavy ion collisions.
- On that basis, longitudinal evolution of the system may be interpreted as a consequence of E-p conservation.