Charm physics in NA61/SHINE

Wojciech Bryliński

for NA61/SHINE Warsaw University of Technology

06.01.2018

A = N A = N = 1 = 000

Motivation of open charm measurements

2 First measurements in NA61/SHINE

Precise open charm studies after Long Shutdown 2

- E - - E -

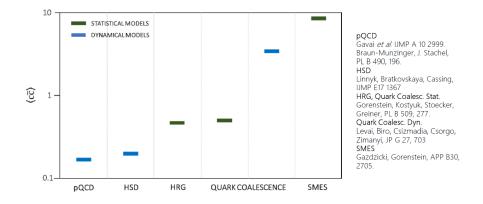
EL NOR

Motivation of open charm measurements

.

EL NOR

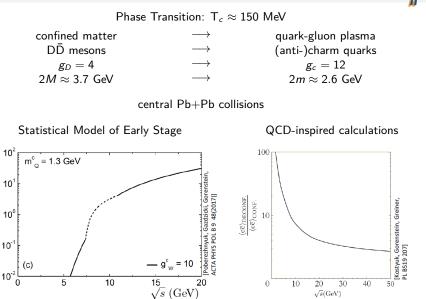
Motivation of open charm measurements


Three main questions that motivate open charm measurements at the CERN SPS:

- What is the mechanism of open charm production?
- O How does the onset of deconfinement impact open charm production?
- How does the formation of quark-gluon plasma impact J/ψ production?

To answer these questions **mean number of charm quark pairs** $\langle c\bar{c} \rangle$ produced in the full phase space in A+A collisions has to be known. Up to now corresponding experimental data **does not exist**.

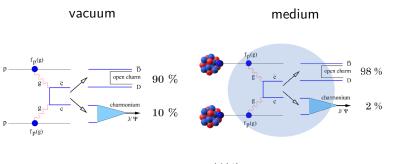
Models of charm production


Predictions for $\langle c\bar{c} \rangle$ in central Pb+Pb collisions at beam momentum of 158A GeV/*c* differ by a factor of **50**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

SINE

Charm yield as the signal of deconfinement



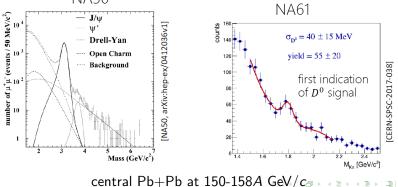
 $\langle c\overline{c} \rangle$

INE

J/ψ suppression as the signal of deconfinement

Open charm and J/ψ production within Matsui-Satz model [PL B178 416]

$$P(c\bar{c} \rightarrow J/\psi) \equiv rac{\langle J/\psi \rangle}{\langle c\bar{c} \rangle} \equiv rac{\sigma_{J/\psi}}{\sigma_{c\bar{c}}}$$

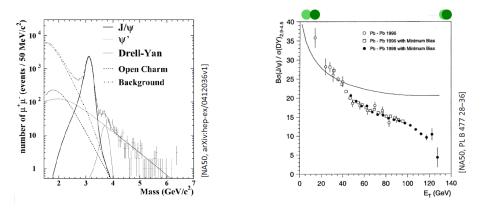

Medium reduces probability of J/ψ production.

[Satz, Adv. High Energy Phys. 2013 (2013) 242918]

J/ψ suppression as the signal of deconfinement

Calculation of $P(c\bar{c} \rightarrow J/\psi)$ requires data on:

- $\langle J/\psi \rangle$ precise data at SPS by NA38, NA50, NA60
- ⟨*cc*⟩ can be estimated from open charm measurements started by NA61/SHINE


NA50

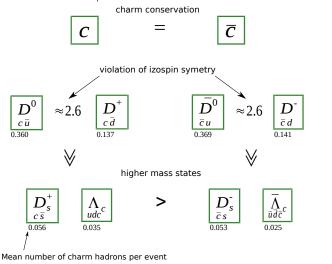
INE

J/ψ production at CERN SPS

Data on J/ψ production has been normalized by the Drell-Yan yield

Interpretation of these results is based on assumption: $\langle c\bar{c}\rangle\sim \langle DY\rangle$

First measurements in NA61/SHINE


06.01.2018 10 / 32

ELE SQC

イロト イボト イヨト イヨト

Open charm distribution

0-20% Pb+Pb at 158 GeV/c

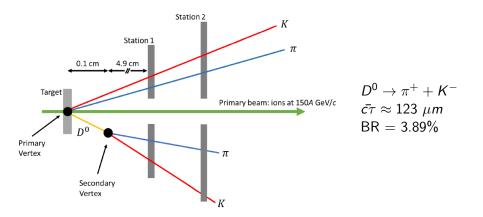
Wojciech Bryliński (WUT)

What can NA61/SHINE measure?

•
$$D^0 \rightarrow \pi^+ + K^-$$

 $c \overline{\tau} \approx 123 \ \mu m$
BR = 3.89%

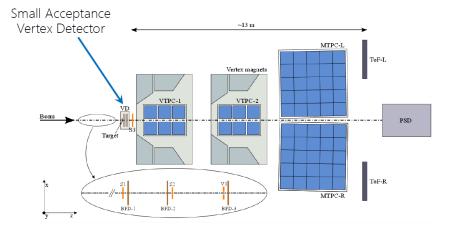
• $D_s^+ \rightarrow \pi^+ + K^+ + K^$ $c\overline{\tau} \approx 150 \ \mu m$ BR = 5.5%


•
$$\Lambda_c^+ \rightarrow p + \pi^+ + K^-$$

 $c \overline{\tau} \approx 60 \ \mu m$
 $\text{BR} = 5.0\%$

Up to now only $\langle D^0 \rangle$ measurements were simulated and tested, but it is probable that after LS2 NA61/SHINE will be able to measure all of the most popular carriers of c and \bar{c} quarks.

▲ Ξ ▶ ▲ Ξ ▶ Ξ ΙΞ • ○ Q ○


Open charm measurement concept

Vertex Detector is needed to reconstruct primary vertex and secondary vertices with high precision.

NA61/SHINE detector

Wojciech Bryliński (WUT)

06.01.2018 14 / 32

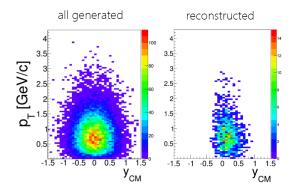
Small Acceptance Vertex Detector (SAVD)

Small Acceptance Vertex Detector introduced in 2016:

- 16 CMOS MIMOSA-26 sensors located on two horizontally movable arms
- target holder integrated

Achieved goals:

- tracking in large track multiplicity environment
- precise primary vertex reconstruction
- TPC-SAVD track matching
- first search of D^0 and $\bar{D^0}$ signal



Wojciech Bryliński (WUT)

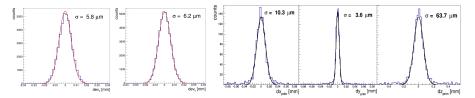
Acceptance of SAVD

AMPT simulations for central Pb+Pb collisions at 150A GeV/c SAVD reconstructs 4% out of all $D^0 \rightarrow \pi^+ + K^-$ decays

06.01.2018 16 / 32

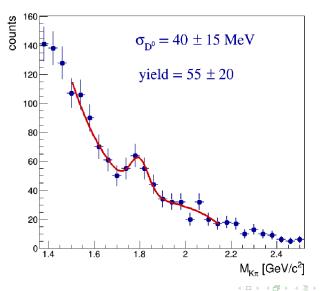
Data taking

Data taking with Small Acceptance Vertex Detector before Long Shutdown 2:


- December 2016 test run for SAVD Pb+Pb at 150A GeV/c
- November 2017 Xe+La at 150A GeV/c and 75A GeV/c
- 2018 pilot data taking Pb+Pb at 150A GeV/c

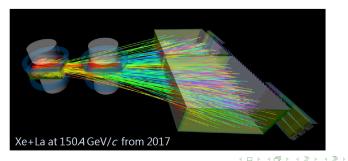
December 2016 – Pb+Pb at 150A GeV/c

From the analysis of collected Pb+Pb data:


- Clusters spacial resolution: $\sigma_{x,y}(Cl) \approx 5 \ \mu m$
- Primary Vertex resolution: $\sigma_x(PV) \approx 5 \ \mu m$ $\sigma_y(PV) \approx 1.8 \ \mu m$ $\sigma_z(PV) \approx 30 \ \mu m$

 $\sigma_x(PV) > \sigma_y(PV)$ due to magnetic field difference: $B_y > B_x \approx 0$

First indication of D^0 and $\overline{D^0}$ peak

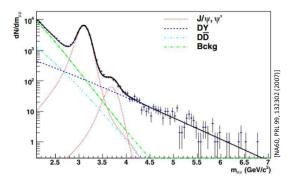


-

November 2017 – Xe+La at 150A GeV/c

About 5M central events were collected at the beginning November 2017.

- Based on simulations from Pb+Pb and p-QCD inspired system size dependence, one expects several hundred of $D^0 + \overline{D^0}$ meson decays to be reconstructed.
- This should allow to obtain the **first physics results** on open charm production in heavy ion collisions at the CERN SPS.



ELE DOG

Impact of Xe+La data

 J/ψ production in In+In (A = 115) collisions at 158A GeV/c was precisely measured by NA60.

This data together with NA61 results on open charm production in Xe+La (A = 129, A = 139) collisions at 150A GeV/c will strongly challenge theoretical models.

2018 – Pb+Pb at 150A GeV/c

06.01.2018

22 / 32

Data taking in 2018 on central Pb+Pb collisions for open charm measurement recommended by CERN SPSC in October 2017.

Three weeks of data taking:

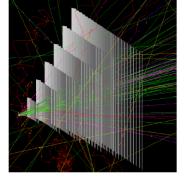
- 10M central collisions recorded
- 4000 D^0 and $\overline{D^0}$ decays is expected to be reconstructed

Precise open charm studies after Long Shutdown 2

< ∃ > < ∃

EL NOR

Large Acceptance Vertex Detector (LAVD)

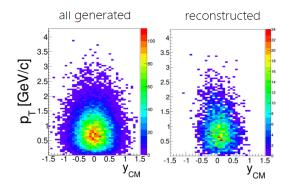

General requirements:

- precise vertex measurement
- fast detectors with high granularity
- low material budget
- large acceptance

Technology developed for ALICE ITS – ALPIDE sensors:

- very low noise
- fast readout
- two possible working modes: continuous and triggered readout

About 200 sensors located on 6 stations - final layout still under discussion



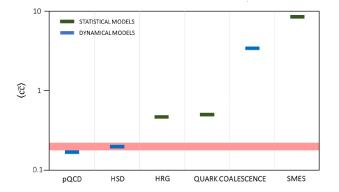
Acceptance of LAVD

AMPT simulations for central Pb+Pb collisions at 150A GeV/c LAVD reconstructs 12% out of all $D^0 \rightarrow \pi^+ + K^-$ decays Corrected results will cover **most of the phase space** (more than 90%)

Total systematic uncertainty of $\langle D^0 \rangle$ and $\langle \bar{D^0} \rangle$ is expected to be about 10%.

Wojciech Bryliński (WUT)

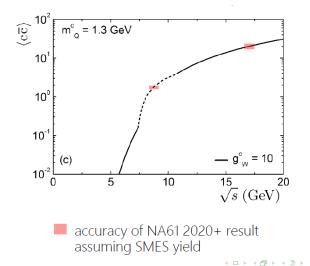
Beam request for 2021-2024



Year	Beam	Duration	Purpose	$D^0 + \overline{D}^0$ stat.
2021	p at 150 <i>A</i> GeV/ <i>c</i>	4 weeks	detector test	
2022	Pb at 150A GeV/ <i>c</i>	2 weeks	charm in central collisions	40k
2022	Pb at 150A GeV/ <i>c</i>	4 weeks	charm in peripheral collisions	8k
2023	Pb at 150A GeV/ <i>c</i>	2 weeks	charm in mid-central collisions	20k
2024	Pb at 40 <i>A</i> GeV/ <i>c</i>	4 weeks	charm in central collisions	2k

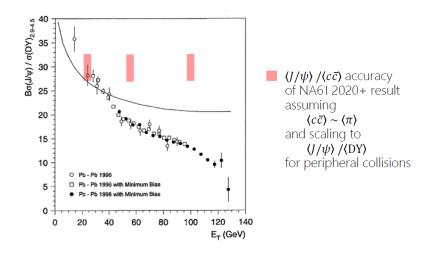
Impact of NA61/SHINE open charm measurements

Predictions for $\langle c\bar{c}\rangle$ in central Pb+Pb collisions at beam momentum of 158A GeV/c



accuracy of NA61 2020+ result assuming HSD yield

Impact of NA61/SHINE open charm measurements


Central Pb+Pb collisions at beam momentum of 158A GeV/c

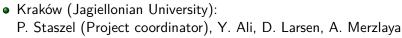
Impact of NA61/SHINE open charm measurements

Pb+Pb collisions at beam momentum of 158A GeV/c

∃ > <</p>

Summary

NA61/SHINE charm program addresses the following questions:


- What is the mechanism of open charm production?
- I How does the onset of deconfinement impact open charm production?
- How does the formation of quark-gluon plasma impact J/ψ production?

To answer these questions NA61/SHINE is planning to perform precise measurements of mean multiplicity of charm quark pairs after Long Shutdown 2.

Only NA61/SHINE can perform this measurement in the near future.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

VD - team

- Kraków (AGH): M. Baszczyk, P. Dorosz, W. Kucewicz, Ł. Mik
- GU Frankfurt: M. Deveaux, M. Gaździcki, M. Koziel, A. Snoch Thanks to: P. Klaus, J. Michel, M. Wiebusch
- Warsaw: A. Aduszkiewicz, W. Bryliński, D. Tefelski
- St. Petersburg State University: G. Feofilov
- ETH Zürich: S. Di Luise

and many others ...

Thank you!!!

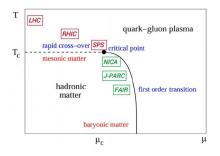
Wojciech Bryliński (WUT)

06.01.2018 32 / 32

三日 のへの

イロト イボト イヨト イヨト

Backup


Wojciech Bryliński (WUT)

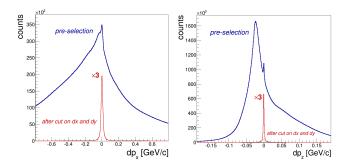
06.01.2018 1 / 13

三日 のへで

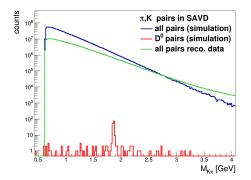
Uniqueness of NA61 open charm program

Landscape of present and future heavy ion experiments

NA61/SHINE is the only experiment which is able to measure open charm production in heavy ion collisions in full phase space in the near future.


- LHC and RHIC at high energies: measurement in small phase space due to collider geometry and kinematics
- RHIC BES collider: measurement not possible due to collider geometry and kinematics
- RHIC BES fixed-target: measurement require dedicated setup – not under consideration
- NICA (<80A GeV/c): measurement during stage 2 under consideration
- J-PARC (<20*A* GeV/*c*): maybe possible after 2025
- FAIR (<10A GeV/c): not possible

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <


SAVD-TPC track matching

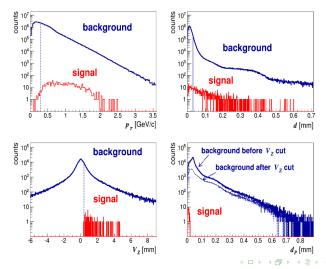
- extrapolate SAVD and TPC tracks to the common surface
- preselection: cut on y-slope of tracks
- After cut on dx and dy clear correlation peaks are visible in dpx and dpy distributions

Search for D^0 and $\overline{D^0}$

Combinatorial background is reduced by the cuts on:

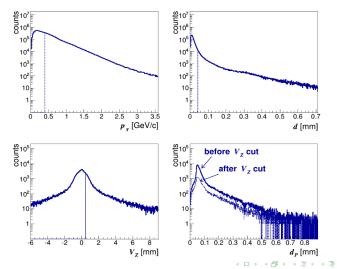
- track transverse momentum
- track impact parameter
- longitudinal distance between primary and secondary vertices
- pair impact parameter

Wojciech Bryliński (WUT)

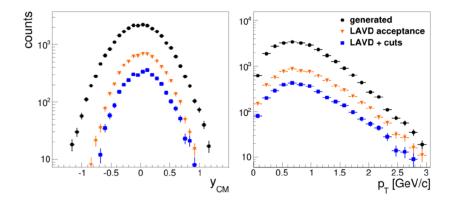

ELE SQC

→ Ξ → → Ξ

Cuts – simulations


simulation

Cuts – data

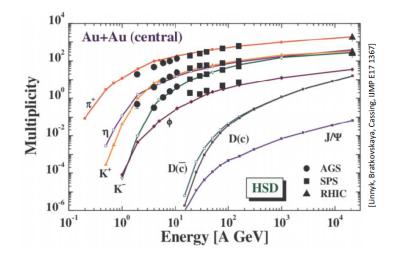

data

三日 のへで

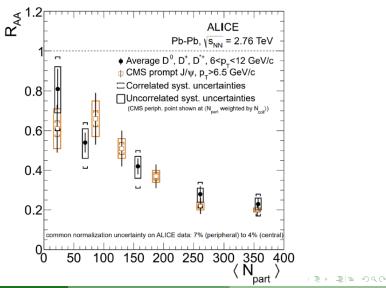
LAVD acceptance

4 3 > 4 3

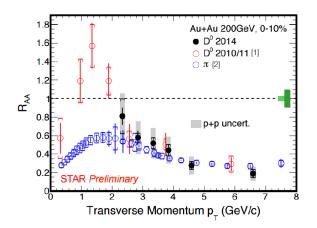
4% detection efficiency is calculated in respect to all D0s in that decayed to pi+K channel, so it includes:


- suppression due to two particle combined acceptance of SAVD and VTPC1+VTPC2.
- suppression due to matching efficiency between SAVD and VTPCs (98% in simulation)
- suppression due to background suppression cuts. These cuts suppress background by factor of 10^6 (in the D0 invariant mass region) and D0->pi+K by factor of about 2.

Full version has efficiency of 12% mostly due to increase of the combined LAVD + VTPC1+VTPC2 acceptance for D0->pi+K by factor of 3.


▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のなべ

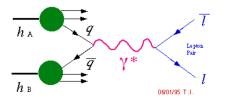
HSD predictions


LHC charm measurements

Wojciech Bryliński (WUT)

..INE

RHIC charm measurements


EL NOR

(I) < (I)

Drell-Yan process

The Drell-Yan Process

- lepton pair production in hard EM interactions of two hadrons
- process not influenced by QGP production
- $\langle DY \rangle \sim N_{\textit{coll}}$

Example of J/ψ normal nuclear absorption: $J/\psi + h \rightarrow D + \overline{D} + X$ $J/\psi + \pi \rightarrow D + \overline{D}$

4 ∃ > 4 ∃

MIMOSA-26 sensors

- 1152x576 pixels of 18.4x18.4 μm^2
- readout time: 115.2 μs
- 50 μm thin
- SAVD: 16 sensors; 32 cm²; 10 MPixel