

Δη-Δφ correlations of identified particles in the Beam Energy Scan

Andrzej Lipiec (WUT)

Supported by:

Project number: UMO-2016/21/N/ST2/00315

Beam Energy Scan program

BES goals:

Exploring the phase diagram of strongly interacting matter:

- 1. Search for turn-off of sQGP signatures
- 2. Search for the signals of phase transition/phase boundary
- 3. Search for the QCD critical point

Data collected by STAR at RHIC:

Year	√s _{NN} (GeV)	$\mu_{_{B}}$ (MeV)	Events (10 ⁶)
2010	200	20	350
2010	62.4	70	67
2010	39	115	130
2011	27	155	70
2011	19.6	205	36
2014	14.5	260	20
2010	11.5	315	12
2010	7.7	420	4

Baryon Chemical Potential μ_{B}

BES: studied observables

Disappearance of sQGP signatures: $R_{\rm CP}$

- R_{CP} > 1 in Au+Au 27 GeV and lower
- Evidence of lack of jet quenching
- Possible convolution with Cronin Effect

BES: studied observables

Disappearance of sQGP signatures: $R_{\rm CP}$

- R_{CP} > 1 in Au+Au 27 GeV and lower
- Evidence of lack of jet quenching
- Possible convolution with Cronin Effect

Other measurements: fluctuations and dv_1 dy of net-protons, ...

Angular correlation function:

$$\Delta \eta = \eta_1 - \eta_2$$

$$\Delta \varphi = \varphi_1 - \varphi_2$$

Event 1

$$\rho_{sib}(\Delta \eta, \Delta \phi) = \frac{d^2 N_{sibling}^{pairs}}{N_{sibling}^{pairs} \cdot d(\Delta \eta \Delta \phi)}$$

correlated pairs per pair

$$r = \frac{\rho_{sib}}{\rho_{ref}} \approx \frac{P(\eta_1 \phi_1, \eta_2 \phi_2)}{P(\eta_1, \phi_1) \cdot P(\eta_2, \phi_2)}$$

$$\rho_{ref}(\Delta \eta, \Delta \phi) = \frac{d^2 N_{ref}^{pairs}}{N_{ref}^{pairs} \cdot d(\Delta \eta \Delta \phi)}$$

correlated pairs per particle

This talk:
$$\frac{\Delta \rho}{\sqrt{\rho_{ref}}} = \sqrt{\rho'_{ref}} \cdot \frac{\rho_{sib} - \rho_{ref}}{\rho_{ref}} = \sqrt{\rho'_{ref}} \cdot (r-1)$$

Correlation function: a tool to access different physical phenomena

Why should we study identified particles?

- published $\Delta \eta \Delta \phi$ results from BES only 2-hadron correlations
- different shapes of correlation function for different particles
- intriguing results for two-proton correlations:

- ALICE data are not perfectly described by well known MC models (different tunes of PYTHIA, PHOJET..)
- pp + \overline{pp} not described even qualitatively

Why should we study identified particles?

- published $\Delta \eta \Delta \phi$ results from BES only 2-hadron correlations
- different shapes of correlation function for different particles
- intriguing results for two-proton correlations:

Depletion in pp + \overline{pp} is **not** caused by:

- Coulomb repulsion (Λ is neutral)

Why should we study identified particles?

- published $\Delta \eta \Delta \phi$ results from BES only 2-hadron correlations
- different shapes of correlation function for different particles
- intriguing results for two-proton correlations:

Depletion in pp + \overline{pp} is **not** caused by:

- Coulomb repulsion (Λ is neutral)
- Fermi-Dirac statistics (p and Λ are different particles)

9

Why should we study identified particles?

- published $\Delta \eta \Delta \phi$ results from BES only 2-hadron correlations
- different shapes of correlation function for different particles
- intriguing results for two-proton correlations:

Depletion in pp + \overline{pp} is \underline{not} caused by:

- Coulomb repulsion (Λ is neutral)
- Fermi-Dirac statistics (p and Λ are different particles)
- Final State Interactions

Transformed ($\Delta \eta$, $\Delta \phi$) corr. fcn from femto:

Why should we study identified particles?

- published $\Delta \eta \Delta \phi$ results from BES only 2-hadron correlations
- different shapes of correlation function for different particles
- intriguing results for two-proton correlations:

Anti-correlation of two antiprotons at small relative rapidity was observed a long time ago

- Baryon number conservation: 2 protons and 2 anti-protons in single process
- 4 baryons → high E → less likely
- Current MC models → E conservation + B conservation → but data not reproduced!

QM 2017: first results on angular correlations of identified hadrons in BES:

• QM 2017*:

• Minima for p-p correlations seen in all BES energies in 0-5% Au+Au

*) $\rightarrow p_T > 0.2 \text{ GeV/c}$ $\rightarrow \text{ PID via TPC + ToF}$

This analysis:

- Extend results to full TPC acceptance: $-2 < \Delta \eta < +2$
- Disentanglement and evolution of "correlation structures" in: collision energy, centrality, particle specie and charge combination

SOLENOIDAL TRACKER AT RHIC

SOLENOIDAL TRACKER AT RHIC

The process that caused correlation must have occured before time:

arXiv:0804.3858v1

$$\tau \leq \tau_{Freeze\,out} e^{-\frac{1}{2}|y_A - y_B|}$$

e.g:

particles with 1.5 < Δy < 2 were interacting at 0.47 - 0.37 $\tau_{\text{freeze out}}$ or earlier

Extending to \pm 2 units of $\Delta\eta$: Access to earlier stages of HI collision

Following results: Au+Au @ 19.6 GeV

Kinematic cuts:

- 0.2
- $|\eta| < 1$

PID (TPC only): for each POI

- Accept particles with
- Reject particles with
- $|n\sigma_{POI}| < 2$ $|n\sigma_{others}| > 3$

Event mixing:

- Number of mixed events: 8
- V₇ bins: 2cm wide
- N_{ch} bins: 40-50 particles wide

Centrality:

• Based on N_{ch} in $|\eta| < 1$

Centrality selection:

Correlation → normalized variance → offset related to multiplicity fluctuations

Example: h-h correlations, Au+Au @ 200 GeV:

Centrality based on: N_{ch} in $|\eta| < 0.5$

Centrality based on: N_{ch} in $|\eta| > 0.5$

Either use two different η regions (no CF suppression) or use the same η range (constant suppression \rightarrow offset in CF)

This analysis:

- Centrality based on corrected* N_{ch} in $|\eta| < 1$
- Extend analysis to +/- 2 units of Δη

Like-sign pion correlations, Au+Au @ 19.6 GeV

- → Peak at small relative azimuthal angle (Near-Side)
- → Δφ modulation strongest in mid-central collisions

Unlike-sign pion correlations, Au+Au @ 19.6 GeV

- \rightarrow Clear, broad $\Delta \phi$ ridge dominant in more peripheral collisions
- → Peak at small relative azimuthal angle (Near-Side)
- \rightarrow $\Delta \phi$ modulation strongest in mid-central collisions

p-p + p-p correlations, Au=Au @ 19.6 GeV

- → Generally negatively correlated on the near-side
- → Sharp peak at $(\Delta \eta; \Delta \phi) \approx (0;0)$
- → Visible away-side ridge

p-p correlations, Au+Au @ 19.6 GeV

- ightarrow Negative correlation on the near-side, not as broad as in LS
- → Lack of spike at $(\Delta \eta; \Delta \phi) \approx (0;0)$
- → Lack of away-side ridge

Projections of bin at $\Delta \phi \sim 0$: - 7.2° < $\Delta \phi$ < + 7.2°:

(anti-)proton-(anti-)proton correlations, AuAu @ 19.6 GeV - 7.2° < $\Delta \phi$ < + 7.2° :

 \rightarrow Fit to data: a*Δη² + b*Δη + c + A_e* exp [- (Δη² / ω²)]

proton-antiproton correlations, AuAu @ 19.6 GeV

 $-7.2^{\circ} < \Delta \phi < +7.2^{\circ}$:

 \rightarrow Fit to data: c + A_e* exp [- ($\Delta \eta^2 / \omega^2$)]

Like-sign pion correlations, AuAu @ 19.6 GeV

 $-7.2^{\circ} < \Delta \phi < +7.2^{\circ}$:

- → Amplitude of the peak grows with more central events
- Width smaller with more central events

Unlike-sign pion correlations, AuAu @ 19.6 GeV

 $-7.2^{\circ} < \Delta \phi < +7.2^{\circ}$:

- → Amplitude of the peak grows with more central events
- Width smaller with more central events

Summary

Ongoing analysis showed:

- Results for **two-pion** correlations:
 - Correlation measurement extended to 2 units in $|\Delta\eta|$ correlations @ 19.6 GeV:
 - Cos(2 $\Delta\phi$) shape observed in LS and US that strengthens in mid-central collisions
 - A broad $\Delta \phi$ ridge in US that dominates in more peripheral collisions
- Results for two-proton correlations:
 - p-p + p-p:
 - Visible anti-correlation in all centrality classes in Au+Au @ 19.6 GeV
 - Observed also in 0-5% Au+Au @ 7.7 200 GeV
 - Resembles ALICE results (p+p @ 7 TeV, Nucl. Phys. A926 (2014))
 - p-p:
 - Anti-correlation at $\Delta \eta, \Delta \phi \sim 0$, but different than in p-p + p-p
 - Lack of away-side ridge for low-p_⊤ p-p

Plans for the future:

- Analysis in other BES energies
- Disentanglement of observed structures → study of various physical phenomena as a function of centrality and collision energy

BACKUP