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Outline

e Partial correlations (PC) analysis, physical and control random
variables (meaning of centrality)
@ PC in a superposition approach — placing constraints on sources

@ Test on a hydro solution: a working scheme
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Partial correlations



Kindergarden

Sample of children:

Q weight
@ intelligence

Pearson's correlation matrix:

(1 062
P=\o62 1
— p(weight, intelligence) ~ 0.6 — large

Hints to wrong conclusions

[W. Krzanowski, Principles of Multivariate Analysis, Oxford U. Press, 2000]
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Kindergarden

Sample of children:
Q weight
@ intelligence
@ age — control (external, nuisance) variable

Pearson's correlation matrix:

1 062 0.84
p=1| 062 1 o074
0.84 0.74 1

— p(weight, intelligence) ~ 0.6 — large

Partial correlation (defined shortly) gives p(weight, intelligence e age) ~ 0

[W. Krzanowski, Principles of Multivariate Analysis, Oxford U. Press, 2000]
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Partial correlation

Two physical variables X, Y and one control variable Z:

(X, 2)c(Z,Y)

X, YeZ X,Y) -
(XY eZ) = oX,¥) - T
Pearson’s-like partial correlation coefficient is
X, YeZ XY X, 2)p(Z,Y
p(X,Y 0Z) = (X, Y e 2) __pXY) - p(X,Z2)p(Z,Y)

VX, Xe2)c(Y,Y o 2Z) /1-p(X,2)2\/1—p(Z,Y)?

p(weight, intelligence e age) ~ 0
One often uses the correlation = covariance scaled with the multiplicities:

_¢(X,Y) _ ~ v(X)
C(X,Y) = X7) V(X)=c(X,X) = x)?
Then
C(X,)YeZ)=C(X,Y)— C(X’\Z/ES;Z’ g J
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Relation to conditional covariance

¢(Xi, X;|Z) - evaluate at fixed Z and then average over Z

[Lawrance 1976]: if a sample satisfies E (X|Z) = « + BZ,
with «v a constant and B a constant matrix =

o(Xi, X, 0 Z) = (X, X,|2) J

< shown by [Baba et al. 2005]

Application of conditinal covariance by [STAR 2008], where Z is hadron
multiplicity in the reference bin R:

@ Divide R into very narrow subsamples (centrality classes) according to Z
@ Evaluate the covariance between X; and X in each subsample

© Average obtained covariances over the subsamples
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Superposition model



Superposition model
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Superposition model (cont.)

Sa
Na=> m; A=FB.C
i=1
(Na) (Sa)(m)
v(Na) = (m)*v(Sa) + v(m)(Sa)
C(NA7NAI) = <m>2c(SA,SA/), A#AI
C(NA, SA/) = (m>c(SA, SA/)
rw(m —
C(SA,SA/) = C(NA,NA/) - (5AA ( ) = C(NA,NAr)
(Na)
w(m) = V<(mm>) (for Poisson w(m) = 1)
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Partial correlations in the superposition model
Multiplicities in F,B are physical, multiplicity in C is a control variable

N¢ constraint:

i C(Ng,Nc)C(Np, N,
C(Sp,Sp e N¢) =C(Np,Np) — (NF C('EVC() B, No) J
Sc¢ constraint:
-C C(Np,N¢)C(Ng, N,
C(SF, SB ° SC) C(NF’NB) _ ( C('?VC() B C’) J

Only measured quantities (hadron multiplicities) on r.h.s.!

A. Olszewski Partial correlations Workshop 2018 10 / 23



Partial correlations in the superposition model

Multiplicities in F,B are physical, multiplicity in C is a control variable
N¢ constraint:

i C(Ng,Nc)C(Np, N,
C(Sp,Sp e N¢) =C(Np,Np) — (NF c('gvc() B, No) J
Sc¢ constraint:
ral C(Np,Nc)C(Ng, N,
C(SF,SBQSC)—C(NF,NB)_ ( C('?VC() B C) J

Only measured quantities (hadron multiplicities) on r.h.s.!
C(SF, Sp e Nc) 'S C(SF, Sp e Sc) L V(NC) 'S V(Nc)

Method allows us to impose constraints at the level of initial sources,
based on experimentally available info
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Test of the method



Test on actual simulations

Wounded quark model with GLISSANDO at centrality 30 — 40%
Bzdak-Teaney model with triangular emission functions
3+1D viscous hydrodynamics

Statistical hadronization via THERMINATOR
Results for

@ all charged particles - 7t KT, p and P,
@ primordial particles - before resonance decays

@t
@ Wide acceptance, |77||| < 5.1, divided into 51 bins with Anp = 0.2
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Bzdak-Teaney (BT) model

Use the triangle emission profiles, then:

5 =

where up g = np,B/yYs, Q+ = Q4 £ Qp — numbers of wounded quarks

In the central (reference) bin Sc we have 1 = 0, which yields

C(Sp.5,Sc) = C(Sc, S¢) = zgjg

C(SF,SBOSc)Z%UFUB J

(the same result follows via the condition fixing Q@+ — v(Q4+) = 0)
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Scaled covariance

C(Nk,Ng) hydro, all charged C(Ng,Ng) hydro, primordial

Covariance matrices with the auto-correlations removed
Hallmark ridge along the diagonal from resonance decays

(looks as nothing ...)
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Partial: BT vs primordial
C:-01<n<0.1

C(Sk,SgeSc) BT C(Sk,Sg*Sc) hydro, primordial

Remarkable agreement of BT and primordial partial correlations

C(SF, Sp e SC) = G(NF,NB) _ C(NF, NC)C(NB,Nc) J

v(Ne)
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Partial: BT vs primordial
C:-01<n<0.1

C(Sk,SgeSc) BT

C(Sk,SgeNc) hydro, primordial

No agreement for the N constraint

C(Sp,Sp e N¢) = C(Np,Np) — C(Np, N¢)C(Np, N¢) J

v(No)
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Partial: BT vs all charged

C(Sr,SgeSc) BT

C(Sk,Sg*Sc) hydro, all charged
— —

—

Short-range correlations spoil the agreement
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Partial: BT vs

C(Sr,SgeSc) BT

\

C(SF,SB.Sc) hydl’O, t
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Left-+right constraint

L:—-61<n<-51R:51<n<6.1

C(SF, SBOSL+SR) BT
\\\

C(SF,SB.SL+SR) hydro, ot
T
—
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Independent left- and right constraints

C(Sk,Sg*S.,Sg) hydro, primordial

c(sFlsB.sL:sR) hydro, b

This correlation vanishes in BT
(fixes both Q4 and @p, so nothing is left to fluctuate)
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Conclusions



Conclusions

@ Partial correlations+superposition model — possibility of imposing
constraints at the level of sources, gaining insight into the initial stage

e Contraining (event strictly) the number of particles leaves the
fluctuation of sources!

o Feasibility of the method demonstrated on simulated data (wounded
quarks, hydrodynamics, THERMINATOR) - would be great to use on
actual datal!

@ Need to reduce the short-range correlations (e.g., by looking at 7™),
nice to have a large pseudorapidity acceptance

@ Several simultaneous constraints possible, generalization of the
concept of centrality
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Conclusions

@ Partial correlations+superposition model — possibility of imposing
constraints at the level of sources, gaining insight into the initial stage

e Contraining (event strictly) the number of particles leaves the
fluctuation of sources!

o Feasibility of the method demonstrated on simulated data (wounded
quarks, hydrodynamics, THERMINATOR) - would be great to use on
actual datal!

@ Need to reduce the short-range correlations (e.g., by looking at 7™),
nice to have a large pseudorapidity acceptance

@ Several simultaneous constraints possible, generalization of the
concept of centrality

Thank you!
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Definition of partial covariance

n physical variables X = (X1,..., X,,), m control variables Z = (Z1,...,Z)
Xi, Zj are vectors in the space of events, i.e.,, X; = (Xl(l),sz) . ..XI(N“))
(0) = Xy oW

Partial covariance:

(X, X 0 Z) = ¢(X,X) — ¢(X,Z)cH(Z,Z)c(Z,X) J

where ¢(A,B) is the usual covariance c(4;, B;) = (A;B;) — (A;){B;).
Diagonalizing ¢(Z,Z) (orthonormal eigenvectors Uy) yields

(X, X;02Z) = coXi, X;) ZCXZ,Uk (Uk, X;)
k=

= c(X;— (Xi,Uk)Uk7 i — (X, Up)Uyr)
Components of X belonging to the space spanned by Z are projected out

[H. Cramer, Mathematical methods of statistics, Princeton U. Press, 1946]
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© 00 0 0 0O

Example: Coulomb explosion of Ny molecule at FEL
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L. J. Frasinski, 2016]
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