Jet Substructure

Daniel Whiteson, UCI

Collaborators:

Pierre Baldi, Peter Sadowski UCI CS
Taylor Faucett, Edison Weik, Kevin Bauer, Chase Shimmin, UCI Physics
Andreas Soegaard, Edinburgh Physics
Jesse Thaler, MIT Physics

Our HEP-ML work

1402.4735: DL for event selection

1410.3469: DL for Higgs tau tau

1601.07913: Parameterized NN

1603.09349: DL jet substructure

1607.08633: DL jet flavor tagging

1703.03507: Adv, parametrized DL

Next: Interpreting DL jetsub. solutions

Outline

1. Jet substructure classification

II. Decorrelated jet substructure

III. Interpreting ML

Approach

Use a structured dataset

LL: lower-level, higher dimensionality

HL: higher-level, lower dimensionality

HL is a strict function of LL

If NN(LL) > NN(HL)

HL has lost information

Jets LL

FIG. 3: Average of 100,000 jet images from class 1 (single QCD jet from q or g) on the left, and class 2 (two overlapping jets from $W \to qq'$) on the right, after preprocessing.

Jets HL

Performance

LL slightly better than HL

How? (no pileup)

NN(LL) uses similar features to HL

How? (with pileup)

NN(LL) uses similar features to HL

Conclusions (1)

I. DL learned features on its own from LL information

II. HL features already capture most of the classification

III. DL still important for extension/application to other problems

Outline

1. Jet substructure classification

II. Decorrelated jet substructure

III. Interpreting ML

The problem

<u>Want</u>

Use jet substructure variables
Avoid sculpting background jet mass distribution
Smooth variation with theory mass

Background sculpting

1603.00027

a.u.

Jet substructure correlated with mass

Sculpting undesirable mimics signal lost sideband constraints lost simple behavior

One approach: DDT

Find transformation such that variable is no longer correlated with mass

1603.00027

DDT

Jet substructure vars

Mass + many variables much more powerful

Mass + one variable more powerful

Jet substructure vars

Mass + many variables uch more powerful

<u>Nass + one</u> variable more powerful

Problem setup

<u>Signal</u>

Z' + light jet

<u>Background</u>

QCD

Simulation

Madgraph+pythia+delphes

Jet substructure

Trimmed mass, N-subj, C2, D2

Variables

Mass sculpting

Generic Classifier

NN sculpts background to look like signal

Adversarial NN

Optimize:

classification accuracy

- adversary accuracy

$$L_{\text{system}} = L_{\text{classification}} - \lambda L_{\text{adversary}}$$
.

How well does classifier discriminate?

Can adversary guess the jet mass from the classifier output?

Adv. NN

Classifier is less dependent on jet mass

DDT

DDT

Don't see linear behavior with rho

Try similar method to reduce mass dependence for a single variable

But at what cost?

Traditional classifier is better at S/B discrimination.

That's what it is optimized for!

Real Goal

More to the point Fit jet mass histogram

Measure discovery significance

 $N_{bg} = 1000$

 $N_{\text{sig}} = 100$

Bg rate uncertainty 5% or 50%

Bg sculpting No sidebands to constrain bg rate

(shape uncertainty very dependent on specific unc)

Real Goal

Real Goal

Large systematics

Background shape known, rate uncert.

Classifier sculpts bg like signal

- S and B are ~identical
- no sidebands to constrain B
- cutting on classifier worsens signif.

Adversarial network

- maintains bg shape
- keeps sidebands to constrain

Adv NN has higher max significance.

Parameterized NN

Use a NN parameterized with theory mass

Allows optimal combination of jet vars (not just one variable)

Smoothly varies with theory mass (allows interpolation)

1601.07913

Results

At any point trad NN has better classification (but not our goal)

Param adv network remains decorrelated

Results

Adv. param gives best performance over entire space

Conclusions (II)

Adversarial parameterized NN

Constrains NN to maintain bg shape
More robust against systematics
Smoothly interpolatable
Better use of all jet substructure variables

Outline

1. Jet substructure classification

II. Decorrelated jet substructure

III. Interpreting ML

We prefer HL

If HL data includes all necessary information...

- It is easier to understand
- Its modeling can be verified
- Uncertainties can be sensibly defined
- It is more compact and efficient
- LL -> HL is physics, so we like it.

Our question

How has the DNN found its solution?

What can we learn from it?

Residual knowledge:

Is there a new HL variable? Can it reveal physics?

<u>Translating complete solutions:</u>

What is the structure of its solution?

Has it just rediscovered and

optimized the existing HL vars?

Hows

I. Define space of possible human solutions

- provides context for NN solution
- defines problem
- does NN live in this space?
- Can it be compactly represented?
- Yes or No are both interesting!

II. Define mapping metric

- how do you compare two solutions?
- can't use functional identity or linear correlation

Hows

I. Define space of possible human solutions - provides context for NN solution - defines problem - does NN live in - Can it h II. Defi <u>metric</u>

- how do you compare two solutions?
- can't use functional identity or linear correlation

Conclusions

Jet substructure is theoretically mature

- existing HL functions work well

DL can rediscover existing ideas

- generalize them
- decorrelate them

DL might be able to extract new insights

- mapping back to human ideas