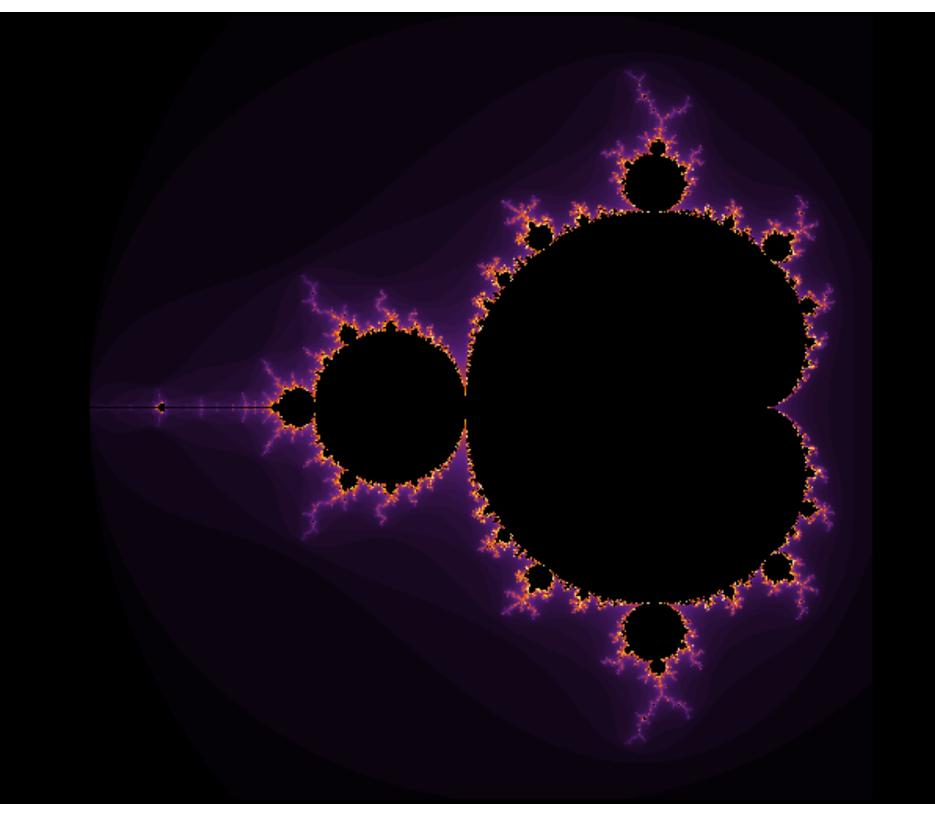
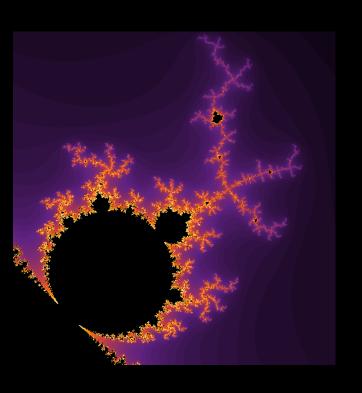
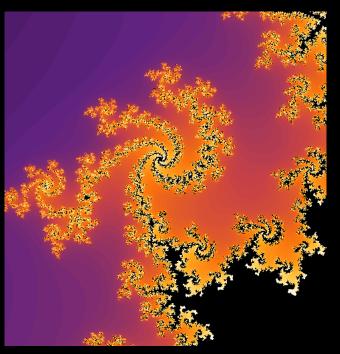
How Much Information is in a Jet?

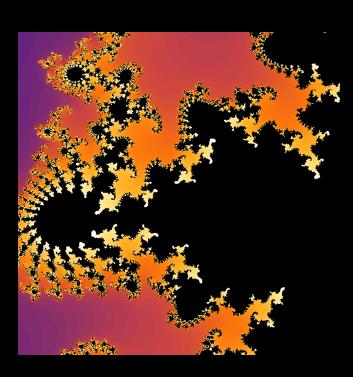
Andrew Larkoski Reed College

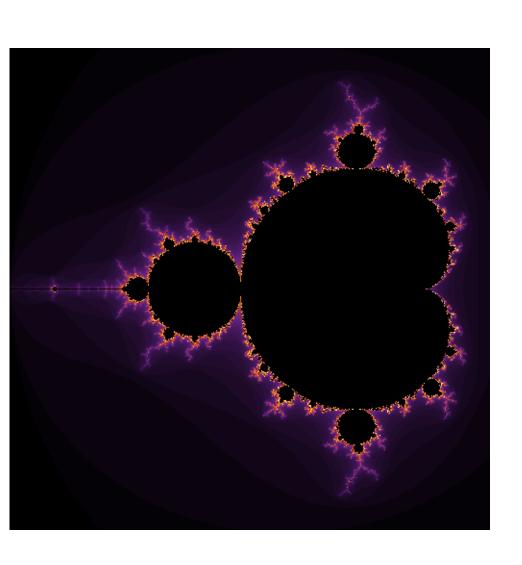
with Kaustuv Datta, JHEP **1706**, 073 (2017) [arXiv:1704.08249]









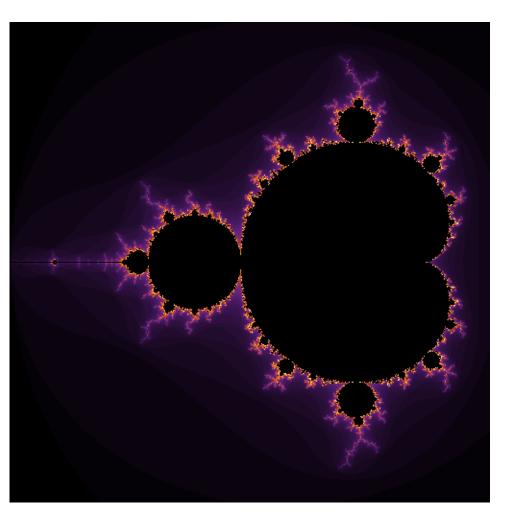


This image:

 $500 \times 500 = 250,000$ pixels

8-bit color in each pixel

Total information in bits $\approx 2 \text{ Mbits}$



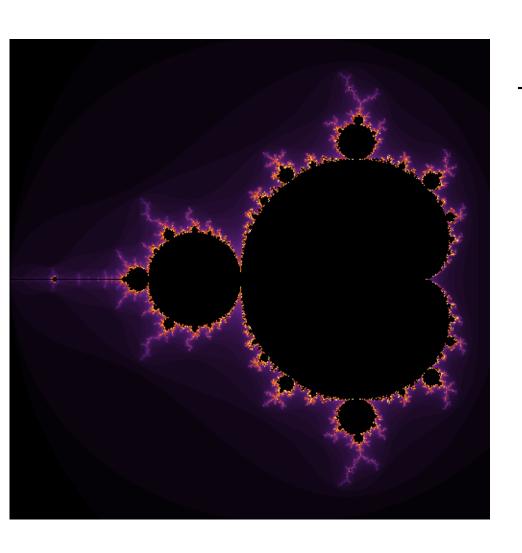
Mandelbrot set:

Defined by recursively applying

$$f(z) = z^2 + c$$

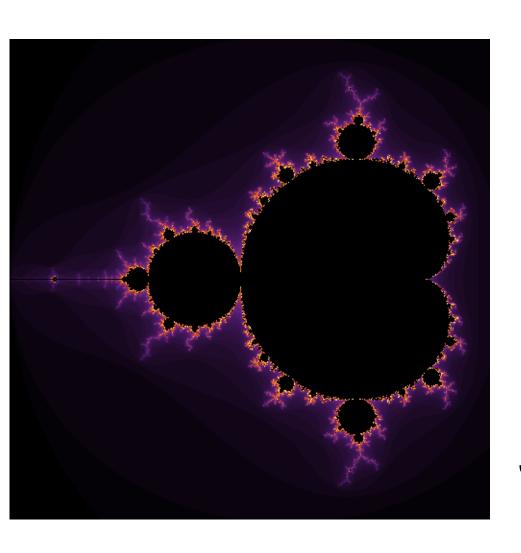
Complexity does not mean explosion of information content

Fractals can have apparent arbitrary complexity from simple rules



Kolmogorov Complexity:
The information of the simplest computer program that can construct the object

Example pseudo-program: For each pixel c_i For $n < n_{max}$, do $z_0 = 0$; $z_{n+1} = z_n^2 + c_i$; Color pixel c_i from z_{nmax}



Number of bits in image: ~2 Mbits

Number of bits in program (Kolmogorov complexity): ~100s of bits

Takeaway:
Just because something looks
complex, doesn't mean it is

Caveats

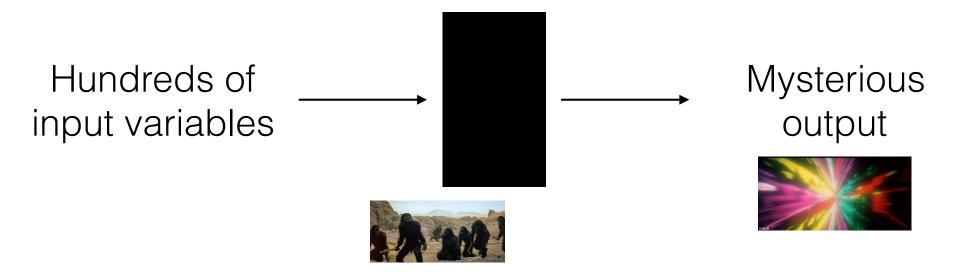
I am a theoretical physicist

I don't know much about machine learning (nor do I want to know much)

Motto: "What I cannot understand, I should not create." ~Feynman-1

Machine Learning on Jets

My nightmare as a physicist:



Any organizing principle?

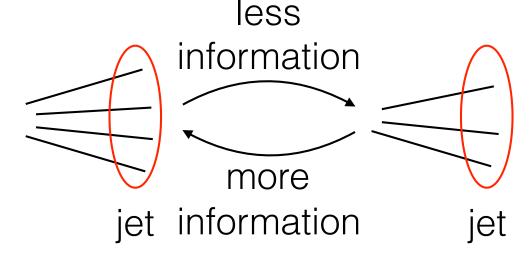
Can the input be simplified?

Is there any hope for a **human** to understand the output?

To make progress, use the guiding principles:

Systematic Improvability

Including more or less information in jet description is well-defined



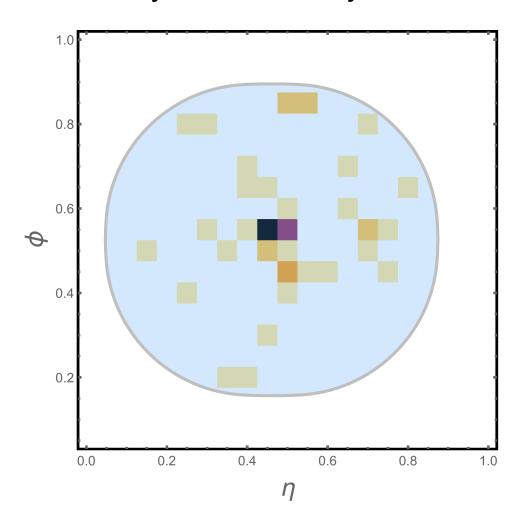
Direct Calculability (technical)

$$\tau_N^{(\alpha)} = \frac{1}{p_{TJ}} \sum_{i \in \text{jet}} p_{Ti} \min \left\{ \Delta R_{i1}^{\alpha}, \dots, \Delta R_{iN}^{\alpha} \right\}$$

"Infrared and collinear safe"

Sensitive to radiation off of *N* axes in the jet

Systematically resolve more structure in the jet



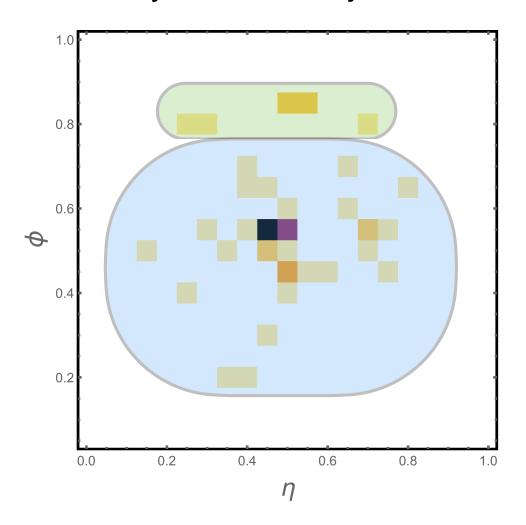
Full Jet

Net p_T , η , ϕ selected for

1 useful quantity: jet invariant mass

Restrict m_J in a range about the mass of interest

Systematically resolve more structure in the jet

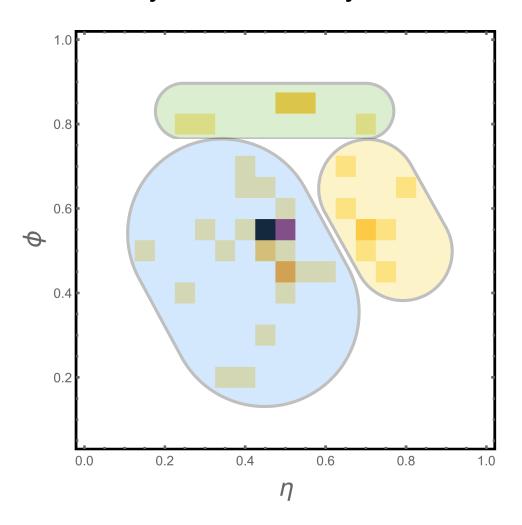


Two Subjets

Net p_T , η , ϕ , m_J selected for

2 useful quantities: relative p_T fraction relative angle

Systematically resolve more structure in the jet

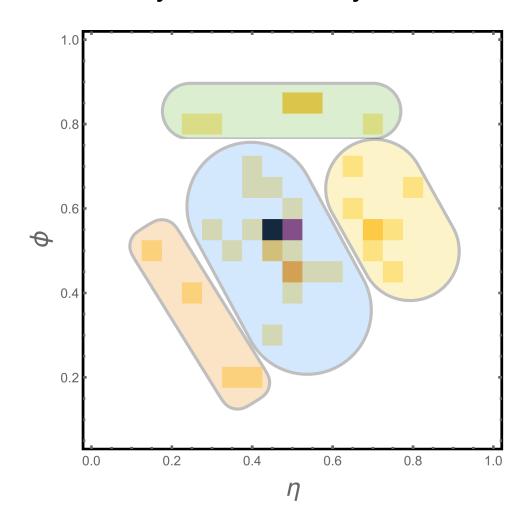


Three Subjets

Net p_T , η , ϕ , m_J selected for

5 useful quantities: 2 relative p_T fractions 3 relative angles

Systematically resolve more structure in the jet

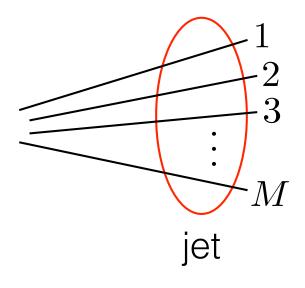


Four Subjets

Net p_T , η , ϕ , m_J selected for

8 useful quantities: 3 relative p_T fractions 5 relative angles

Can continue to resolve arbitrary structure



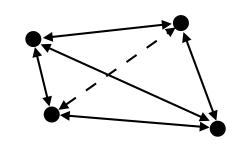
Measure observables to resolve *M*-body phase space

$$\sigma \sim \int \prod_{i=1}^{M} \left[\frac{d^4 p_i}{(2\pi)^4} 2\pi \delta(p_i^2 - m_i^2) \right] \delta^{(4)} \left(Q - \sum_{i=1}^{M} p_i \right) |\mathcal{M}|^2$$

3M - 4 dimensional phase space

In general:

M - 1 relative p_T fractions 2M - 3 relative angles



4 particle example

M-body Phase Space Machine Learning

Measure observables sensitive to 2-, 3-, 4-, 5-, and 6-body phase space + jet mass

Analyzed with a deep neural network on GPUs

Calculated ROC curves for QCD vs. Z boson

If information is finite, should see saturation

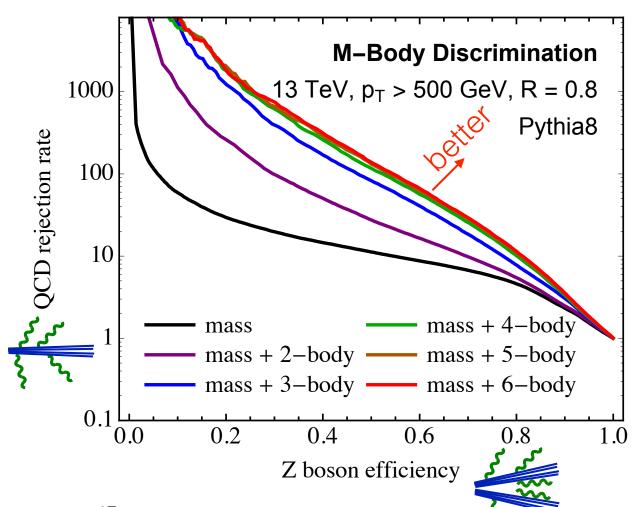
M-body Phase Space Machine Learning

Measure observables sensitive to 2-, 3-, 4-, 5-, and 6-body phase space + jet mass

Results:

Saturation observed at 4-body phase space!

4-body phase space = 8 dimensional



Why does this approach work?

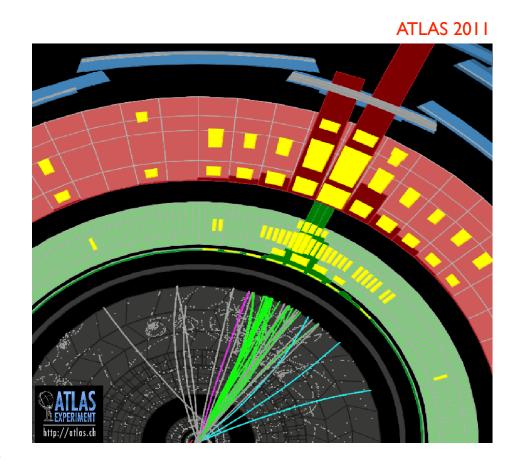
Apparently there's very little information useful for discrimination

Why?

This jet has 30 particles

Information to define all particles:

 $3 \times 32 \times 30 \approx 3000 \text{ bits}$ (p_T, η, ϕ) particles 9 digits



Why does this approach work?

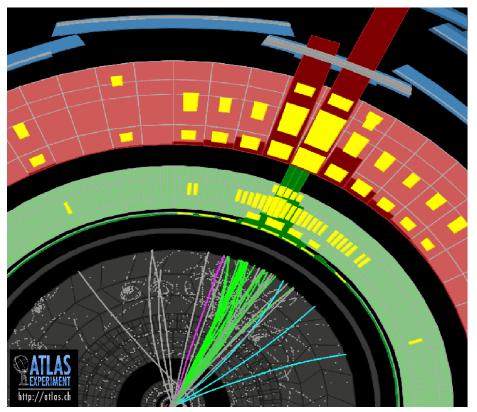
Essentially all particle production in QCD is governed by the surprisingly simple DGLAP equation:

$$Q^{2} \frac{df_{i}(x, Q^{2})}{dQ^{2}} = \int_{x}^{1} \frac{dz}{z} \frac{\alpha_{s}}{2\pi} P_{ij\leftarrow k} \left(\frac{x}{z}\right) f_{k}(z, Q^{2})$$

ATLAS 2011

Recursive just like Mandelbrot set

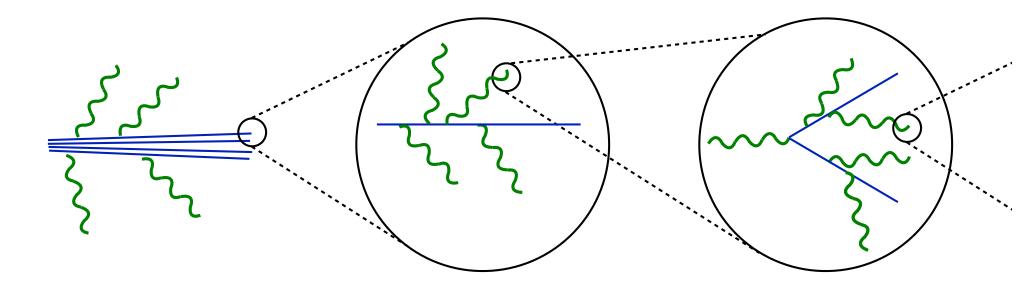
Corresponding
Kolmogorov complexity
will be small



Why does this approach work?

Essentially all particle production in QCD is governed by the surprisingly simple DGLAP equation:

$$Q^{2} \frac{df_{i}(x, Q^{2})}{dQ^{2}} = \int_{x}^{1} \frac{dz}{z} \frac{\alpha_{s}}{2\pi} P_{ij\leftarrow k} \left(\frac{x}{z}\right) f_{k}(z, Q^{2})$$



Seemingly-complex, fractal-like substructure of a jet

Conclusions

There isn't that much information in a jet: particle production is recursive

Need to use techniques that exploit this feature

Resolving 4 subjets is sufficient to saturate possible QCD vs. Z boson discrimination