Current experimental status of $\Delta\Gamma$ and Δm

Manuel Schiller

on behalf of the LHCb collaboration

University of Glasgow

September 18th, 2018

1/25

3

- **B** $^{0}_{d/s}$ mixing, $\Delta m_{d/s}$ and $\Delta \Gamma_{d/s}$
- measuring $\Delta m_{d/s}$
- measuring $\Delta \Gamma_{d/s}$
- conclusions

э

mixing goes through box diagrams $\Delta m_q \sim m_W^2 m_{B_q} \hat{\mathcal{B}}_q f_{B_q}^2 (V_{tq}^* V_{tb})^2 \qquad q = d, s$ $\Delta \Gamma_q \sim m_b^2 m_{B_q} \hat{\mathcal{B}}_q f_{B_q}^2 \left((V_{tq}^* V_{tb})^2 + V_{tq}^* V_{tb} V_{cq}^* V_{cb} \mathcal{O}(m_c^2/m_b^2) + (V_{cq}^* V_{cb})^2 \mathcal{O}(m_c^2/m_b^2) + (V_{cq}^* V_{cb})^2 \mathcal{O}(m_c^2/m_b^2) \right)$

 B_a^0 mixing

introduction

current WA: [HFLAV 2018]

•
$$\Delta m_d = (0.5064 \pm 0.0019) \, \text{ps}^-$$

$$\Delta \Gamma_d / \Gamma_d = (-0.2 \pm 1.0) \cdot 10^{-1}$$

•
$$\Delta m_s = (17.757 \pm 0.021) \, \mathrm{ps}^{-1}$$

•
$$\Delta \Gamma_s / \Gamma_s = (0.132 \pm 0.008)$$

• constrain apex of unitarity triangle: $\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_s}} \xi^2 |\frac{V_{ts}}{V_{td}}|^2$

• get
$$\xi^2 = \frac{\hat{\mathscr{B}}_s f_{B_s}^2}{\hat{\mathscr{B}}_d f_{B_d}^2}$$
 from lattice QCD
• $|V_{td}/V_{ts}| = 0.2053 \pm 0.0004 (exp) \pm 0.0029 (lattice)$ [PDG2018]

10 Δm, & Δm, sin 28 0.5 Δm. 0.0 -0.5 -1.0 -1. -0.5 0.0 0.5 1.0 1.5 -1.0 žc

measuring Δm_q

Current experimental status of $\Delta\Gamma$ and Δm

September 18th, 2018

4 / 25

measuring $\Delta m_{d/s}$

best precision from time dependent mixing analysis in flavour specific decays

M. Schiller (Glasgow)

experimental factors affecting significance:

signal yield: $\sqrt{N/2} f_{sig}$

t)

- large $b\bar{b}$ x-section, large data sample (so far, $\sim 5.5 \, {\rm fb}^{-1}$ in run 2)
- efficient trigger, reconstruction, excellent momentum and vertex resolution
- excellent particle identification
- diluted through time resolution:

$$e^{-(\Delta m_q \sigma_t)^2/2}$$
 ($\sigma_t \sim 45-55$ fs)

diluted through flavour tagging:

 $\sqrt{\epsilon_{tag}(1-2\omega)^2} \sim (3\dots 6)\%$

- opposite side: $e, \mu, K, Vertex, charm$
- same side: $\pi_{\mathbf{r}} p, K_{\mathbf{r}} \to \{ \mathbf{r} \}$

- from semileptonic $B \rightarrow D^{(*)-} \mu^+ \nu_{\mu} X$ decays
- Iarge $BR \sim 2 5\%$
- reconstruct $D^{*-} \rightarrow \overline{D^0}(K^+\pi^-)\pi^-$ and $D^- \rightarrow K^+\pi^-\pi^-$
- $D^{(*)-}\mu^+$ form common vertex, missing v_{μ}
 - cannot apply mass/kinematic cuts on B_d, only on D⁰, D^{*-}, D⁻
- veto mis-ID J/ψ , Λ_c
- BGs: D^0 from $B, B^+ \rightarrow D^{(*)-} \mu^+ \pi^+ \nu_{\mu}$, combinatorial

September 18th, 2018

6/25

• physics BG:
$$B^+ \rightarrow D^{(*)-} \mu^+ \pi^+ \nu_{\mu}$$

- expected at $\sim 10\%$ level, but BR is only known with a precision of 10%
- fraction of BG correlated with fitted value for Δm_d
- model correctly, reduce BG for low systematic uncertainty
- train MVA classifier to discriminate this BG from signal
 - train on MC, in 4 separate tagging categories
 - inputs:
 - geometrical and kinematic info on D^{(*)-}µ system
 - isolation of tracks in cone around it
- use to suppress this BG by 70%
- use to evaluate remaining fraction $(3\%(D^{*-}\mu\nu_{\mu}X)/6\%(D^{-}\mu\nu_{\mu}X))$ on data

7/25

- further complication: v_{μ} escapes, X not reconstructed
- need to correct measured decay time: $t = \frac{M_{B_d}L}{p_{D}(*)_{\mu}c/k(m_B)}$

with:
$$k(m_B) = \langle p_{D^{(*)}\mu}/p_{B_d}^{true} \rangle$$

→ decay time is smeared, only average correction known

- *q_{mix}* = ±1: mixed/unmixed from μ charge and flavour tagging decision
 - 4 categories in mistag ω to gain sensitivity
 - tagging power $\epsilon (1 2\omega)^2 \sim 2.3 2.6\%$
- fit m_{D^-} and $m_{D^0}/\delta_m = m_{D^*} m_{D^0}$ distributions
- use to extract sWeights for signal + B^+ (subtracts combinatorial + D^0 from B):

$$\begin{split} P(t,q_{mix}) &= (1-f_{B^+})S(t,q_{mix}) + f_{B^+}B^+(t,q_{mix}) & \stackrel{t_{[ps]}}{\sim} \mathcal{Z} \\ S(t,q_{mix}) &= a(t)\left(e^{-t/\tau}(1+q_{mix}(1-2\omega)\cos(\Delta m_d t))\right)\otimes R(t)\otimes F(k) \\ \text{from data: acceptance } a(t), f_{B^+}, \omega \\ \text{from simulation: resolution } R(t), \text{ correction } F(k) \rightarrow \langle \mathcal{Z} \rangle \land \langle \mathcal$$

Current experimental status of $\Delta\Gamma$ and Δm

 Δm September 18th, 2018

2018 9/25

measuring Δm_d

measuring Δm_d at LHCb

result:	[Eur.	Phys. J.	C(2016)	76:412]
---------	-------	----------	---------	---------

Mode	2011 sample	2012 sample	Total sample	DEI
	$\Delta m_d \ [ns^{-1}]$	$\Delta m_d [ns^{-1}]$	$\Delta m_d \ [ns^{-1}]$	
$B_d \rightarrow D^- \mu^+ \nu_\mu X$	506.2 ± 5.1	505.2 ± 3.1	$505.5 \pm 2.7 \pm 1.1$	- I
$B_d \rightarrow D^{*-} \mu^+ \nu_{\mu} X$	497.5 ± 6.1	508.3 ± 4.0	$504.4 \pm 3.4 \pm 1.0$	
combination			$505.0 \pm 2.1 \pm 1.0$	-01

systematic uncertainties:

					CDE
Source of uncertainty	$B_d \rightarrow D^- \mu^+$	$v_{\mu}X [ns^{-1}]$	$B_d \rightarrow D^{*-}\mu^+$	$v_{\mu}X [ns^{-1}]$	D0 D
	Uncorrelated	Correlated	Uncorrelated	Correlate	d BABAR BRIDE
B ⁺ background	0.4	0.1	0.4	-	BAB
Other backgrounds	-	0.5	-	-	BABAR D'IN
k-factor distribution	0.4	0.5	0.3	0.6	BABAR D
Other fit-related	0.5	0.4	0.3	0.5	SELLE Bartall + D h
Total	0.8	0.8	0.6	0.8	BELLE D 70

most precise measurement, dominates WA

277 (2017) 895 Phys. J. PEur. F

Current experimental status of $\Delta\Gamma$ and Δm

Heavy Flavour

• decay rates for B_H and B_L to final state f can be different, so

$$\begin{split} \Gamma_{B_q \to f}(t) &= e^{-\Gamma_q t} \quad \left(\cosh(\Delta \Gamma_q t/2) + A_{\Delta \Gamma}^f \sinh(\Delta \Gamma t/2) + A_{CP}^{dir,f} \cos(\Delta m_q t) + A_{CP}^{mix,f} \sin(\Delta m_q t) \right) \\ \Gamma_{B_q \to f}(t) &= e^{-\Gamma_q t} \quad \left(\cosh(\Delta \Gamma_q t/2) + A_{\Delta \Gamma}^f \sinh(\Delta \Gamma t/2) - A_{CP}^{dir,f} \cos(\Delta m_q t) - A_{CP}^{mix,f} \sin(\Delta m_q t) \right) \end{split}$$

- time-dependent analyses of B⁰_q decays give access to
 - Δm_q
 - sometimes also $\Delta\Gamma_q$ (we'll see in a bit...)
- often a flavour-specific channel like $B_s \rightarrow D_s \pi$ will give the best results
- will look into $B_s \rightarrow J/\psi K^+ K^-$, since it's newer...

LHCD

- do a time-dependent analysis of $B_s \rightarrow J/\psi K^+ K^-$:
 - usually people do this to learn about mixing phase ϕ_s
 - complicated angular analysis
- corresponding to a data set of $3 \, \text{fb}^{-1}$
- > 95k $B_s \rightarrow J/\psi K^+ K^-$ candidates, very clean
- main BG: combinatorial, K/π mis-ID, subtracted using sWeights
- flavour tagging: opposite side + same side Kaon,

$$\epsilon (1 - 2\omega)^2 = (3.73 \pm 0.15)\%$$

- final state $J/\psi K^+K^-$ is mixture of CP eigenstates
 - depends on relative angular momentum of J/ψ and K^+K^- -system
 - to learn about φ_s, need to disentangle CP-even and CP-odd component (for details, see talks by Maria, Varvara, Pavel)
- analyse decay rate as function of helicity angles $\cos(\theta_K), \cos(\theta_\mu), \phi_h$

[Phys. Rev. D 87, 112010 (2013)]

- forward geometry of LHCb cuts into these angles
- model 3D angle-dependent efficiency using simulation

helps to disentangle $B_{s,H}$ and $B_{s,L}$

- simultaneous fit in decay time and angular analysis
- Iong- and short-lived component separated thanks to different angular dependence!

- hugely complex fix, but gives access to
 - $\bullet \Delta m_s$
 - $\blacksquare \ \Gamma_s, \ \Delta \Gamma_s$
 - lacksim mixing phase ϕ_s
 - amplitudes and phases of different angular components
- LHCb measurements in $B_s^0 \rightarrow D_s \pi$ and $B_s^0 \rightarrow J/\psi K^+ K^-$ dominate the WA

measuring $\Delta\Gamma_q$

Current experimental status of $\Delta\Gamma$ and Δm September 18th, 2018 16 / 25

measuring $\Delta\Gamma_s$ at LHCb

• have already seen $B_s \rightarrow J/\psi K^+ K^-$ with $K^+ K^-$ in the $\phi(1020)$

region [Phys. Rev. Lett. 114, 041801 (2015)]

- **similar example: use higher** K^+K^- invariant masses: [JHEP 08 (2017) 037]
 - also uses 3 fb⁻¹
 - similar to analysis with K^+K^- in the ϕ region
 - more than 33k candidates with $m_{KK} > 1.05 \text{ GeV}$

measuring $\Delta\Gamma_q$

- Are already seen how to get $\Delta\Gamma_q$ from time-dependent mixing analyses
- other method: effective lifetime depends on $y_q = 2\Delta\Gamma_q/\Gamma_q$: $\tau_{B_q \to f}^{eff} = \frac{1}{\Gamma_q} \frac{1}{1-y_q^2} \frac{1+2A_{\Delta\Gamma}^f y_q + y_q^2}{1+A_{\Delta\Gamma}^f y_q}$
 - can use different decay channels (different $A^f_{\Delta\Gamma}$) (e.g. [JHEP04(2014)114])

$$B^{0} \rightarrow J/\psi K^{*0} (A^{J}_{\Delta\Gamma} = 0)$$
$$B^{0} \rightarrow J/\psi K^{0}_{S} (A^{f}_{\Delta\Gamma} = \cos(2\beta))$$

- **c**an use measurements of $\Delta\Gamma_q$ for many things on the theory side
 - e.g. to derive bounds on quark-hadron duality, to mention a recent example [arXiv:1603.07770v2]

measuring $\Delta\Gamma_d$ at LHCb

idea is to measure effective lifetimes of e.g.

$$B^0 \to J/\psi K^{*0}$$
$$B^0 \to J/\psi K_S^0$$

- **•** trigger on μ , 3 fb⁻¹ data sample
- minimise decay time biasing selection criteria
- fully reconstruct decay, model efficiencies with MC and control channels
- fit time and invariant mass

measuring $\Delta\Gamma_d$ at LHCb

- of course, (effective) lifetime measurements require precise control of efficiency as function of decay time (and flight distance)
- two main contributions:
 - VELO reconstruction efficiency as one moves away from beamline radially (ρ)
 - combined trigger and selection efficiency as a function of time

measuring $\Delta\Gamma_d$ at LHCb

■ results: [JHEP04(2014)114] $\tau_{B^0 \to J/\psi K^*} = 1.524 \pm 0.006 \pm 0.004 \text{ ps}$ $\tau_{B^0 \to J/\psi K^0_S} = 1.499 \pm 0.013 \pm 0.005 \text{ ps}$

• use
$$\tau_{B_q \rightarrow f}^{eff} = \frac{1}{\Gamma_q} \frac{1}{1 - y_q^2} \frac{1 + 2A_{\Delta\Gamma}^f y_q + y_q^2}{1 + A_{\Delta\Gamma}^f y_q}$$

■
$$A_{\Delta\Gamma}^f = 0$$
 for flavour specific decays
■ $A_{\Delta\Gamma}^f = \cos(2\beta)$ for $B^0 \rightarrow J/\psi K_S^0$

$$\begin{split} \Gamma_d &= 0.656 \pm 0.003 \pm 0.002 \text{ps}^{-1} \\ \Delta \Gamma_d &= -0.029 \pm 0.016 \pm 0.007 \text{ps}^{-1} \\ \frac{\Delta \Gamma_d}{\Gamma_d} &= -0.044 \pm 0.025 \pm 0.011 \end{split}$$

= nar

Source	τ_{B^+}/τ_{B^0}	$\tau_{B_{S}^{0}}/\tau_{B^{0}}$	$\tau_{\Lambda b}/\tau_{B0}$	$ au_{B^+}/ au_{B^-}$	$\tau_{\Lambda b} / \tau_{\Lambda \overline{b}}$	$\tau_{B0}/\tau_{\overline{B}0}$	$\Delta \Gamma_d / \Gamma_d$
Statistical uncertainty	5.0	8.5	18.0	4.0	35.0	8.0	25.0
VELO reconstruction	1.6	1.7	1.1	-	-	-	4.1
Simulation sample size	2.0	2.2	2.8	2.1	5.3	3.0	6.3
Mass-time correlation	1.6	1.2	2.3	-	-	-	4.7
Trigger and selection eff.	1.1	1.8	1.5	-	-	-	4.0
Background modelling	0.3	0.1	1.5	0.2	3.0	1.4	3.8
Mass modelling	0.2	0.4	0.2	0.1	0.2	0.2	0.8
Peaking background	-	0.3	0.7	-	-	-	0.5
Effective lifetime bias	-	1.0	-	-	-	-	-
B^0 production asym.	-	-	-	-	-	8.5	1.9
Total systematic	3.2	3.7	4.4	2.1	6.1	9.1	10.7

■ ATLAS has a decay-length dependent analysis with ~ 139k $B^0 \rightarrow J/\psi K_s^0$ and ~ 685k $B^0 \rightarrow J/\psi K^{*0}$, yielding $\Delta\Gamma_d/\Gamma_d = -0.001 \pm 0.011 \pm 0.009$

[JHEP06 (2016) 081]

conclusion

conclusion

Current experimental status of $\Delta\Gamma$ and Δm September 18th, 2018 22 / 25

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

• LHCb measurements of Δm_d , Δm_s still dominate WA

- experimental status similar to that of last CKM
- help constrain CKM matrix → important test of SM
- more and more of run 2 data is analysed
- new results are being produced
- stay tuned for more!
- **a**lso some progress on $\Delta\Gamma_s$ in the last year or so
 - also stay tuned for more!
- theory limits current precision of $|V_{ts}|$ and $|V_{td}|$
 - looking forward for the lattice to become even better

4 D b 4 B b 4 B b 4 B b

backup

backup

Current experimental status of $\Delta\Gamma$ and Δm September 18th, 2018 24 / 25

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

backup

- many lifetime measurements in B_s^0 sector by LHCb, pinning down Γ_s and $\Delta\Gamma_s$
- excellent laboratory to test quantitative understanding of $\Delta\Gamma_s$ from first principles

