ΔM_s interplay with B-anomalies

10th International Workshop on the CKM Unitarity Triangle - 18.09.2018

Luca Di Luzio

In collaboration with Matthew Kirk and Alexander Lenz arXiv:1712.06572 + work in progress

Outline

- I. ΔM_s in the SM [theoretical uncertainties]
 - Hadronic Matrix Element
 - V_{cb} dependence
- 2. Impact on B-anomalies
 - Neutral currents [Z', LQ]
 - Model building directions

ΔM_{s} in the SM

• $\Delta M_s \equiv M_H^s - M_L^s = 2 |M_{12}^s|$

[For a review see Lenz, Nierste hep-ph/0612167 Artuso, Borissov, Lenz 1511.09466]

• $\Delta M_s \equiv M_H^s - M_L^s = 2 |M_{12}^s|$

[For a review see Lenz, Nierste hep-ph/0612167 Artuso, Borissov, Lenz 1511.09466]

★ Inami-Lim function $S_0(x_t = \bar{m}_t^2(\bar{m}_t)/M_W^2) \approx 2.368$

[Inami, Lim PTR65 (1981)]

• $\Delta M_s \equiv M_H^s - M_L^s = 2 |M_{12}^s|$

[For a review see Lenz, Nierste hep-ph/0612167 Artuso, Borissov, Lenz 1511.09466]

★ Inami-Lim function $S_0(x_t = \bar{m}_t^2(\bar{m}_t)/M_W^2) \approx 2.368$

★ Perturbative NLO QCD corrections $\hat{\eta}_B \approx 0.8379$

[Buras, Jamin, Weisz NPB347 (1990)]

• $\Delta M_s \equiv M_H^s - M_L^s = 2 |M_{12}^s|$

[For a review see Lenz, Nierste hep-ph/0612167 Artuso, Borissov, Lenz 1511.09466]

★ Inami-Lim function
$$S_0(x_t = \bar{m}_t^2(\bar{m}_t)/M_W^2) \approx 2.368$$

- ★ Perturbative NLO QCD corrections $\hat{\eta}_B \approx 0.8379$
- ★ Hadronic matrix element (Lattice / HQET Sum Rules)

[See talks by Andreas Kronfeld, Aida El-Khadra, Thomas Mannel, Thomas Rauh]

$$\langle B_s^0 | Q | \bar{B}_s^0 \rangle = \frac{8}{3} M_{B_s}^2 f_{B_s}^2 B(\mu) \qquad Q = \left[\bar{s} \gamma_\mu (1 - \gamma_5) b \right] \left[\bar{s} \gamma^\mu (1 - \gamma_5) b \right]$$

 $\hat{\eta}_B B \equiv \eta_B \hat{B}$ (Bhat renormalization scale and scheme independent)

• $\Delta M_s \equiv M_H^s - M_L^s = 2 |M_{12}^s|$

[For a review see Lenz, Nierste hep-ph/0612167 Artuso, Borissov, Lenz 1511.09466]

★ Inami-Lim function $S_0(x_t = \bar{m}_t^2(\bar{m}_t)/M_W^2) \approx 2.368$

- ★ Perturbative NLO QCD corrections $\hat{\eta}_B \approx 0.8379$
- ★ Hadronic matrix element (Lattice / HQET Sum Rules)
- ★ CKM elements

$$\lambda_t \equiv V_{ts}^* V_{tb} \qquad \longleftarrow \qquad V_{us} \left[V_{cb} \right] \left[V_{ub} / V_{cb} \right] \gamma_{\rm CKM}$$

in terms of 4 inputs, assuming CKM unitarity (not necessarily true in presence of NP)

[November 2017 web-update of Flavour Lattice Averaging Group (FLAG) 1607.00299]

S. Aoki et al., Review of lattice results concerning low-energy particle physics, 1607.00299

	ation statics Atra statics atra statics atria st	Alite of the of	
Collaboration	Ref. N_f $\tilde{\vec{x}}$ $\tilde{\vec{x}}$ $\tilde{\vec{x}}$ $\tilde{\vec{x}}$ $\tilde{\vec{x}}$ $\tilde{\vec{x}}$	$ \overset{\tilde{\mathbf{y}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}{\overset{\tilde{\mathbf{y}}}}}}}} f_{\mathrm{B}_{\mathrm{B}}}} f_{\mathrm{B}}} f_{B$	$\hat{B}_{ m s}$ $\hat{B}_{ m B_d}$ $\hat{B}_{ m B_s}$
FNAL/MILC 16	$[57] 2+1 \mathbf{A} \bigstar \circ \bigstar \circ$	\checkmark 227.7(9.5) 274.6(8.4)	$1.38(12)(6)^{\odot} 1.443(88)(48)^{\odot}$
RBC/UKQCD 14A	$[15] 2+1 A \circ \circ \circ \circ \circ$	\checkmark 240(15)(33) 290(09)(40)	0) 1.17(11)(24) 1.22(06)(19)
FNAL/MILC 11A	$[56]$ 2+1 C $\bigstar \circ \bigstar \circ$	\checkmark 250(23) [†] 291(18) [†]	
HPQCD 09	$[19] 2+1 A \circ \circ^{\nabla} \circ \circ$	\checkmark 216(15)* 266(18)*	$1.27(10)^*$ $1.33(6)^*$
HPQCD 06A	[58] 2+1 A ■ ■ ★ ○	 ✓ - 281(21) 	- 1.17(17)
ETM 13B	$[9] 2 A \bigstar \circ \circ \bigstar$	\checkmark 216(6)(8) 262(6)(8)	1.30(5)(3) $1.32(5)(2)$
ETM 12A, 12B	$[24, 59] 2 C \bigstar \circ \circ \bigstar$	 ✓ 	$1.32(8)^{\diamond}$ $1.36(8)^{\diamond}$

 $^{\odot}$ PDG averages of decay constant f_{B^0} and f_{B_s} [2] are used to obtain these values.

[November 2017 web-update of Flavour Lattice Averaging Group (FLAG) 1607.00299]

$$\left(f_{B_s}\sqrt{\hat{B}_{B_s}}\right)^{\text{FLAG17}} = 274(8) \text{ MeV} \qquad (f_{B_s})^{\text{FLAG16}} \left(\sqrt{\hat{B}_{B_s}}\right)^{\text{FLAG17}} = 265(10) \text{ MeV}^*$$

*<u>Naive combination</u> (does not include updated FNAL/MILC calculation of decay constant)

• FLAG17 + V_{cb} treatment (see next slide) implies a 1.8 σ discrepancy

 $\Delta M_s^{\rm SM} > \Delta M_s^{\rm exp} = (17.757 \pm 0.021) \text{ ps}^{-1} \text{ [HFLAV (CDF + LHCb) |6|2.07233]}$

Source	$f_{B_s}\sqrt{\hat{B}}$	$\Delta M_s^{\rm SM}$
HPQCD14 [132]	$(247 \pm 12) \text{ MeV}$	$(16.2 \pm 1.7) \mathrm{ps}^{-1}$
ETMC13 [133]	$(262 \pm 10) \text{ MeV}$	$(18.3 \pm 1.5) \mathrm{ps}^{-1}$
HPQCD09 [134] = FLAG13 [135]	$(266 \pm 18) \text{ MeV}$	$(18.9 \pm 2.6) \mathrm{ps}^{-1}$
FLAG17 [70]	$(274 \pm 8) \mathbf{MeV}$	$ (20.01 \pm 1.25)\mathrm{ps^{-1}} $
Fermilab16 [72]	$(274.6 \pm 8.8) \text{ MeV}$	$(20.1 \pm 1.5) \mathrm{ps}^{-1}$
HQET-SR [77, 136]	$(278^{+28}_{-24}) \text{ MeV}$	$(20.6^{+4.4}_{-3.4})\mathrm{ps}^{-1}$
HPQCD06 [137]	$(281 \pm 20) \text{ MeV}$	$(21.0 \pm 3.0) \mathrm{ps}^{-1}$
RBC/UKQCD14 [138]	$(290 \pm 20) \text{ MeV}$	$(22.4 \pm 3.4) \mathrm{ps}^{-1}$
Fermilab11 [139]	$(291 \pm 18) \text{ MeV}$	$(22.6 \pm 2.8) \mathrm{ps}^{-1}$

[LDL, Kirk, Lenz 1712.06572]

• FLAG17 + V_{cb} treatment (see next slide) implies a 1.8 σ discrepancy

 $\Delta M_s^{\rm SM} > \Delta M_s^{\rm exp} = (17.757 \pm 0.021) \text{ ps}^{-1} \text{ [HFLAV (CDF + LHCb) |6|2.07233]}$

Source	$f_{B_s}\sqrt{\hat{B}}$	$\Delta M_s^{\rm SM}$
HPQCD14 [132]	$(247 \pm 12) \text{ MeV}$	$(16.2 \pm 1.7) \mathrm{ps}^{-1}$
ETMC13 [133]	$(262 \pm 10) \text{ MeV}$	$(18.3 \pm 1.5) \mathrm{ps}^{-1}$
HPQCD09 [134] = FLAG13 [135]	$(266 \pm 18) \text{ MeV}$	$(18.9 \pm 2.6) \mathrm{ps}^{-1}$
FLAG17 [70]	$(274\pm8)~\mathbf{MeV}$	$(20.01 \pm 1.25)\mathbf{ps^{-1}}$
Fermilab16 [72]	$(274.6 \pm 8.8) \text{ MeV}$	$(20.1 \pm 1.5) \mathrm{ps}^{-1}$
HQET-SR [77, 136]	$(278^{+28}_{-24}) \text{ MeV}$	$(20.6^{+4.4}_{-3.4})\mathrm{ps}^{-1}$
HPQCD06 [137]	$(281 \pm 20) \text{ MeV}$	$(21.0 \pm 3.0) \mathrm{ps}^{-1}$
RBC/UKQCD14 [138]	$(290 \pm 20) \text{ MeV}$	$(22.4 \pm 3.4) \mathrm{ps}^{-1}$
Fermilab11 [139]	$(291 \pm 18) \text{ MeV}$	$(22.6 \pm 2.8) \mathrm{ps}^{-1}$

[LDL, Kirk, Lenz 1712.06572]

★ Lattice updates crucial to settle the issue !

V_{cb} dependence

• V_{cb} is the second most important ingredient for SM prediction

we use CKMfitter value* (consistent with inclusive determination)

$$\Delta M_s^{\text{SM, 2017}} = (20.01 \pm 1.25) \text{ ps}^{-1}$$
$$\left[\Delta M_s^{\text{SM, 2017 (tree)}} = (19.9 \pm 1.5) \text{ ps}^{-1}\right]$$

*Includes loop-mediated observables (potentially affected by NP)

Impact on B-anomalies

ΔM_s vs. new physics (NP)

• As an <u>example</u> let's assume:

I. NP in purely V-A $\Delta B = 2$ operator (same matrix element as in the SM)

2. no NP pollution in the extraction of CKM elements

$$\Delta M_s^{\rm Exp} = 2 \left| M_{12}^{\rm SM} + M_{12}^{\rm NP} \right| = \Delta M_s^{\rm SM} \left| 1 + \frac{M_{12}^{\rm NP}}{M_{12}^{\rm SM}} \right|$$

ΔM_s vs. new physics (NP)

• As an <u>example</u> let's assume:

I. NP in purely V-A $\Delta B = 2$ operator (same matrix element as in the SM)

2. no NP pollution in the extraction of CKM elements

$$\Delta M_s^{\rm Exp} = 2 \left| M_{12}^{\rm SM} + M_{12}^{\rm NP} \right| = \Delta M_s^{\rm SM} \left| 1 + \frac{M_{12}^{\rm NP}}{M_{12}^{\rm SM}} \right|$$

$$\frac{\Delta M_s^{\text{Exp}}}{\Delta M_s^{\text{SM}}} = \left| 1 + \frac{\kappa}{\Lambda_{\text{NP}}^2} \right| \qquad \text{if } \kappa > 0 \qquad \qquad \frac{\Lambda_{\text{NP}}^{2017}}{\Lambda_{\text{NP}}^{2015}} = \sqrt{\frac{\frac{\Delta M_s^{\text{Exp}}}{(\Delta M_s^{\text{SM}} - 2\delta\Delta M_s^{\text{SM}})^{2015}} - 1}{\frac{\Delta M_s^{\text{Exp}}}{(\Delta M_s^{\text{SM}} - 2\delta\Delta M_s^{\text{SM}})^{2017}} - 1}} \simeq 5 \qquad (2 \text{ σ bound})$$

 $\Delta M_s^{\text{SM, 2015}} = (18.3 \pm 2.7) \text{ ps}^{-1} \qquad \text{[Artuso, Borissov, Lenz 1511.09466]}$ $\Delta M_s^{\text{SM, 2017}} = (20.01 \pm 1.25) \text{ ps}^{-1} \qquad \text{[LDL, Kirk, Lenz 1712.06572]}$ $\Delta M_s^{\text{Exp}} = (17.757 \pm 0.021) \text{ ps}^{-1} \qquad \text{[HFLAV (CDF + LHCb) 1612.07233]}$

"B-anomalies"

• A seemingly coherent pattern of SM deviations building up since ~ 2012

	$b \to c \tau \nu$	$b \rightarrow s \mu \mu$
	$b \xrightarrow{W} c$	$\overline{b} = \overline{\overline{c}} \overline{\overline{c}}, \overline{\overline{c}}, \overline{\overline{u}} = \overline{\overline{c}} \overline{\overline{c}}, \overline{\overline{c}}, \overline{\overline{u}} = \overline{\overline{c}}$
Lepton Universality	$R(D), R(D^*), R(J/\psi)$	$R(K), R(K^*)$
Angular Distributions		$B \rightarrow K^* \mu \mu \ (P_5')$
Differential BR $(d\Gamma/dq^2)$		$B \to K^{(*)} \mu \mu$ $B_s \to \phi \mu \mu$ $\Lambda_b \to \Lambda \mu \mu$

Neutral currents

- Generic <u>robust</u> connection between neutral current anomalies and ΔM_s

Neutral currents

- Generic <u>robust</u> connection between neutral current anomalies and ΔM_s

Neutral currents - Z'

• Simplified Z' model with purely LH couplings

$$\mathcal{L}_{Z'} = \frac{1}{2} M_{Z'}^2 (Z'_{\mu})^2 + \left(\lambda_{ij}^Q \,\bar{d}_L^i \gamma^{\mu} d_L^j + \lambda_{\alpha\beta}^L \,\bar{\ell}_L^\alpha \gamma^{\mu} \ell_L^\beta\right) Z'_{\mu}$$

[For an anomaly-free UV completion see e.g. Alonso, Cox, Han, Yanagida 1705.03858]

 $C_{b_L\mu_L}^{\text{BSM}} \stackrel{\text{for}}{=} \frac{R_K \text{ is } \pi}{\sqrt{2}G_F M_{Z'}^2 \alpha} \left(\frac{\lambda_{bs}^Q \lambda_{\mu\mu}^L}{V_{tb} V_{ts}^*}\right) \quad R_K = \frac{|C_b|}{|C_b|}$ where $p \approx 0.86$ is the polarization of the p $\mathcal{L}_{b\to s\mu\mu}^{\mathrm{NP}} \supset \frac{4G_F}{\mathrm{and}} \operatorname{VitsVSM}_{\pi} \operatorname{preduction}^{\mathrm{BSM}} \operatorname{is}_{IR} \overline{\mu}_{I} \cong^{\mu} \overline{\mu}_{L} \operatorname{QE}$ however, does not exceed few percents affects differently μ and e can induce underrai $p_{b_L \mu_L} \approx 0.40$. The formula tion chechifapinnear sippedenthattimis effect still due to left-handed leptons. detailed phenomenological stu $R_K \simeq$ for R_{K^*} [29]. In the left panel plane due to turning on the various e indicating that the eleminant of the sea

> obywakteworkaded bywatoit $O_{L\mu_L}^{Philtoped}$ coltreation, ortantrowoticertspatalither physics, nicenticadequate for target for the finalities of the singlified of the sin

Neutral currents - Z'

• Simplified Z' model with purely LH couplings

[For an anomaly-free UV completion see e.g. Alonso, Cox, Han, Yanagida 1705.03858]

$$\mathcal{L}_{Z'} = \frac{1}{2} M_{Z'}^2 (Z'_\mu)^2 + \left(\lambda_{ij}^Q \,\bar{d}_L^i \gamma^\mu d_L^j + \lambda_{\alpha\beta}^L \,\bar{\ell}_L^\alpha \gamma^\mu \ell_L^\beta\right) Z'_\mu$$

$$C_{b_L\mu_L}^{\rm BSM} = -\frac{\pi}{\sqrt{2}G_F M_{Z'}^2 \alpha} \left(\frac{\lambda_{bs}^Q \lambda_{\mu\mu}^L}{V_{tb} V_{ts}^*}\right)$$

$$\mathcal{L}_{\Delta B=2}^{\mathrm{NP}} \supset -\frac{4G_F}{\sqrt{2}} \left(V_{tb} V_{ts}^* \right)^2 C_{bs}^{LL} \left[\bar{s}_L \gamma_\mu b_L \right]^2$$

$$C_{bs}^{LL} = \frac{1}{4\sqrt{2}G_F M_{Z'}^2} \left(\frac{\lambda_{bs}^Q}{V_{tb}V_{ts}^*}\right)^2 > 0$$

(assuming real couplings)

Global view on Z' par. space

• Simplified Z' model with purely LH couplings (assuming $\lambda_{bs}^Q = \lambda_{bb}^Q V_{ts}$)

Z' at future colliders

- <u>Pessimistic scenario</u>: only bs and mumu couplings fixed by anomaly
- $\frac{g_L^{bs} g_L^{\mu\mu}}{M_{Z'}^2} = \frac{1}{(31 \text{ TeV})^2}$
- Projected sensitivities of di-muons resonance searches [Allanach, Gripaios, You, 1710.06363]

[See also talk by Allanach]

Z' at future colliders

- <u>Pessimistic scenario</u>: only bs and mumu couplings fixed by anomaly $\frac{g_L^{bs}g_L^{\mu\mu}}{M_{Z'}^2} = \frac{1}{(31 \text{ TeV})^2}$
- Projected sensitivities of di-muons resonance searches [Allanach, Gripaios, You, 1710.06363]

Z' at future colliders

- <u>Pessimistic scenario</u>: only bs and mumu couplings fixed by anomaly $\frac{g_L^{bs}g_L^{\mu\mu}}{M_{Z'}^2} = \frac{1}{(31 \text{ TeV})^2}$
- Projected sensitivities of di-muons resonance searches [Allanach, Gripaios, You, 1710.06363]

• ΔM_s bound stronger than future colliders ?

[See also talk by Allanach]

How to fit the ΔM_s "discrepancy"

I) Complex couplings

$$C_{b_L\mu_L}^{\rm BSM} = -\frac{\pi}{\sqrt{2}G_F M_{Z'}^2 \alpha} \left(\frac{\lambda_{bs}^Q \lambda_{\mu\mu}^L}{V_{tb} V_{ts}^*}\right)$$

$$R_{K^{(*)}} \approx 1 + 2 \operatorname{Re} \left(\frac{C_{b_L \mu_L}^{\mathrm{BSM}}}{C_{b_L \mu_L}^{\mathrm{SM}}} \right)$$

Not strong dependence from Im part (as long as we are in the linear regime)

How to fit the ΔM_s "discrepancy"

I) Complex couplings

$$C_{b_L\mu_L}^{\rm BSM} = -\frac{\pi}{\sqrt{2}G_F M_{Z'}^2 \alpha} \left(\frac{\lambda_{bs}^Q \lambda_{\mu\mu}^L}{V_{tb} V_{ts}^*} \right)$$

$$\frac{M_{12}^{\rm SM+NP}}{M_{12}^{\rm SM}} \equiv |\Delta| \, e^{i\phi_{\Delta}}$$

$$\frac{\Delta M_s^{\rm Exp}}{\Delta M_s^{\rm SM}} = \left|\Delta\right| = \left|1 + \frac{C_{bs}^{LL}}{R_{\rm SM}^{\rm loop}}\right|$$

Blue and Red regions have a $|\sigma|$ overlap

How to fit the ΔM_s "discrepancy"

I) Complex couplings

$$C_{b_L\mu_L}^{\rm BSM} = -\frac{\pi}{\sqrt{2}G_F M_{Z'}^2 \alpha} \left(\frac{\lambda_{bs}^Q \lambda_{\mu\mu}^L}{V_{tb} V_{ts}^*} \right)$$

$$\frac{M_{12}^{\rm SM+NP}}{M_{12}^{\rm SM}} \equiv \left|\Delta\right| e^{i\phi_{\Delta}}$$

$$\phi_{\Delta} = \operatorname{Arg}\left(1 + \frac{C_{bs}^{LL}}{R_{\rm SM}^{\rm loop}}\right)$$

$$A_{\rm CP}^{\rm mix}(B_s \to J/\psi\phi) = \sin\left(\phi_\Delta - 2\beta_s\right)$$

 $A_{\rm CP}^{\rm mix} = -0.021 \pm 0.031 \qquad [{\rm HFLAV~I612.07233}]$ $\beta_s = 0.01852 \pm 0.00032 \qquad [{\rm CKMFitter}]$

CP violation in mixing limits imaginary part

[Bordone, Cornella, Fuentes-Martin, Isidori 1805.09328] L. Di Luzio (IPPP, Durham) - ΔM₅ interplay with B-anomalies

How to fit the ΔM_s "discrepancy"

I) Complex couplings

$$C_{b_L\mu_L}^{\rm BSM} = -\frac{\pi}{\sqrt{2}G_F M_{Z'}^2 \alpha} \left(\frac{\lambda_{bs}^Q \lambda_{\mu\mu}^L}{V_{tb} V_{ts}^*}\right)$$

Need <u>new phases close to maximal</u>

 $\mathrm{Arg}(\lambda^Q_{bs})\sim\pi/2$

not directly connected to $R(K^{(*)})$

Interesting option:

in UV compete models of vector leptoquark ($R(K^{(*)}) + R(D^{(*)})$) extra Z'/G' states can naturally (compatibly with a U(2) spurion analysis) accommodate that

λ^d_{bs}

How to fit the ΔM_s "discrepancy"

I) Complex couplings

2) RH currents contamination

$$\mathcal{L}_{Z'} \supset \frac{1}{2} M_{Z'}^2 (Z'_{\mu})^2 + \left(\lambda_{ij}^Q \,\bar{d}_L^i \gamma^{\mu} d_L^j + \lambda_{ij}^d \,\bar{d}_R^i \gamma^{\mu} d_R^j\right) Z'_{\mu}$$
$$\mathcal{L}_{Z'}^{\text{eff}} \supset -\frac{1}{2M_{Z'}^2} \left[(\lambda_{23}^Q)^2 \, (\bar{s}_L \gamma_{\mu} b_L)^2 + (\lambda_{23}^d)^2 \, (\bar{s}_R \gamma_{\mu} b_R)^2 + (\lambda_{23}^d)^2 \, (\bar{s}_R$$

L. Di Luzio (IPPP, Durham) - ΔM_s interplay with B-anomalies

How to fit the ΔM_s "discrepancy"

I) Complex couplings

2) RH currents contamination

$$\mathcal{L}_{Z'} \supset \frac{1}{2} M_{Z'}^2 (Z'_{\mu})^2 + \left(\lambda_{ij}^Q \bar{d}_L^i \gamma^{\mu} d_L^j + \lambda_{ij}^d \bar{d}_R^i \gamma^{\mu} d_R^j\right) Z'_{\mu}$$

$$\mathcal{L}_{Z'}^{\text{eff}} \supset -\frac{1}{2M_{Z'}^2} \left[(\lambda_{23}^Q)^2 (\bar{s}_L \gamma_{\mu} b_L)^2 + (\lambda_{23}^d)^2 (\bar{s}_R \gamma_{\mu} b_R)^2 + h.c. \right]$$

LR operator can have any sign and gets RG enhanced

However RH quark currents worsen the fit of neutral current anomalies

- 1. ΔM_s is a powerful test of the SM
- 2. If new physics in b \rightarrow s $\ell \ell$ natural to expect a deviation in ΔM_s

Looking forward for Lattice / HQET-SR updates !

Input parameters

Parameter	Value	Reference
M_W	80.385(15) GeV	PDG 2017
G_F	$1.1663787(6)10^{-5} \text{ GeV}^{-2}$	PDG 2017
\hbar	$6.582119514(40)10^{-25} \text{ GeV s}$	PDG 2017
M_{B_s}	$5.36689(19) { m GeV}$	PDG 2017
m_t	173.1(0.6) GeV	PDG 2017
$ar{m}_t(ar{m}_t)$	$165.65(57) { m GeV}$	own evaluation
$ar{m}_b(ar{m}_b)$	$4.203(25) { m GeV}$	NRSR
$\alpha_s(M_Z)$	0.1181(11)	PDG 2017
$\alpha_s(\overline{m}_b)$	0.2246(21)	own evaluation
$\Lambda^{(5)}$	$0.2259(68){ m GeV}$	own evaluation
V_{us}	$0.22508^{+0.00030}_{-0.00028}$	CKMfitter
V_{cb}	$0.04181^{+0.00028}_{-0.00060}$	CKMfitter
$ V_{ub}/V_{cb} $	0.0889(14)	CKMfitter
$\gamma_{ m CKM}$	$1.141_{-0.020}^{+0.017}$	CKMfitter
$f_{B_s}\sqrt{\hat{B}}$	274(8) MeV	FLAG

Error budget

$\Delta M_s^{\rm SM}$	This work	ABL 2015 [65]	LN 2011 [66]	LN 2006 [119]
Central Value	$20.01 \mathrm{ps}^{-1}$	$18.3{\rm ps}^{-1}$	$17.3{\rm ps}^{-1}$	$19.3{\rm ps}^{-1}$
$\delta(f_{B_s}\sqrt{B})$	5.8%	13.9%	13.5%	34.1%
$\delta(V_{cb})$	2.1%	4.9%	3.4%	4.9%
$\delta(m_t)$	0.7%	0.7%	1.1%	1.8%
$\delta(lpha_s)$	0.1%	0.1%	0.4%	2.0%
$\delta(\gamma_{ m CKM})$	0.1%	0.1%	0.3%	1.0%
$\delta(V_{ub}/V_{cb})$	< 0.1%	0.1%	0.2%	0.5%
$\delta(\overline{m}_b)$	< 0.1%	< 0.1%	0.1%	
$\sum \delta$	6.2%	14.8%	14.0%	34.6%

Scalar LQ

• $S_3 \sim (\bar{3}, 3, 1/3)$

$$\mathcal{L}_{S_3} = -M_{S_3}^2 |S_3^a|^2 + y_{i\alpha}^{QL} \overline{Q^c}^i (\epsilon \sigma^a) L^\alpha S_3^a$$

$$\delta C_9^{\mu} = -\delta C_{10}^{\mu} = \frac{\pi}{\sqrt{2}G_F M_{S_3}^2 \alpha} \left(\frac{y_{32}^{QL} y_{22}^{QL*}}{V_{tb} V_{ts}^*} \right)^2$$
$$C_{bs}^{LL} = \frac{1}{4\sqrt{2}G_F M_{S_3}^2} \frac{5}{64\pi^2} \left(\frac{y_{3\alpha}^{QL} y_{2\alpha}^{QL*}}{V_{tb} V_{ts}^*} \right)^2$$

Connection is "more direct" (compared to Z'), but bounds are weaker

Charged currents

• Connection between $R(D^{(*)})$ and ΔM_s in presence of an $SU(2)_L$ triplet op.

Vector LQ [UV complete]

• FCNC @ I-loop under control

[LDL, Fuentes-Martin, Greljo, Nardecchia, Renner 1808.00942]

$$\mathcal{H}_{\text{eff}}^{\text{NP}} = -\frac{g_4^4}{128\pi^2 m_U^2} \left(\bar{b}_L \gamma^{\mu} s_L \right) \left(\bar{b}_L \gamma_{\mu} s_L \right) \sum_{\alpha,\beta} \lambda_{\alpha} \lambda_{\beta} F(x_{\alpha}, x_{\beta})$$
$$\lambda_{\alpha} = \left(\mathcal{V}_{\alpha}^{\dagger} \right)_{\alpha b}^* \mathcal{V}_{\alpha s}^{\dagger} \qquad x_{\alpha} = m_{\alpha}^2 / M_U^2$$

 $\sum_{\alpha} \lambda_{\alpha} = 0$ ensures cancellation of quadratic divergencies + GIM-like suppression

 $F(x_{\alpha}, x_{\beta}) \simeq X + x_{\alpha} + x_{\beta} + \dots$

light lepton partners welcomed !

$$C^{LL}_{bs}\sim \Delta R^2_{D^{(*)}}M^2_U ~~ C^{LL}_{bs}\sim \Delta R^2_{D^{(*)}}M^2_L$$
 in absence of GIM protection

Vector LQ [UV complete]

• FCNC @ I-loop under control

[LDL, Fuentes-Martin, Greljo, Nardecchia, Renner 1808.00942]

