Heavy meson mixing and lifetimes from sum rules

Thomas Rauh
IPPP Durham

10th International Workshop on the CKM Unitarity Triangle
University of Heidelberg
18.09.18

Based on work in collaboration with
D. King, M. Kirk and A. Lenz
Mixing in the SM

\[i \frac{d}{dt} \left(\begin{array}{c} B_s^0(t) \\ \bar{B}_s^0(t) \end{array} \right) = \left(\hat{M}^s - \frac{i}{2} \hat{\Gamma}^s \right) \left(\begin{array}{c} B_s^0(t) \\ \bar{B}_s^0(t) \end{array} \right) \]

Factorizes into perturbative Wilson coefficients and hadronic matrix elements:

\[M_{12}^q = \frac{G_F^2}{16\pi^2} \lambda_t^2 M_W^2 S_0(x_t) \hat{n}_B \frac{\langle \bar{B}_q|Q_1|B_q \rangle}{2M_{B_q}} \]

\[\Gamma_{12}^q = -\frac{G_F^2 m_b^2}{24\pi M_{B_q}} \sum_{x=u,c} \sum_{y=u,c} \left[G_{1}^{q,xy} \langle \bar{B}_q|Q_1|B_q \rangle - G_{2}^{q,xy} \langle \bar{B}_q|Q_2|B_q \rangle \right] + \mathcal{O}(1/m_b) \]

Full basis of dimension-six operators (SM + BSM):

\[Q_1 = \bar{b}_i \gamma_\mu (1 - \gamma^5) q_i \bar{b}_j \gamma^\mu (1 - \gamma^5) q_j, \]
\[Q_2 = \bar{b}_i (1 - \gamma^5) q_i \bar{b}_j (1 - \gamma^5) q_j, \quad Q_3 = \bar{b}_i (1 - \gamma^5) q_j \bar{b}_j (1 - \gamma^5) q_i, \]
\[Q_4 = \bar{b}_i (1 - \gamma^5) q_i \bar{b}_j (1 + \gamma^5) q_j, \quad Q_5 = \bar{b}_i (1 - \gamma^5) q_j \bar{b}_j (1 + \gamma^5) q_i. \]
Matrix elements can be determined on the lattice. Currently dominated by one result FNAL/MILC 16

We want an independent determination!

\[
\langle Q(\mu) \rangle = A_Q f_B^2 M_B^2 B_Q(\mu)
\]

\[
A_{Q_1} = 2 + \frac{2}{N_c},
\]

\[
A_{Q_2} = \frac{M_B^2}{(m_b + m_q)^2} \left(-2 + \frac{1}{N_c} \right),
\]

\[
A_{Q_4} = \frac{2M_B^2}{(m_b + m_q)^2} + \frac{1}{N_c},
\]

\[
A_{Q_3} = \frac{M_B^2}{(m_b + m_q)^2} \left(1 - \frac{2}{N_c} \right),
\]

\[
A_{Q_5} = 1 + \frac{2M_B^2}{N_c(m_b + m_q)^2},
\]
HQET sum rules: decay constant

Sum rules give results which are truly independent from the lattice. Based on:

- Analyticity of correlation functions
- Quark-hadron duality

First consider the sum rule for the decay constant. Based on the two-point correlator:

\[\Pi(\omega) = i \int d^d x e^{i p x} \left\langle 0 \left| T \left[\tilde{j}_+^\dagger(0) \tilde{j}_+(x) \right] \right| 0 \right\rangle \]

\[\tilde{j}_+ = \bar{q} \gamma^5 h^{(+)} \quad \omega = p \cdot v \]

Use Cauchy’s residue theorem to derive a dispersion relation:

\[\Pi(\omega) = \frac{1}{2\pi i} \oint_C d\eta \frac{\Pi(\eta)}{\eta - \omega} \]
HQET sum rules: decay constant

Deform the contour:

\[\Pi(\omega) = \int_0^\infty d\eta \frac{\rho \Pi(\eta)}{\eta - \omega} + \int d\eta \frac{\Pi(\eta)}{\eta - \omega} \]
HQET sum rules: decay constant

Deform the contour:

\[
\Pi(\omega) = \int_0^\infty d\eta \frac{\rho \Pi(\eta)}{\eta - \omega} + \int d\eta \frac{\Pi(\eta)}{\eta - \omega}
\]

Can be computed with an OPE when \(\omega\) is far away from the physical cut
HQET sum rules: decay constant

Deform the contour:

\[\Pi(\omega) = \int_0^\infty d\eta \frac{\rho_{\Pi}(\eta)}{\eta - \omega} + \int d\eta \frac{\Pi(\eta)}{\eta - \omega} \]

Can be computed with an OPE when \(\omega \) is far away from the physical cut

Discontinuity

\[\rho_{\Pi}^{\text{had}}(\omega) = F^2(\mu)\delta(\omega - \Lambda) + \rho_{\Pi}^{\text{cont}}(\omega) \]

HQET decay constant
HQET sum rules: decay constant

Applying a Borel transform and a cutoff on the continuum part we obtain:

\[F^2(\mu) e^{-\frac{\Lambda^2}{\mu^2}} = \int_0^{\omega_c} d\omega e^{-\frac{\omega}{\mu^2}} \rho_{\Pi}^{\text{OPE}}(\omega) \]

Reference	Method	\(N_f \)	\(f_{B^+}(\text{MeV}) \)	\(f_{B_s}(\text{MeV}) \)	\(f_{B_s}/f_{B^+} \)
ETM 13 [85] *,† | LQCD | 2+1+1 | 196(9) | 235(9) | 1.201(25) |
HPQCD 13 [86] | LQCD | 2+1+1 | 184(4) | 224(5) | 1.217(8) |
Average | LQCD | 2+1+1 | 184(4) | 224(5) | 1.217(8) |
Aoki 14 [87] *,‡ | LQCD | 2+1 | 218.8(6.5)(30.8) | 263.5(4.8)(36.7) | 1.193(20)(44) |
RBC/UKQCD 14 [88] | LQCD | 2+1 | 195.6(6.4)(13.3) | 235.4(5.2)(11.1) | 1.223(14)(70) |
HPQCD 12 [89] * | LQCD | 2+1 | 191(1)(8) | 228(3)(10) | 1.188(12)(13) |
HPQCD 12 [89] * | LQCD | 2+1 | 189(3)(3)* | $-$ | $-$ |
HPQCD 11 [90] | LQCD | 2+1 | $-$ | 225(3)(3) | $-$ |
Fermilab/MILC 11 [69] | LQCD | 2+1 | 196.9(5.5)(7.0) | 242.0(5.1)(8.0) | 1.229(13)(23) |
Average | LQCD | 2+1 | 189.9(4.2) | 228.6(3.8) | 1.210(15) |
Our average | LQCD | Both | 187.1(4.2) | 227.2(3.4) | 1.215(7) |
Wang 15 [71] ‡ | QCD SR | $-$ | 194(15) | 231(16) | 1.19(10) |
Baker 13 [91] | QCD SR | $-$ | 186(14) | 222 (12) | 1.19(4) |
Lucha 13 [92] | QCD SR | $-$ | 192.0(14.6) | 228.0(19.8) | 1.184(24) |
Gelhausen 13 [72] | QCD SR | $-$ | 207(17) | 242(17) | 1.17(3) |
Narison 12 [73] | QCD SR | $-$ | 206(7) | 234(5) | 1.14(3) |
Hwang 09 [75] | LFQM | $-$ | 270.0(42.8) | $-$ | 1.32(8) |

Sum rules are in good agreement with lattice, but have larger uncertainties

[PDG '16]

[Broadhurst, Grozin '92; Bagan, Ball, Braun, Dosch '92; Neubert '92]
HQET sum rules: Bag parameters

Consider the three-point correlator:

\[K_{\tilde{Q}}(\omega_1, \omega_2) = \int d^d x_1 d^d x_2 e^{i p_1 \cdot x_1 - i p_2 \cdot x_2} \langle 0 | T [\tilde{j}_+(x_2) \tilde{Q}(0) \tilde{j}_-(x_1)] | 0 \rangle \]

Going through the same steps one obtains the sum rule: [Chetyrkin, Kataev, Krasulin, Pivovarov '86]

\[F^2(\mu) \langle \tilde{Q}(\mu) \rangle e^{-\frac{\Lambda}{t_1} - \frac{\Lambda}{t_2}} = \int_0^{\omega_c} d\omega_1 d\omega_2 e^{-\frac{\omega_1}{t_1} - \frac{\omega_2}{t_2}} \rho_{\tilde{Q}}^{\text{OPE}}(\omega_1, \omega_2) \]

\[\rho_{\tilde{Q}}^{\text{OPE}}(\omega_1, \omega_2) = \rho_{\tilde{Q}}^{\text{pert}}(\omega_1, \omega_2) + \rho_{\tilde{Q}}^{\langle \bar{q}q \rangle}(\omega_1, \omega_2)\langle \bar{q}q \rangle + \rho_{\tilde{Q}}^{\langle \alpha_s G^2 \rangle}(\omega_1, \omega_2)\langle \alpha_s G^2 \rangle + \ldots \]

In practise we compute the correlator and then take its double discontinuity.
Three-point correlator

NLO accuracy in the perturbative part requires a three-loop calculation:

\[
\rho_{Q_i}^{\text{pert}}(\omega_1, \omega_2) = A_{\tilde{Q}_i} \rho_{\Pi}(\omega_1) \rho_{\Pi}(\omega_2) + \frac{\omega_1^2 \omega_2^2}{\pi^4} \frac{\alpha_s}{4\pi} r_{\tilde{Q}_i} \left(\frac{\omega_2}{\omega_1}, L_\omega \right)
\]

Factorizable contribution, reproduces the vacuum saturation approximation B=1 (VSA)

Master integrals:
[Grozin, Lee '08]

Operator Q1:
[Grozin, Mannel, Klein, Pivovarov '16]

All dimension six operators:
[Kirk, Lenz, TR '17]

Non-factorizable contribution

\[
\begin{align*}
r_{\tilde{Q}_1}(x, L_\omega) &= 8 - \frac{a_2}{2} - \frac{8\pi^2}{3}, \\
r_{\tilde{Q}_2}(x, L_\omega) &= 25 + \frac{a_1}{2} - \frac{4\pi^2}{3} + 6L_\omega + \phi(x), \\
r_{\tilde{Q}_4}(x, L_\omega) &= 16 - \frac{a_3}{4} - \frac{4\pi^2}{3} + 3L_\omega + \frac{\phi(x)}{2}, \\
r_{\tilde{Q}_5}(x, L_\omega) &= 29 - \frac{a_3}{2} - \frac{8\pi^2}{3} + 6L_\omega + \phi(x).
\end{align*}
\]
Sum rule for Bag parameters

Formulate sum rule for deviation $\Delta B_{\bar{Q}_i}(\mu) = B_{\bar{Q}_i}(\mu) - 1$ from the HQET Bag parameters $\langle \bar{Q}(\mu) \rangle = A_{\bar{Q}_i} F^2(\mu) B_{\bar{Q}_i}(\mu)$.

$$\Delta B_{\bar{Q}_i} = \frac{1}{A_{\bar{Q}_i} F(\mu)^4 \int_d \omega_1 d\omega_2 e^{\frac{\Lambda_1 - \omega_1}{t_1} + \frac{\Lambda_2 - \omega_2}{t_2}} \Delta \rho_{\bar{Q}_i}(\omega_1, \omega_2)}$$

$$= \frac{1}{A_{\bar{Q}_i}} \left(\int^\omega_1 d\omega_2 e^{\frac{\omega_1}{t_1}} - \rho(\omega_1) \rho(\omega_2) \right) \left(\int^\omega_2 d\omega_1 e^{\frac{\omega_2}{t_2}} \rho(\omega_1) \rho(\omega_2) \right).$$

Dispersion relation is not violated by arbitrary analytical weight function (Note of caution: Duality breaks down for pathological choices)

$$F^4(\mu) e^{-\frac{\Lambda_1}{t_1} - \frac{\Lambda_2}{t_2}} w(\Lambda, \bar{\Lambda}) = \int d\omega_1 d\omega_2 e^{-\frac{\omega_1}{t_1} - \frac{\omega_2}{t_2}} w(\omega_1, \omega_2) \rho(\omega_1) \rho(\omega_2) + \ldots.$$

With an appropriate choice we obtain an analytic result for the pert contribution:

$$\Delta B_{\bar{Q}_i}^{\text{pert}}(\mu, \rho) = \frac{C_F}{N_c A_{\bar{Q}_i}} \frac{\alpha_s(\mu, \rho)}{4\pi} r_{\bar{Q}_i} \left(1 + \log \frac{\mu^2}{4\Lambda^2} \right).$$
SU(3) breaking effects

The exact calculation with non-zero strange-quark mass is very challenging. We need to resort to an expansion in m_s. This yields

$$\Delta B^{\text{pert}}_{\bar{Q}_i}(\mu_\rho) = \frac{C_F}{N_c A_{\bar{Q}_i}} \frac{\alpha_s(\mu_\rho)}{4\pi} \left\{ r^{(0)}_{\bar{Q}_i}(1) + \frac{2m_s}{\Lambda + m_s} \left[r^{(1)}_{\bar{Q}_i}(1) - r^{(0)}_{\bar{Q}_i}(1) \right]
ight\} + \frac{2m^2_s}{(\Lambda + m_s)^2} \left[r^{(2)}_{\bar{Q}_i}(1) - 2r^{(1)}_{\bar{Q}_i}(1) + 2r^{(0)}_{\bar{Q}_i}(1) \right] + \ldots$$

where

$$\Delta \rho_{\bar{Q}_i} \equiv \frac{N_c C_F \omega_1^2 \omega_2^2}{4} \frac{\alpha_s}{4\pi} \left[r^{(0)}_{\bar{Q}_i}(x, L_\omega) + \left(\frac{m_s}{\omega_1} + \frac{m_s}{\omega_2} \right) r^{(1)}_{\bar{Q}_i}(x, L_\omega) \right. \left. + \left(\frac{m^2_s}{\omega_1^2} + \frac{m^2_s}{\omega_2^2} \right) r^{(2)}_{\bar{Q}_i}(x, L_\omega) + \ldots \right] .$$

Expanded correlator can be computed by the method of regions. Only the ‘hard’ region contributes up to quadratic order.

[King, Lenz, TR: WIP]
Matrix elements for Bd mixing

- Determine HQET Bag parameters at low scale $\mu_\rho \sim 1.5$ GeV from sum rules
- Run up to $\mu_m \sim m_b$ and match to QCD Bag parameters at NLO
- Detailed analysis performed in 1711.02100

[Kirk, Lenz, TR '17]
Matrix elements for Bs mixing

- Determine HQET Bag parameters at low scale $\mu_\rho \sim 1.5$ GeV from sum rules.
- Run up to $\mu_m \sim m_b$ and match to QCD Bag parameters at NLO.
- Includes SU(3) breaking effects up to m_s^2.

[King, Lenz, TR: WIP]
Bs-mixing observables

Update of 1711.02100 with CKM elements from CKMFitter, new decay constants from [FNAL/MILC '17] and including SU(3) breaking effects:

\[
\Delta M_s^{\exp} = (17.757 \pm 0.021) \, \text{ps}^{-1}, \\
\Delta M_s^{\text{SM}} = (18.1 \pm 1.1 \, \text{(had.)}) \\
\quad \pm 0.1 \, \text{(scale)} \\
\quad ^{+0.2}_{-0.5} \, \text{(param.}) \, \text{ps}^{-1},
\]

\[
\Delta \Gamma_s^{\exp} = (0.090 \pm 0.005) \, \text{ps}^{-1}, \\
\Delta \Gamma_s^{\text{PS}} = (0.089 \pm 0.020 \, \text{(had.)}) \\
\quad ^{+0.008}_{-0.021} \, \text{(scale)} \\
\quad ^{+0.001}_{-0.003} \, \text{(param.}) \, \text{ps}^{-1},
\]

\[
a_{s,\text{exp}}^{s,\text{PS}} = (-60 \pm 280) \cdot 10^{-5}, \\
a_{s,\text{PS}}^{s,\text{PS}} = (1.8 \pm 0.0 \, \text{(had.)}) \\
\quad ^{+0.0}_{-0.1} \, \text{(scale)} \\
\quad \pm 0.1 \, \text{(param.}) \cdot 10^{-5},
\]
Bd-mixing observables

Update of 1711.02100 with CKM elements from CKMFitter and new decay constants from [FNAL/MILC '17]:

\[
\Delta M_{d}^{\exp} = (0.5065 \pm 0.0019) \text{ ps}^{-1}, \\
\Delta M_{d}^{\text{SM}} = (0.53 \pm 0.03 \text{ (had.)} \\
\pm 0.00 \text{ (scale)} \\
\pm 0.02 \text{ (param.)}) \text{ ps}^{-1},
\]

\[
\Delta \Gamma_{d}^{\exp} = (-1.3 \pm 6.6) \cdot 10^{-3} \text{ ps}^{-1}, \\
\Delta \Gamma_{d}^{\text{PS}} = (2.5 \pm 0.6 \text{ (had.)} \\
\pm 0.2 \text{ (scale)} \\
\pm 0.1 \text{ (param.)}) \cdot 10^{-3} \text{ ps}^{-1},
\]

\[
a_{s_{l}}^{d, \exp} = (-21 \pm 17) \cdot 10^{-4}, \\
a_{s_{l}}^{d, \text{PS}} = (-4.2 \pm 0.1 \text{ (had.)} \\
\pm 0.2 \text{ (scale)} \\
\pm 0.2 \text{ (param.)}) \cdot 10^{-4},
\]
\[\Delta B = 0 \text{ Bag parameters} \]

[Kirk, Lenz, TR '17]

\[
\begin{align*}
\frac{\tau(B^+)}{\tau(B^0)} \bigg|_{\text{exp}} & = 1.076 \pm 0.004, \\
\frac{\tau(B^+)}{\tau(B^0)} \bigg|_{\text{PS}} & = 1.082 \pm 0.021 \text{ (had.)} +0.000 \text{ (scale)} \pm 0.006 \text{ (param.)}, \\
\frac{\tau(B_s^0)}{\tau(B_s^0)} \bigg|_{\text{exp}} & = 0.994 \pm 0.004, \\
\frac{\tau(B_s^0)}{\tau(B_s^0)} \bigg|_{\text{MS}} & = 0.9994 \pm 0.0014 \text{ (had.)} \pm 0.0006 \text{ (scale)} \pm 0.0020 \left(\frac{1}{m_b^4}\right),
\end{align*}
\]
D lifetimes as test of HQE

HQE even provides good description of lifetimes in charm sector:

\[
\frac{\tau(D^+)}{\tau(D^0)} \bigg|_{\text{exp}} = 2.536 \pm 0.019, \quad \frac{\tau(D^+)}{\tau(D^0)} \bigg|_{\text{HQE}} = 2.7^{+0.7}_{-0.8}, \quad [\text{Kirk, Lenz, TR '17}]
\]

\[
\frac{\tau(D^+)}{\tau(D^0)} \bigg|_{\text{exp}} = 1.292 \pm 0.019, \quad \frac{\tau(D^+)}{\tau(D^0)} \bigg|_{\text{HQE}} = 1.19 \pm 0.13. \quad [\text{Lenz, TR '13}]
\]

Good convergence:
NLO QCD $+28\%$, $1/mc -34\%$.
Good behaviour under scale variation above about 1 GeV.
Overview of lifetime ratios from sum rules

\[\tau(D^+)/\tau(D^0) \]
- HFLAV: 2.536 ± 0.019
- HQE: 2.7^{+0.74}_{-0.82}

\[\tau(B_s^0)/\tau(B_d^0) \]
- HFLAV: 0.994 ± 0.004
- HQE: 0.9994 ± 0.0025

\[\tau(B^+)/\tau(B_d^0) \]
- HFLAV: 1.076 ± 0.004
- HQE: 1.082^{+0.022}_{-0.026}

[Kirk, Lenz, TR '17]
Overview of lifetime ratios from sum rules

SU(3) breaking effects in matrix elements can also be determined with the strategy of ms-expansion

[Kirk, Lenz, TR '17]
Conclusions & outlook

• Sum rules provide highly competitive alternative to lattice simulations for the matrix elements of 4-quark operators and truly independent comparisons.

• The HQE is in terrific shape. Lifetimes even look promising in the charm sector.

• Mixing gives strong constraints on models that are frequently invoked to explain the current 'anomalies'. [cf. talk by L. Di Luzio in WG4 Tue 10:20]

• First state-of-the-art results for $\Delta F = 0$ matrix elements. Confirmation from lattice would be interesting.
SINCE YEARS OF BEGGING DID NOT HELP – IT’S TIME TO PROVOKE

Lifetimes are too heavy for lattice physicists!

The strongest lattice researcher alive

Arbitrary sum rule researcher

Matrix elements for lifetimes of HEAVY mesons

[Lenz Implications '17]
Conclusions & outlook

- Sum rules provide highly competitive alternative to lattice simulations for the matrix elements of 4-quark operators and truly independent comparisons.
- The HQE is in terrific shape. Lifetimes even look promising in the charm sector.
- Mixing gives strong constraints on models that are frequently invoked to explain the current 'anomalies'. [cf. talk by L. Di Luzio in WG4 Tue 10:20]
- First state-of-the-art results for $\Delta F = 0$ matrix elements. Confirmation from lattice would be interesting.

- NNLO QCD-HQET matching calculations can significantly decrease uncertainties for dimension-six operators. Q1: [Grozin, Mannel, Pivovarev '17,18, cf talk by T. Mannel in WG4 Tue 9:55]

- Uncertainties in decay rate difference and lifetimes can be reduced considerably by a sum rule determination of the dimension seven matrix elements.
Heavy quark expansion in charm?

B-physics: HQE is well established approach, $\Lambda/m_b \sim 0.2 \ll 1$

D-physics: HQE commonly dismissed, $\Lambda/m_c \sim 0.2 m_b/m_c \sim 0.7 \approx 1$

BUT: HQE is really an expansion in Λ/momentum release
- $\Delta \Gamma_s$ dominated by $D_s^{(*)+} D_s^{(*)-}$ final state, momentum release ~ 3.5 GeV
- D decays dominated by $K\pi^{(1-3)}$ final state, momentum release ~ 1.7 GeV
- expected expansion parameter is of the order 0.4

Small enough for convergence?

Shut up and calculate!
Matrix elements

- Good agreement with lattice (using lattice results for the decay constant)
- Larger uncertainties due to lower matching scale
- Also: first determination of $\Delta C = 0$ matrix elements in 1711.02100
Uncertainties

<table>
<thead>
<tr>
<th>$\Delta B = 2$</th>
<th>$\overline{\Lambda}$</th>
<th>intrinsic SR</th>
<th>condensates</th>
<th>μ_p</th>
<th>$1/m_b$</th>
<th>μ_m</th>
<th>a_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{B}_{Q_1}</td>
<td>$+0.001$</td>
<td>± 0.018</td>
<td>± 0.004</td>
<td>$+0.011$</td>
<td>± 0.010</td>
<td>$+0.045$</td>
<td>$+0.007$</td>
</tr>
<tr>
<td>± 0.002</td>
<td></td>
<td></td>
<td></td>
<td>-0.022</td>
<td></td>
<td>-0.039</td>
<td></td>
</tr>
<tr>
<td>\overline{B}_{Q_2}</td>
<td>$+0.014$</td>
<td>∓ 0.020</td>
<td>± 0.004</td>
<td>$+0.012$</td>
<td>± 0.010</td>
<td>$+0.071$</td>
<td>$+0.015$</td>
</tr>
<tr>
<td>-0.017</td>
<td></td>
<td></td>
<td></td>
<td>-0.019</td>
<td></td>
<td>-0.062</td>
<td></td>
</tr>
<tr>
<td>\overline{B}_{Q_3}</td>
<td>$+0.060$</td>
<td>± 0.107</td>
<td>± 0.023</td>
<td>$+0.016$</td>
<td>± 0.010</td>
<td>$+0.086$</td>
<td>$+0.053$</td>
</tr>
<tr>
<td>-0.074</td>
<td></td>
<td></td>
<td></td>
<td>-0.008</td>
<td></td>
<td>-0.069</td>
<td></td>
</tr>
<tr>
<td>\overline{B}_{Q_4}</td>
<td>$+0.007$</td>
<td>± 0.021</td>
<td>± 0.011</td>
<td>$+0.003$</td>
<td>± 0.010</td>
<td>$+0.088$</td>
<td>$+0.005$</td>
</tr>
<tr>
<td>-0.006</td>
<td></td>
<td></td>
<td></td>
<td>-0.003</td>
<td></td>
<td>-0.079</td>
<td></td>
</tr>
<tr>
<td>\overline{B}_{Q_5}</td>
<td>$+0.019$</td>
<td>± 0.018</td>
<td>± 0.009</td>
<td>$+0.004$</td>
<td>± 0.010</td>
<td>$+0.077$</td>
<td>$+0.012$</td>
</tr>
<tr>
<td>-0.015</td>
<td></td>
<td></td>
<td></td>
<td>-0.006</td>
<td></td>
<td>-0.068</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\Delta B = 0$</th>
<th>$\overline{\Lambda}$</th>
<th>intrinsic SR</th>
<th>condensates</th>
<th>μ_p</th>
<th>$1/m_b$</th>
<th>μ_m</th>
<th>a_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{B}_1</td>
<td>$+0.003$</td>
<td>± 0.019</td>
<td>± 0.002</td>
<td>$+0.002$</td>
<td>± 0.010</td>
<td>$+0.060$</td>
<td>$+0.002$</td>
</tr>
<tr>
<td>-0.002</td>
<td></td>
<td></td>
<td></td>
<td>-0.002</td>
<td></td>
<td>-0.052</td>
<td></td>
</tr>
<tr>
<td>\overline{B}_2</td>
<td>$+0.001$</td>
<td>∓ 0.020</td>
<td>± 0.002</td>
<td>$+0.000$</td>
<td>± 0.010</td>
<td>$+0.084$</td>
<td>$+0.001$</td>
</tr>
<tr>
<td>-0.001</td>
<td></td>
<td></td>
<td></td>
<td>-0.001</td>
<td></td>
<td>-0.076</td>
<td></td>
</tr>
<tr>
<td>\overline{c}_1</td>
<td>$+0.006$</td>
<td>± 0.022</td>
<td>± 0.003</td>
<td>$+0.003$</td>
<td>± 0.010</td>
<td>$+0.010$</td>
<td>$+0.006$</td>
</tr>
<tr>
<td>-0.007</td>
<td></td>
<td></td>
<td></td>
<td>-0.003</td>
<td></td>
<td>-0.012</td>
<td></td>
</tr>
<tr>
<td>\overline{c}_2</td>
<td>$+0.005$</td>
<td>± 0.017</td>
<td>± 0.003</td>
<td>$+0.002$</td>
<td>± 0.010</td>
<td>$+0.001$</td>
<td>$+0.003$</td>
</tr>
<tr>
<td>-0.006</td>
<td></td>
<td></td>
<td></td>
<td>-0.001</td>
<td></td>
<td>-0.002</td>
<td></td>
</tr>
</tbody>
</table>
Uncertainties

<table>
<thead>
<tr>
<th>$\Delta C = 2$</th>
<th>$\bar{\Lambda}$</th>
<th>intrinsic SR</th>
<th>condensates</th>
<th>μ_ρ</th>
<th>$1/m_c$</th>
<th>μ_m</th>
<th>a_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{B}_{Q_1}</td>
<td>$+0.001$</td>
<td>± 0.013</td>
<td>± 0.003</td>
<td>$+0.009$</td>
<td>± 0.030</td>
<td>$+0.039$</td>
<td>± 0.003</td>
</tr>
<tr>
<td></td>
<td>-0.002</td>
<td></td>
<td></td>
<td>-0.021</td>
<td></td>
<td>-0.021</td>
<td></td>
</tr>
<tr>
<td>\bar{B}_{Q_2}</td>
<td>$+0.011$</td>
<td>∓ 0.015</td>
<td>± 0.003</td>
<td>$+0.010$</td>
<td>± 0.030</td>
<td>$+0.092$</td>
<td>± 0.012</td>
</tr>
<tr>
<td></td>
<td>-0.014</td>
<td></td>
<td></td>
<td>-0.016</td>
<td></td>
<td>-0.050</td>
<td></td>
</tr>
<tr>
<td>\bar{B}_{Q_3}</td>
<td>$+0.037$</td>
<td>± 0.059</td>
<td>± 0.013</td>
<td>$+0.016$</td>
<td>± 0.030</td>
<td>$+0.116$</td>
<td>± 0.016</td>
</tr>
<tr>
<td></td>
<td>-0.045</td>
<td></td>
<td></td>
<td>-0.016</td>
<td></td>
<td>-0.059</td>
<td></td>
</tr>
<tr>
<td>\bar{B}_{Q_4}</td>
<td>$+0.006$</td>
<td>± 0.017</td>
<td>± 0.009</td>
<td>$+0.003$</td>
<td>± 0.030</td>
<td>$+0.131$</td>
<td>± 0.004</td>
</tr>
<tr>
<td></td>
<td>-0.005</td>
<td></td>
<td></td>
<td>-0.003</td>
<td></td>
<td>-0.071</td>
<td></td>
</tr>
<tr>
<td>\bar{B}_{Q_5}</td>
<td>$+0.014$</td>
<td>± 0.014</td>
<td>± 0.007</td>
<td>$+0.004$</td>
<td>± 0.030</td>
<td>$+0.127$</td>
<td>± 0.004</td>
</tr>
<tr>
<td></td>
<td>-0.012</td>
<td></td>
<td></td>
<td>-0.005</td>
<td></td>
<td>-0.069</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\Delta C = 0$</th>
<th>$\bar{\Lambda}$</th>
<th>intrinsic SR</th>
<th>condensates</th>
<th>μ_ρ</th>
<th>$1/m_c$</th>
<th>μ_m</th>
<th>a_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{B}_1</td>
<td>$+0.004$</td>
<td>± 0.017</td>
<td>± 0.002</td>
<td>$+0.002$</td>
<td>± 0.030</td>
<td>$+0.068$</td>
<td>$+0.003$</td>
</tr>
<tr>
<td></td>
<td>-0.003</td>
<td></td>
<td></td>
<td>-0.002</td>
<td></td>
<td>-0.037</td>
<td></td>
</tr>
<tr>
<td>\bar{B}_2</td>
<td>$+0.001$</td>
<td>∓ 0.015</td>
<td>± 0.001</td>
<td>$+0.000$</td>
<td>± 0.030</td>
<td>$+0.120$</td>
<td>$+0.000$</td>
</tr>
<tr>
<td></td>
<td>-0.000</td>
<td></td>
<td></td>
<td>-0.000</td>
<td></td>
<td>-0.065</td>
<td></td>
</tr>
<tr>
<td>\bar{t}_1</td>
<td>$+0.007$</td>
<td>± 0.024</td>
<td>± 0.004</td>
<td>$+0.003$</td>
<td>± 0.030</td>
<td>$+0.012$</td>
<td>$+0.006$</td>
</tr>
<tr>
<td></td>
<td>-0.008</td>
<td></td>
<td></td>
<td>-0.004</td>
<td></td>
<td>-0.022</td>
<td></td>
</tr>
<tr>
<td>\bar{t}_2</td>
<td>$+0.003$</td>
<td>± 0.011</td>
<td>± 0.002</td>
<td>$+0.001$</td>
<td>± 0.030</td>
<td>$+0.000$</td>
<td>$+0.001$</td>
</tr>
<tr>
<td></td>
<td>-0.004</td>
<td></td>
<td></td>
<td>-0.001</td>
<td></td>
<td>-0.000</td>
<td></td>
</tr>
</tbody>
</table>
Uncertainties

<table>
<thead>
<tr>
<th></th>
<th>ΔM_{s}^{SM} [ps$^{-1}$]</th>
<th>$\Delta \Gamma_{s}^{\text{PS}}$ [ps$^{-1}$]</th>
<th>a_{s}^{PS} [10$^{-5}$]</th>
<th></th>
<th>ΔM_{d}^{SM} [ps$^{-1}$]</th>
<th>$\Delta \Gamma_{d}^{\text{PS}}$ [10$^{-3}$ ps$^{-1}$]</th>
<th>a_{s}^{PS} [10$^{-4}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{B}_{Q1}</td>
<td>± 1.1</td>
<td>± 0.005</td>
<td>± 0.01</td>
<td>\bar{B}_{Q1}</td>
<td>± 0.04</td>
<td>± 0.16</td>
<td>± 0.02</td>
</tr>
<tr>
<td>\bar{B}_{Q3}</td>
<td>± 0.0</td>
<td>± 0.005</td>
<td>± 0.01</td>
<td>\bar{B}_{Q3}</td>
<td>± 0.00</td>
<td>± 0.17</td>
<td>± 0.03</td>
</tr>
<tr>
<td>\bar{B}_{R0}</td>
<td>± 0.0</td>
<td>± 0.003</td>
<td>± 0.00</td>
<td>\bar{B}_{R0}</td>
<td>± 0.00</td>
<td>± 0.11</td>
<td>± 0.01</td>
</tr>
<tr>
<td>\bar{B}_{R1}</td>
<td>± 0.0</td>
<td>± 0.000</td>
<td>± 0.00</td>
<td>\bar{B}_{R1}</td>
<td>± 0.00</td>
<td>± 0.01</td>
<td>± 0.00</td>
</tr>
<tr>
<td>\bar{B}_{R1}'</td>
<td>± 0.0</td>
<td>± 0.000</td>
<td>± 0.00</td>
<td>\bar{B}_{R1}'</td>
<td>± 0.00</td>
<td>± 0.01</td>
<td>± 0.00</td>
</tr>
<tr>
<td>\bar{B}_{R2}</td>
<td>± 0.0</td>
<td>± 0.016</td>
<td>± 0.00</td>
<td>\bar{B}_{R2}</td>
<td>± 0.00</td>
<td>± 0.54</td>
<td>± 0.00</td>
</tr>
<tr>
<td>\bar{B}_{R3}</td>
<td>± 0.0</td>
<td>± 0.001</td>
<td>± 0.02</td>
<td>\bar{B}_{R3}</td>
<td>± 0.00</td>
<td>± 0.00</td>
<td>± 0.04</td>
</tr>
<tr>
<td>\bar{B}_{R3}'</td>
<td>± 0.0</td>
<td>± 0.000</td>
<td>± 0.05</td>
<td>\bar{B}_{R3}'</td>
<td>± 0.00</td>
<td>± 0.01</td>
<td>± 0.09</td>
</tr>
<tr>
<td>f_{B_s}</td>
<td>± 0.5</td>
<td>± 0.002</td>
<td>± 0.00</td>
<td>f_{B}</td>
<td>± 0.03</td>
<td>± 0.11</td>
<td>± 0.00</td>
</tr>
<tr>
<td>μ_1</td>
<td>± 0.0</td>
<td>+0.007</td>
<td>+0.04</td>
<td>μ_1</td>
<td>± 0.00</td>
<td>+0.24</td>
<td>+0.17</td>
</tr>
<tr>
<td>μ_2</td>
<td>± 0.1</td>
<td>+0.000</td>
<td>+0.01</td>
<td>μ_2</td>
<td>± 0.00</td>
<td>+0.00</td>
<td>+0.01</td>
</tr>
<tr>
<td>m_b</td>
<td>± 0.0</td>
<td>+0.000</td>
<td>+0.01</td>
<td>m_b</td>
<td>± 0.00</td>
<td>+0.01</td>
<td>+0.01</td>
</tr>
<tr>
<td>m_c</td>
<td>± 0.0</td>
<td>+0.000</td>
<td>+0.06</td>
<td>m_c</td>
<td>± 0.00</td>
<td>+0.01</td>
<td>+0.03</td>
</tr>
<tr>
<td>α_s</td>
<td>± 0.0</td>
<td>± 0.000</td>
<td>+0.41</td>
<td>α_s</td>
<td>± 0.00</td>
<td>± 0.02</td>
<td>± 0.13</td>
</tr>
<tr>
<td>CKM</td>
<td>$^{+1.4}_{-1.3}$</td>
<td>± 0.006</td>
<td>$^{+0.21}_{-0.22}$</td>
<td>CKM</td>
<td>± 0.08</td>
<td>$^{+0.38}_{-0.37}$</td>
<td>$^{+0.48}_{-0.44}$</td>
</tr>
</tbody>
</table>
Uncertainties

<table>
<thead>
<tr>
<th>\bar{B}_1</th>
<th>\bar{B}_2</th>
<th>$\bar{\epsilon}_1$</th>
<th>$\bar{\epsilon}_2$</th>
<th>ρ_3</th>
<th>ρ_4</th>
<th>σ_3</th>
<th>σ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 0.002</td>
<td>± 0.000</td>
<td>$^{+0.016}_{-0.015}$</td>
<td>± 0.004</td>
<td>± 0.001</td>
<td>± 0.000</td>
<td>± 0.013</td>
<td>± 0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_B</th>
<th>μ_1</th>
<th>μ_0</th>
<th>m_b</th>
<th>m_c</th>
<th>α_s</th>
<th>CKM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{+0.004}_{-0.003}$</td>
<td>$^{+0.000}_{-0.013}$</td>
<td>$^{+0.000}_{-0.006}$</td>
<td>$^{+0.000}_{-0.001}$</td>
<td>± 0.000</td>
<td>± 0.002</td>
<td>± 0.006</td>
</tr>
</tbody>
</table>

Table 8: Individual errors for the ratio $\tau(B^+)/\tau(B^0)$ in the PS mass scheme.

<table>
<thead>
<tr>
<th>\bar{B}_1</th>
<th>\bar{B}_2</th>
<th>$\bar{\epsilon}_1$</th>
<th>$\bar{\epsilon}_2$</th>
<th>ρ_3</th>
<th>ρ_4</th>
<th>σ_3</th>
<th>σ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{+0.07}_{-0.05}$</td>
<td>± 0.00</td>
<td>$^{+0.52}_{-0.47}$</td>
<td>± 0.017</td>
<td>± 0.05</td>
<td>± 0.00</td>
<td>± 0.46</td>
<td>± 0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_B</th>
<th>μ_1</th>
<th>μ_0</th>
<th>m_c</th>
<th>m_s</th>
<th>α_s</th>
<th>CKM</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 0.08</td>
<td>$^{+0.07}_{-0.40}$</td>
<td>$^{+0.08}_{-0.21}$</td>
<td>± 0.08</td>
<td>± 0.00</td>
<td>$^{+0.07}_{0.06}$</td>
<td>± 0.00</td>
</tr>
</tbody>
</table>

Table 9: Individual errors for the ratio $\tau(D^+)/\tau(D^0)$ in the PS mass scheme.