CKM - 20 September 2018 - Heidelberg, Germany

Probing New Physics $\text{in } B \to \pi K \text{ Decays}$

Ruben Jaarsma (Nikhef)

Based on:

R. Fleischer, R. Jaarsma, and K. K. Vos; PLB 785 (2018) 525; arXiv:1712.02323 [hep-ph]

R. Fleischer, R. Jaarsma, E. Malami, and K. K. Vos; arXiv:1806.08783 [hep-ph]

Introduction to decays $B \rightarrow \pi K$

Phenomenology

- ❖ Tree topologies suppressed by CKM element *Vub*
- ❖ **Leading contribution from QCD penguins**
- ❖ **CA EW penguins at same level as tree topologies**
- ❖ QCD flavour symmetry to link topologies

$B \rightarrow \pi K$ decays

- ❖ Decays in the spotlight for over 2 decades
- \ast Particular $B_d^0 \rightarrow \pi^0 K_S$ interesting: only channel with **mixing-induced CP asymmetry**

- ❖ Puzzling data in correlation between CP asymmetries [R. Fleischer, S. Jäger, D. Pirjol, J. Zupan (2008)]
- ❖ Modified EWP sector?

$B \rightarrow \pi K$ decays

- ❖ What is the status of these decays?
- ❖ Little attention in recent years:
	- ❖ Neutral final state challenging for LHCb, good potential for upcoming Belle II experiment
- ❖ Difficult from theory side (QCD), but we can learn a lot!

We shall provide the state-of-the-art picture

decays *B* → *πK*in detail

Amplitudes

❖ General parametrization: [A. J. Buras, R. Fleischer, S. Recksiegel, F. Schwab (2004)]

 $A(B^{+} \to \pi^{+} K^{0}) = - P' [1 + \rho_{c} e^{i\theta_{c}} e^{i\gamma}]$

colour-suppressed EWP and annihilation

 $A(B_d^0 \rightarrow \pi^- K^+) = P' [1 - r e^{i\delta} e^{i\gamma}]$ $2A(B^+ \to \pi^0 K^+) = P'[1 + \rho_c e^{i\theta_c} e^{i\gamma} - (e^{i\gamma} - q e^{i\phi} e^{i\omega})r_c e^{i\delta_c}]$

$$
\sqrt{2}A(B_d^0 \to \pi^0 K^0) = -P'[1 + \rho_n e^{i\theta_n} e^{i\gamma} - q e^{i\phi} e^{i\omega} r_c e^{i\delta_c}]
$$

- **← CP-conserving strong amplitude** $P' = (1 \lambda^2/2)A\lambda^2(P_t P_c)$ CKM parameters
- ❖ Amplitudes satisfy isospin relation

(Wolfenstein parametrization)

Neglect small

Parameters discussed

on next slides

$$
\sqrt{2}A(B_d^0 \to \pi^0 K^0) + A(B_d^0 \to \pi^- K^+) =
$$

$$
\sqrt{2}A(B^+ \to \pi^0 K^+) + A(B^+ \to \pi^+ K^0) = 3A_{3/2}
$$

$$
3A_{3/2} \equiv 3 |A_{3/2}| e^{i\phi_{3/2}} = -(\hat{T} + \hat{C})(e^{i\gamma} - q e^{i\phi} e^{i\omega})
$$

[Y. Nir, H. R. Quinn (1991); M. Gronau, O. F. Hernández, D. London, J. L. Rosner (1995)]

Amplitudes

Reminder: *T*: colour-allowed (CA) tree *C*: colour-suppressed (CS) tree *P*: QCD penguin

❖ Hadronic parameters:

$$
re^{i\delta} \equiv \left(\frac{\lambda^2 R_b}{1 - \lambda^2}\right) \left[\frac{T - (P_t - P_u)}{P_t - P_c}\right], \qquad \rho_c e^{i\theta_c} \equiv \left(\frac{\lambda^2 R_b}{1 - \lambda^2}\right) \left[\frac{P_t - P_u}{P_t - P_c}\right] \approx 0,
$$

$$
r_{\rm c}e^{i\delta_{\rm c}} \equiv \left(\frac{\lambda^2 R_b}{1 - \lambda^2}\right) \left[\frac{T + C}{P_t - P_c}\right], \qquad \rho_{\rm n}e^{i\theta_{\rm n}} \equiv \left(\frac{\lambda^2 R_b}{1 - \lambda^2}\right) \left[\frac{C + (P_t - P_u)}{P_t - P_c}\right] = r_{\rm c}e^{i\delta_{\rm c}} - r e^{i\delta_{\rm c}}
$$

❖ are non-perturbative, challenging to calculate from first principles *r*c*eiδ*^c , *rei^δ*

 \ast Use $B \to \pi\pi$ and $SU(3)$ flavour symmetry [A. J. Buras, R. Fleischer, S. Recksiegel, F. Schwab (2004)] $r_{\rm c}e^{i\delta_{\rm c}} = (0.17 \pm 0.06)e^{i(1.9 \pm 23.9)^{\circ}},$ $re^{i\delta} = (0.09 \pm 0.03)e^{i(28.6 \pm 21.4)^{\circ}},$

❖ Assumes 20% non-factorizable *SU*(3)-breaking corrections (guided by data)

Electroweak penguins

❖ The parameter describes EW penguin effects: *qeiϕei^ω*

[See e.g. R. Fleischer (1995); A. J. Buras, R. Fleischer (1998); M. Neubert, J. L. Rosner (1998)]

observables $B \rightarrow \pi K$

Branching ratios

Experiment: $R = 0.89 \pm 0.04$ $R_{\rm n} = 0.99 \pm 0.06$, $R_c = 1.09 \pm 0.06$, [PDG (2016)]

❖ First observables:

(Ratios of) CP-averaged branching ratios [A. J. Buras, R. Fleischer, S. Recksiegel, F. Schwab (2004)]

$$
R_{\rm c} \equiv 2 \left[\frac{\mathcal{B}r(B^{\pm} \to \pi^{0} K^{\pm})}{\mathcal{B}r(B^{\pm} \to \pi^{\pm} K)} \right] = 1 - 2r_{\rm c} \cos \delta_{\rm c}(\cos \gamma - q \cos \phi) + \mathcal{O}(r_{\rm c}^{2}),
$$

\nExpansion in small $r_{\rm (c)}$
\n
$$
R_{\rm n} \equiv \frac{1}{2} \left[\frac{\mathcal{B}r(B_{d} \to \pi^{\mp} K^{\pm})}{\mathcal{B}r(B_{d} \to \pi^{0} K)} \right] = 1 - 2r_{\rm c} \cos \delta_{\rm c}(\cos \gamma - q \cos \phi) + \mathcal{O}(r_{\rm c}^{2}),
$$

\n
$$
R \equiv \left[\frac{\mathcal{B}r(B_{d} \to \pi^{\mp} K^{\pm})}{\mathcal{B}r(B^{\pm} \to \pi^{\pm} K)} \right] \frac{\tau_{B^{\pm}}}{\tau_{B_{d}}} = 1 - 2r \cos \delta \cos \gamma + 2r_{\rm c} \tilde{a}_{\rm c} q \cos \phi + \mathcal{O}(r_{\rm (c)}^{2})
$$

\nColour-suppressed (CS) EWP parameter $\tilde{a}_{\rm C} \equiv a_{\rm C} \cos(\Delta_{\rm C} + \delta_{\rm c})$

- **► We obtain the relation:** $R_c R_n = 0 + \mathcal{O}(r_c^2)$
- ❖ Is satisfied experimentally at the 1*σ* level

Direct CP asymmetries

- Interference of penguin and tree ➥ *direct CP asymmetry Af* CP
- \ast Proportional to $r_{(c)}$ sin $\delta_{(c)}$ → values at $\mathcal{O}(10\%)$ level
- ❖ Direct CP asymmetries and branching ratios satisfy sum rule: [M. Gronau (2005); M. Gronau, J. L. Rosner (2006)]

$$
\Delta_{\rm SR} \equiv \begin{bmatrix}\nA_{\rm CP}^{\pi^+ K^0} \frac{\mathcal{B}r(\pi^+ K^0)}{\mathcal{B}r(\pi^- K^+)} - A_{\rm CP}^{\pi^0 K^+} \frac{2\mathcal{B}r(\pi^0 K^+)}{\mathcal{B}r(\pi^- K^+)} \end{bmatrix}\n\begin{bmatrix}\n\tau_{B_d} \\
\tau_{B^\pm} \\
\tau_{B^\pm}\n\end{bmatrix} \\
+ A_{\rm CP}^{\pi^- K^+} - A_{\rm CP}^{\pi^0 K^0} \frac{2\mathcal{B}r(\pi^0 K^0)}{\mathcal{B}r(\pi^- K^+)} = 0 + \mathcal{O}(r_{(c)}^2) \quad \text{Difficult for LHCb}
$$

- [∗] Satisfied experimentally at 1*σ* level but uncertainty large due to $A_{\text{CP}}^{\pi^0 K^0}$
- **★ Experimental uncertainty at Belle II → ±0.04** [Belle-II Collaboration, arXiv:1011.0352]
- Prediction from sum rule: $A_{CP}^{\pi^0 K^0} = -0.14 \pm 0.03$

Experiment:

 $A_{\rm CP}^{K^+\pi^0} = 0.037 \pm 0.021$

 $A_{\rm CP}^{\pi^0 K^0} = 0.00 \pm 0.13$

 $A_{\rm CP}^{\pi^+K^0}$ = $-$ 0.017 \pm 0.016

[PDG (2016)]

 $A_{\rm CP}^{\pi^- K^+}$ = − 0.082 ± 0.006

Mixing-induced CP asymmetry

- ❖ is special ➜ **only channel with mixing-induced CP asymmetry** *B*0 *^d* → *π*⁰ *K*0
- \triangle Arises from interference between B_d^0 — \overline{B}_d^0 mixing and decay
- [∗] Just like $A_{\text{CP}}^{\pi^0 K^0}$, also difficult for LHCb → large uncertainty
- ❖ Also great prospects for Belle II

$$
S_{\rm CP}^{\pi^0 K_{\rm S}} = 0.58 \pm 0.17 \, \rm [PDG (2016)]
$$

Mixing-induced CP asymmetry

❖ Follows from time-dependent rate asymmetry:

$$
\frac{\Gamma(\bar{B}_d^0(t) \to \pi^0 K_S) - \Gamma(B_d^0(t) \to \pi^0 K_S)}{\Gamma(\bar{B}_d^0(t) \to \pi^0 K_S) + \Gamma(B_d^0(t) \to \pi^0 K_S)} = A_{\text{CP}}^{\pi^0 K_S} \cos(\Delta M_d t) + S_{\text{CP}}^{\pi^0 K_S} \sin(\Delta M_d t)
$$

with ΔM_d mass difference B_d mass eigenstates

[A. J. Buras, R. Fleischer (1999); R. Fleischer, S. Jäger, D. Pirjol, J. Zupan (2008)]
\n
$$
S_{CP}^{\pi^0 K_S} = \sin(\phi_d - \phi_{00}) \sqrt{1 - (A_{CP}^{\pi^0 K_S})^2}
$$
\n
$$
\text{Measured in } B_d^0 \rightarrow J/\psi K_S \qquad \phi_{00} \equiv \arg(\bar{A}_{00} A_{00}^*)
$$

❖ Angle given by $\tan \phi_{00} = 2 (r \cos \delta - r_c \cos \delta_c) \sin \gamma + 2 r_c (\cos \delta_c - 2 \tilde{a}_C/3) q \sin \phi + \mathcal{O}(r_{(c)}^2)$ CS EWP parameter

What is the best way to calculate ϕ_{00} ?

Isospin relation

❖ We may use the isospin relation:

$$
\sqrt{2}A(B_d^0 \to \pi^0 K^0) + A(B_d^0 \to \pi^- K^+) \equiv 3A_{3/2}
$$

3A_{3/2} $\equiv 3 |A_{3/2}| e^{i\phi_{3/2}} = -(\hat{T} + \hat{C})(e^{i\gamma} - q e^{i\phi} e^{i\omega})$

15

- ❖ follows from amplitude triangles *ϕ***⁰⁰**
- ❖ If and are known, only *SU*(3) input for: *q ϕ*

$$
|\hat{T} + \hat{C}| = R_{T+C} \left| \frac{V_{us}}{V_{ud}} \right| \sqrt{2} |A(B^{+} \to \pi^{+} \pi^{0})|
$$

$$
R_{T+C} \approx f_K / f_{\pi} = 1.2 \pm 0.2
$$

❖ *Minimal hadronic input*

Unitarity triangle angle γ as input

Correlation between CP asymmetries

❖ We may now use

$$
S_{\rm CP}^{\pi^0 K_{\rm S}} = \sin(\phi_d - \phi_{00}) \sqrt{1 - (A_{\rm CP}^{\pi^0 K_{\rm S}})^2}
$$

Correlation between CP asymmetries

Sharper inputs (γ) ➜ **discrepancy stronger!**

Puzzling patterns

New aspect: $\phi_{\pm} = \arg(\bar{A}_{\pm}A_{\pm}^*)$, $\phi_{\pm}\Big|_{\phi=0} = 2 r \cos \delta \sin \gamma + \mathcal{O}(r^2) = (8.7 \pm 3.5)^{\circ}$

Also the correlation is inconsistent!

18

Current status

State-of-the-art analysis of $S_{\text{CP}}^{\pi^0 K_S}$ **: CP**

- ❖ Problem with measurements? Discrepancy could be solved if
	- ^{*↓}* CP asymmetries $B_d^0 \rightarrow \pi^0 K_S$ move by ~1*σ*</sup>
	- \ast $\mathcal{B}r(B_d \to \pi^0 K^0)$ moves by ~2.5 σ
- ❖ Or is it New Physics? ➜ Study possibility of a **modified EWP sector**

With future data from LHCb (upgrade) and Belle II the situation should be resolved

Determination of *q* and *φ*

- \bullet Use the amplitude triangles in a different way: convert $S_{\text{CP}}^{\pi^0 K_S}$ into q and ϕ CP
- ❖ The isospin relation holds also for neutral as well as charged decays: $2A(B_d^0 \to \pi^0 K^0) + A(B_d^0 \to \pi^- K^+) =$ $2A(B^+ \to \pi^0 K^+) + A(B^+ \to \pi^+ K^0) = 3A_{3/2}$ $3A_{3/2} \equiv 3 |A_{3/2}| e^{i\phi_{3/2}} = -(\hat{T} + \hat{C})(e^{i\gamma} - q e^{i\phi} e^{i\omega})$
- ❖ Current data is better for charged decays, but the method works for both.
- [∗] Derive a set of equations for contours in *q*, *ϕ*-plane

$$
q = \sqrt{N^2 - 2c \cos \gamma - 2s \sin \gamma + 1},
$$

\n
$$
\tan \phi = \frac{\sin \gamma - s}{\cos \gamma - c}, \qquad q \sin \phi = \sin \gamma - s,
$$

where

$$
c \equiv \pm N \cos(\Delta \phi_{3/2}/2), \quad s \equiv \pm N \sin(\Delta \phi_{3/2}/2),
$$

$$
N \equiv 3 |A_{3/2}| / |\hat{T} + \hat{C}|, \quad \Delta \phi_{3/2} \equiv \phi_{3/2} - \bar{\phi}_{3/2}
$$

Determination of *q* and *φ*

assume $\omega = 0^{\circ}$ (robust assumption)

❖ This method requires minimal *SU*(3) input, only from

$$
|\hat{T} + \hat{C}| = R_{T+C} \left| \frac{V_{us}}{V_{ud}} \right| \sqrt{2} |A(B^+ \to \pi^+ \pi^0)|
$$

$$
R_{T+C} \approx f_K/f_\pi = 1.2 \pm 0.2
$$

No topologies have to be neglected

❖ Need to fix relative orientation triangles:

 $\phi_{+0} \equiv \arg(\bar{A}_{+0}A_{+0}^*) \approx 0$ (charged) or $S_{\text{CP}}^{\pi^0 K_S}$ (neutral)

Results of the new strategy

Results for current data

Apply method to charged data as current uncertainty $S_{\text{CP}}^{\pi^0 K_S}$ still large

➥ Potential to implement also for neutral data in the future!

Results for current data

Complement analysis with: $\sqrt{\frac{2}{3.0}}$ \rightarrow contour in q, ϕ -plane **Excellent agreement Further input needed to determine** the value of q and ϕ $R_c = 1 - 2 r_c \cos \delta_c (\cos \gamma - q \cos \phi) + \mathcal{O}(r_c^2)$ CS EWPs only at $\mathcal{O}(r_c^2)$

Additional contour from *Sπ*0 $K_{\rm S}$ CP

- [★] Convert measurement of $S_{\text{CP}}^{\pi^0 K_S}$ in value of $\frac{d}{dS}$ *N*^{α} in value of ϕ_{00}
- ❖ Obtain contour from $\tan \phi_{00} = 2 (r \cos \delta - r_c \cos \delta_c) \sin \gamma + 2 r_c (\cos \delta_c - 2 \tilde{a}_c/3) q \sin \phi + \mathcal{O}(r_{(c)}^2)$ cosines of small phases \rightarrow low sensitivity to variations
- CS EWP parameter $\tilde{a}_C \equiv a_C \cos(\Delta_C + \delta_c)$ is determined from

$$
R = 1 - 2r\cos\delta\cos\gamma + 2r_c\tilde{a}_C q\cos\phi + \mathcal{O}(r_{(c)}^2)
$$

❖ **What do we obtain for current data?**

Contour from $S_{\text{CP}}^{\pi^0 K_S}$ for current data $K_{\rm S}$ CP

Consider 3 different scenarios for measurements of $S_{\text{CP}}^{\pi^0 K_S}$ **at Belle II CP**

Future scenarios

Future scenarios

- ❖ Precision depends on region in parameter space
- ❖ **Potential for discovery of NP with future data!**

28

Conclusions

- \ast Data from *B* → *πK* decays have shown puzzling patterns in the past
- ❖ We have performed a state-of-the-art analysis:

Discrepancy became stronger → something has to happen

- Data move to eventually confirm the Standard Model?
- ❖ Is it New Physics?
- ❖ We have presented a new strategy to pin down the EWP parameters
- ❖ We look forward to data from Belle II and LHCb!

Backup slides

Resolution of puzzle *B* → *πK*

- \bullet **Can we now resolve the** $B \to \pi K$ **puzzle?**
- ❖ Consider 2 scenarios:

31

What about the sum rule?

❖ Belle II performed feasibility study of the sum rule [Belle-II Collaboration, arXiv:1011.0352]

$$
\Delta_{SR} = \left[A_{CP}^{\pi^+ K^0} \frac{\mathcal{B}r(\pi^+ K^0)}{\mathcal{B}r(\pi^- K^+)} - A_{CP}^{\pi^0 K^+} \frac{2\mathcal{B}r(\pi^0 K^+)}{\mathcal{B}r(\pi^- K^+)} \right] \frac{\tau_{B_d}}{\tau_{B^\pm}}
$$

$$
+ A_{CP}^{\pi^- K^+} - A_{CP}^{\pi^0 K^0} \frac{2\mathcal{B}r(\pi^0 K^0)}{\mathcal{B}r(\pi^- K^+)} = 0 + \mathcal{O}(r_{(c)}^2)
$$

sufficient for *q* **< 3**

Nik

[∗] Could it reveal *q* and *φ*?

Prediction for $\phi = 0$

❖ We can define

$$
(\sin 2\beta)_{\pi^0 K_S} \equiv \frac{S_{\rm CP}^{\pi^0 K_S}}{\sqrt{1 - (A_{\rm CP}^{\pi^0 K_S})^2}} = \sin(\phi_d - \phi_{00})
$$

Only CS EWPs in higher-order corrections

$$
\tan \phi_{00} = 2 \left(r \cos \delta - r_c \cos \delta_c \right) \sin \gamma + \mathcal{O}(r_{\text{(c)}}^2)
$$

 \ast From the $B \to \pi\pi$ data we then find

 \ast In the SM we have $\phi = 0$, yielding

$$
(\sin 2\beta)_{\pi^0 K_S} = 0.80 \pm 0.06
$$

Includes 20% *SU*(3)-breaking
and higher-order corrections

