Review of $|V_{ub}|$ and $|V_{cb}|$ measurements atthe B-factoriesChristoph Schwanda

Institute of High Energy Physics Austrian Academy of Sciences

佳佳佳

a a calai

Í

Current status (summer 2016)

1.5 r Ы excluded area has CL > 0.95 UTfit \$ 1.0 $\Delta m_d \& \Delta m_s$ summer16 Δm_d Δm sin 20 Δn 0.5 0.5 ∆m_d εκ V V_{cb} Π 0.0 ф₂ Ф, -0.5 BR(B tv) -0.5 εĸ -1.0 litte -1.5 0.5 2.0 -0.5 1.5 -0.5 0.0 1.0 -1 0.5 -1.0 0 1 $\overline{\rho}$ $\overline{\rho}$

http://ckmfitter.in2p3.fr/

http://www.utfit.org/

Largest pull: V_{ub} inclusive (UTfit)

|V_{xb}|from semileptonic B decays

 $d\Gamma \propto G_F^2 |V_{qb}|^2 \left| L_\mu \langle X | \bar{q} \gamma_\mu P_L b | B \rangle \right|^2$

- |V_{cb}|
 - Exclusive (DIv, D^*Iv)
 - \rightarrow talk by Kilian Lieret in the session yesterday
 - Inclusive ($X_c Iv$)
- |V_{ub}|
 - Exclusive (π lv)
 - Inclusive ($X_u I_V$)
 - \rightarrow talk by Raynette Van Tonder in the session yesterday

V_{cb}

	Experiment	Theory
Exclusive V _{cb}	$B \rightarrow DI\nu, D^*I\nu$ (low backgrounds)	Lattice QCD, light cone sum rules
Inclusive V _{cb}	${\sf B} o {\sf XI} u$ (higher background)	Operator product expansion

 Consistency between exclusive and inclusive is a crucial crosscheck of our understanding...

$$w = \frac{P_B \cdot P_{D^{(*)}}}{m_B m_{D^{(*)}}} = \frac{m_B^2 + m_{D^{(*)}}^2 - q^2}{2m_B m_{D^{(*)}}}$$

$$\mathbf{B} \to \mathbf{D^*} \mathbf{Iv} \qquad \frac{d\Gamma}{dw} = \frac{G_F^2 m_{D^*}^3}{48\pi^3} (m_B - m_{D^*})^2 \sqrt{w^2 - 1} \, \chi(w(\mathcal{F}^2(w)) V_{cb})^2$$

$$\mathsf{B} \to \mathsf{DIv} \qquad \qquad \frac{d\Gamma}{dw} = \frac{G_F^2 m_D^3}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} \mathcal{G}^2(w) V_{cb}|^2$$

Form factor parameterizations

Caprini, Lellouch, Neubert [Nucl.Phys. B530, 153(1998)]

 $B \rightarrow D^* |_{V} \qquad B \rightarrow D|_{V}$ $h_{A_1}(w) = h_{A_1}(1) \begin{bmatrix} 1 - 8\rho^2 z + (53\rho^2 - 15)z^2 \\ -(231\rho^2 - 91)z^3 \end{bmatrix},$ $R_1(w) = R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_1(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_1(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_1(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_1(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$

Boyd, Grinstein, Lebed [Phys. Rev. Lett. 74, 4603 (1995)]

$$f_i(z) = rac{1}{P_i(z)\phi_i(z)}\sum_{n=0}^N a_{i,n}z^n, \qquad z(w) = rac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}}$$

Parameters: coefficients a_{i,n}

$B^0 \rightarrow D^{*-}I^+v$ at Belle [W. Dungel, CS, Phys. Rev. D 82, 112007 (2010)]

- 711/fb of Belle Y(4S) data
- About 120,000 reconstructed $B^0 \rightarrow D^{*-}I^+\nu$ decays
- Fit in 40 bins of w, cos $\theta_{\rm I}$, $\theta_{\rm V}$ and χ to obtain CLN F.F. parameters
- Dominant experimental systematics: tracking

$$\begin{array}{rcl} \mathcal{F}(1)|V_{cb}| &=& (34.6\pm0.2\pm1.0)\times10^{-3}\\ &\rho^2 &=& 1.214\pm0.034\pm0.009\\ R_1(1) &=& 1.401\pm0.034\pm0.018\\ R_2(1) &=& 0.864\pm0.024\pm0.008\\ &\chi^2/ndf &=& 138.8/155 \end{array}$$

$\eta_{\text{EW}} F(1) | V_{\text{cb}} | \text{ (B} \rightarrow D^* | v) \text{ [Eur. Phys. J. C77 (2017) 895]}$

 $\eta_{EW}F(1)|V_{cb}| = (35.61 + - 0.11 + - 0.41) \times 10^{-3}$

HFLAV analysis of |V_{cb}| exclusive (2016)

- HFLAV average B \rightarrow D*lv - $\eta_{EW}F(1)|V_{cb}| = (35.61 + /- 0.11_{stat} + /- 0.41_{syst}) \times 10^{-3}$
- Lattice input [FNAL/MILC, PRD89, 114504]

 $-\eta_{EW}F(1) = (0.912 + - 0.014)$

• Value of |Vcb| assuming the CLN FF

 $-|V_{cb}| = (39.05 + - 0.47_{exp} + - 0.58_{th}) \times 10^{-3}$

$B \rightarrow D^* I_V$ hadronic tag [arXiv:1702.01521]

Model-independent analysis of arXiv:1702.01521 data

• D.Bigi, P. Gambino, S.Schacht, Phys.Lett. B769 (2017) 441

BGL Fit:	Data + lattice	Data + lattice + LCSR
χ^2/dof	27.9/32	31.4/35
$ V_{cb} $ ($0.0417 \left({}^{+20}_{-21} ight)$	$0.0404 \left({}^{+16}_{-17} \right)$
a_0^f	0.01223(18)	0.01224(18)
a_1^f	$-0.054\left(^{+58}_{-43} ight)$	$-0.052\left(^{+27}_{-15} ight)$
a_2^f	$0.2(^{+7}_{-12})$	$1.0 \begin{pmatrix} +0 \\ -5 \end{pmatrix}$
$a_1^{\mathcal{F}_1}$	$-0.0100\left(^{+61}_{-56} ight)$	$-0.0070\left(^{+54}_{-52} ight)$
$a_2^{\mathcal{F}_1}$	0.12 (10)	$0.089 \left(^{+96}_{-100} ight)$
a_0^g	$0.012 \begin{pmatrix} +11 \\ -8 \end{pmatrix}$	$0.0289 \left({}^{+57}_{-37} ight)$
a_1^g	$0.7 \begin{pmatrix} +3 \\ -4 \end{pmatrix}$	$0.08 \left({}^{+8}_{-22} \right)$
a_2^g	$0.8(^{+2}_{-17})$	$-1.0\left(^{+20}_{-0} ight)$

CLN Fit:	Data + lattice	Data + lattice + LCSR
$\chi^2/{ m dof}$	34.3/36	34.8/39
$ V_{cb} $ (0.0382 (15)	0.0382 (14)
$\rho_{D^*}^2$	$1.17 \left({}^{+15}_{-16} \right)$	1.16(14)
$R_{1}(1)$	$1.391 \left({}^{+92}_{-88} \right)$	1.372(36)
$R_{2}(1)$	$0.913\left(^{+73}_{-80} ight)$	$0.916\left(^{+65}_{-70} ight)$
$h_{A_1}(1)$	0.906 (13)	0.906 (13)

• B.Grinstein, A.Kobach, Phys.Lett. B771 (2017) 359

$$|V_{cb}| = (37.4 \pm 1.3) \times 10^{-3}$$
 (CLN)
 $|V_{cb}| = (41.9 \ ^{+2.0}_{-1.9}) \times 10^{-3}$ (BGL)

Belle update $B^0 \rightarrow D^* lv$ untagged [arXiv:1809.032090]

Simultaneous fit of 1D projections of w, $\cos\theta_{l}$, $\cos\theta_{v}$, X to extract the coefficients of the BGL expansion (up to 3rd order) and F(1)|V_{cb}|

First Model independent measurement of exclusive F(1)|V_{cb}|

[R. Glattauer, CS, Phys. Rev. D93, 032006 (2016)]

• 711/fb of Belle Y(4S) data

 $B \rightarrow D l v$ at Belle

- Full reconstruction of one B (hadronic tag)
- 10 D⁺ and 13 D⁰ modes are used on the signal side, covering 28.9% and 40.1% of the width
- Signal extraction from M²_{miss} in 10 bins of w
- 16,992 +/- 192 signal events
 (5150 +/- 95 neutral, 11,843 +/- 167 charged B events)

 $\eta_{EW}G(1)|V_{cb}| (B \rightarrow DI_V)$

 $\eta_{EW}G(1)|V_{cb}| = (41.57 + - 0.45 + - 0.89) \times 10^{-3}$

HFLAV analysis of |V_{cb}| exclusive (2016)

- $B \rightarrow D I v$
 - $-\eta_{EW}G(1)|V_{cb}| = (41.57 + 0.45 + 0.89) \times 10^{-3}$
 - -G(1) = 1.0541 + (-0.0083 [FNAL/MILC, PRD92, 034506]
 - $-\eta_{EW}$ = 1.0066 +/- 0.0016 [NPB 196, 83]
 - $-|V_{cb}| = (39.18 + 0.94_{exp} + 0.36_{th}) \times 10^{-3}$

Belle 2016: BGL fit with lattice data

|V_{cb}| from inclusive decays

$$\mathbf{B} \to \mathbf{X} \mathbf{I} \mathbf{v} \qquad \Gamma = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left(1 + \frac{c_5(\mu) \langle O_5 \rangle(\mu)}{m_b^2} + \frac{c_6(\mu) \langle O_6 \rangle(\mu)}{m_b^3} + \mathcal{O}(\frac{1}{m_b^4})\right)$$

- Based on the Operator Product Expansion (OPE)
- <O_i>: hadronic matrix elements (non-perturbative)
 c_i: coefficients (perturbative)
- Parton-hadron duality → the hadronic ME depend only on the initial state

	Kinetic [JHEP 1109 (2011) 055]	1S [PRD70, 094017 (2004)]
O(1)	m _b , m _c	m _b
O(1/m ² _b)	μ^2_{π} , μ^2_G	$λ_1$, $λ_2$
O(1/m ³ _b)	$\rho^{3}_{D}, \rho^{3}_{LS}$	ρ ₁ , τ ₁₋₃

Moments of the E_l and M²_X spectrum

Also other observables in B \rightarrow XIv can be expanded into an OPE with the same heavy quark parameters, e.g.,

The nth moment of the (truncated) lepton energy spectrum

$$R_n(E_{\rm cut},\mu) = \int_{E_{\rm cut}} \left(E_\ell - \mu\right)^n \frac{\mathrm{d}\Gamma}{\mathrm{d}E_\ell} \,\mathrm{d}E_\ell \,, \quad \langle E_\ell^n \rangle_{E_{\rm cut}} = \frac{R_n(E_{\rm cut},0)}{R_0(E_{\rm cut},0)}$$

The nth moment of the (truncated) M²_X spectrum

$$\langle m_X^{2n}\rangle_{E_{\rm cut}} = \frac{\displaystyle \int_{E_{\rm cut}} (m_X^2)^n \, \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2}{\displaystyle \int_{E_{\rm cut}} \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2}$$

Master plan:

- Measure the quark masses and heavy quark parameters using moments
- Substitute them in the formula of the semileptonic width
- Determine $|V_{cb}|$ from the semileptonic branching fraction

Two sets of theoretical calculations

- "Kinetic running mass"
 - P. Gambino, N. Uraltsev, Eur. Phys. J. C34, 181 (2004)
 - P. Gambino, JHEP 1109 (2011) 055
 - A. Alberti, P. Gambino, K.J. Healey, S. Nandi, Phys. Rev. Lett. 114, 061802 (2015)
- "1S mass"

 C. Bauer, Z. Ligeti, M. Luke, A. Manohar, M. Trott, Phys. Rev. D70, 094017 (2004)

Non-perturbative parameters in the 1/m_b expansion

	Kinetic	15
O(1)	m _b , m _c	m _b
O(1/m ² _b)	μ^2_{π} , μ^2_{G}	λ ₁ , λ ₂
O(1/m ³ _b)	$ρ^{3}_{D}$, $ρ^{3}_{LS}$	ρ ₁ , τ ₁₋₃

BaBar hadronic moments

 Fully reconstruct the hadronic decay of one B in Y(4S) → BB (efficiency ~0.4%, purity ~80%)

 $\mathsf{B}_{\mathsf{sig}}$

Y(4S

X
 Require one identified lepton amongst the signal-side particles (p > 0.8 GeV/c)

6000

- Combine all remaining particles to the X system and do a kinematic fit
 - 4-momentum conservation
 - Missing mass consistent with zero mass neutrino

232M BB

PRD 81, 032003 (2010)

Moment measurement

Hadronic mass spectrum after kinematic fit

- 12 10 8 6 10 15 $< m_{X,true}^2 > [(GeV/c^2)^2]$ momentum
- Moments of the hadronic mass spectrum up to M_{x}^{6} for E_{cut} between 0.8 and 1.9 GeV are measured
- Also mixed mass-energy moments are determined and the electron energy moments from [PRD69, 111104] are reevaluated

Linear correction of the measured moments in bins of X multiplicity, E_{miss}-cp_{miss} and lepton

PRD 81, 032003 (2010)

Belle E_I and M²_X moments PRD 75, 032001 (2007) PRD 75, 032005 (2007)

- For both the E_I and M²_X measurements, similar 152M BB experimental method using fully reconstructed events
- The finite detector resolution is unfolded with SVD algorithm [NIM A372, 469 (1996)]
- <Eⁿ_e> measured for n=0,...,4 and E_{cut}=0.4-2.0 GeV
- $< M^{2n}_{\chi} >$ measured for n=1,2 and $E_{cut} = 0.7 1.9$ GeV

Data used in $b \rightarrow c$ inclusive analyses

BaBar	$: n=0,1,2,3$ [PRD 69, 111104 (2004), PRD 81, 032003 (2010)] $: n=1,2, 3$ [PRD 81, 032003 (2010)]
Belle	<e<sup>nl>: n=0,1,2,3 [PRD 75, 032001 (2007)] <m<sup>2nX>: n=1,2 [PRD 75, 032005 (2007)]</m<sup></e<sup>
CDF	<m<sup>2n_X>: n=1,2 [PRD 71, 051103 (2005)]</m<sup>
CLEO	<m<sup>2n_X>: n=1,2 [PRD 70, 032002 (2004)] <e<sup>n_γ>: n=1 [PRL 87, 251807 (2001)]</e<sup></m<sup>
DELPHI	<e<sup>nl>: n=1,2,3 <m<sup>2n_X>: n=1,2 [EPJ C45, 35 (2006)]</m<sup></e<sup>

• Newest measurement is from the year 2010!

Moments used in the HFLAV analysis

	Experiment	Hadron moments $\langle M_X^n \rangle$	Lepton moments $\langle E_{\ell}^n \rangle$
HFLAV	BABAR	n=2,c=0.9,1.1,1.3,1.5	n = 0, c = 0.6, 1.2, 1.5
		n = 4, c = 0.8, 1.0, 1.2, 1.4	n = 1, c = 0.6, 0.8, 1.0, 1.2, 1.5
Summer 2016		$n=6,\ c=0.9,1.3$ [495]	n = 2, c = 0.6, 1.0, 1.5
			n = 3, c = 0.8, 1.2 [495, 496]
	Belle	n = 2, c = 0.7, 1.1, 1.3, 1.5	n = 0, c = 0.6, 1.4
		n = 4, c = 0.7, 0.9, 1.3 [497]	n = 1, c = 1.0, 1.4
			n = 2, c = 0.6, 1.4
			n = 3, c = 0.8, 1.2 [498]
	CDF	n = 2, c = 0.7	
		n = 4, c = 0.7 [499]	
	CLEO	$n = 2, c = 1.0, \overline{1.5}$	
		n = 4, c = 1.0, 1.5 [500]	
	DELPHI	n = 2, c = 0.0	n = 1, c = 0.0
		n = 4, c = 0.0	n = 2, c = 0.0
		n = 6, c = 0.0 [489]	n = 3, c = 0.0 [489]

 23 measurements from BaBar, 15 measurements from Belle, 12 from other experiments

HFLAV

Summer 2016

	$ V_{cb} $ [10 ⁻³]	$m_b^{ m kin}~[{ m GeV}]$	$m_c^{\overline{ ext{MS}}} \; [ext{GeV}]$	$\mu_\pi^2 ~[{ m GeV^2}]$	$ ho_D^3~[{ m GeV^3}]$	$\mu_G^2 \; [\text{GeV}^2]$	$ ho_{LS}^3$ [GeV ³]
value	42.19	4.554	0.987	0.464	0.169	0.333	-0.153
error	0.78	0.018	0.015	0.076	0.043	0.053	0.096
$ V_{cb} $	1.000	-0.257	-0.078	0.354	0.289	-0.080	-0.051
$m_b^{ m kin}$		1.000	0.769	-0.054	0.097	0.360	-0.087
$m_c^{\overline{ m MS}}$			1.000	-0.021	0.027	0.059	-0.013
μ_{π}^2				1.000	0.732	0.012	0.020
$ ho_D^3$					1.000	-0.173	-0.123
μ_G^2						1.000	0.066
$ ho_{LS}^3$							1.000

 $\mathcal{B}(\overline{B} \to X_c \ell^- \overline{\nu}_\ell) = (10.65 \pm 0.16)\%$ χ^2 of 15.6 for 43 degrees of freedom.

- c quark mass constraints $m_c^{\overline{\text{MS}}}(3 \text{ GeV}) = 0.986 \pm 0.013 \text{ GeV}$
- Average B lifetime: (1.579 +/- 0.004) ps

Belle

1S scheme analysis

HFLAV

Summer 2016

	m_b^{1S} [GeV]	$\lambda_1 \; [\text{GeV}^2]$	$ ho_1~[ext{GeV}^3]$	$ au_1 \; [ext{GeV}^3]$	$\tau_2 \; [\text{GeV}^3]$	$\tau_3 \; [\text{GeV}^3]$	$ V_{cb} $ [10 ⁻³]
value	4.691	-0.362	0.043	0.161	-0.017	0.213	41.98
error	0.037	0.067	0.048	0.122	0.062	0.102	0.45
m_b^{1S}	1.000	0.434	0.213	-0.058	-0.629	-0.019	-0.215
λ_1		1.000	-0.467	-0.602	-0.239	-0.547	-0.403
ρ_1			1.000	0.129	-0.624	0.494	0.286
$ au_1$				1.000	0.062	-0.148	0.194
$ au_2$					1.000	-0.009	-0.145
$ au_3$						1.000	0.376
$ V_{cb} $							1.000

 χ^2 of 23.0 for 59 degrees of freedom

- B quark mass constrained with $B \rightarrow X_s \gamma$ data
- Average B lifetime: (1.579 +/- 0.004) ps

Determination of |V_{ub}|

Exclusive $B \to \pi I \nu$ $\frac{d\Gamma(B^0 \to \pi^- \ell^+ \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$

> Form factor f₊ from lattice QCD or from QCD sum rules

Inclusive $B \rightarrow X_{\mu} l \nu$

- Also based on the OPE as for $b \rightarrow c$
- Experimental selections can comprise the convergence of the OPE → shape function
- Calculations used by HFLAV
 - BLNP [PRD 72, 073006(2005)]
 - DGE [JHEP 0601:097 (2006)]
 - GGOU [JHEP 0710:058 (2007)]

$B \rightarrow \pi I v$ untagged

[PRD 86, 092004 (2012)]

- Reconstruct only πe/πµ, infer neutrino momentum from p_{miss} (loose neutrino reconstruction technique)
- About 12,000 signal events, S/N ~0.1
- Partial branching fractions obtained in 12 q² bins
- Systematics: detector effects, b → u background

FF parameterization: Boyd-Grinstein-Lebed

- Combined fit with **FNAL/MILC** lattice data vields $|V_{ub}| =$ (3.25 +/- 0.31) x 10⁻³
- Alternative extractions of $|V_{ub}|$ (using LCSR/LQCD in regions of q²) consistent with the combined fit

$B \rightarrow \pi l v$ untagged

[PRD 86, 092004 (2012)]

$B \rightarrow \pi I v$ with hadronic tag

[PRD 88, 032005 (2013)]

- 703/fb of Belle Y(4S) data
- Hadronic tag
- Yield extracted from M^2_{miss} in 13 (7) bins of q^2 for $B^0 \rightarrow \pi^+ l \nu (B^+ \rightarrow \pi^0 l \nu)$
- Main systematics: tag calibration

X_u	Yield	\mathcal{B}	$\times 10^4$	
π^+	461±28	1.49 ± 0	0.09 ± 0.07	
π^0	230±22	0.80 ± 0	0.08 ± 0.04	
Xu	Theory	q^2 , GeV/ c^2	$ V_{ub} imes 1$	0 ³
	LCSR1	< 12	$3.30\pm0.22\pm$	$0.09^{+0.35}_{-0.30}$
π^0	LCSR2	< 16	$3.62\pm0.20\pm$	$0.10^{+0.60}_{-0.40}$
	HPQCD	> 16	$3.45\pm0.31\pm$	$0.09^{+0.58}_{-0.38}$
	FNAL/MILC	> 16	$3.30\pm0.30\pm$	0.09 ^{+0.36} -0.30
	LCSR1	< 12	$3.38\pm0.14\pm$	$0.09^{+0.36}_{-0.32}$
π^+	LCSR2	< 16	3.57 \pm 0.13 \pm	$0.09^{+0.59}_{-0.39}$
	HPQCD	> 16	3.86 \pm 0.23 \pm	$0.10^{+0.66}_{-0.44}$
	FNAL/MILC	> 16	$3.69\pm0.22\pm$	$0.09^{+0.41}_{-0.34}$

HFLAV 2016: Average q² spectrum...

...and BCL fit

Lattice QCD enters the fit through a constraint on the BCL parameters (FLAG lattice average [arXiv:1203.1359 [hep-ph]])

HFLAV 2016 results for |V_{ub}|

- Exclusive
 - Data + LQCD: $(3.70 + /- 0.10(exp) + /- 0.12(th)) \times 10^{-3}$ - Data + LQCD + LCSR: $(2.67 + /- 0.00(exp)) + /- 0.12(th)) \times 10^{-3}$
 - $(3.67 + 0.09(exp) + 0.12(th)) \times 10^{-3}$
- Inclusive
 - BLNP: (4.44 +/- 0.15 +0.21/-0.22) x 10⁻³
 - DGE: (4.52 +/- 0.16 +0.15/-0.16) x 10⁻³
 - GGOU: (4.52 +/- 0.15 +0.11/-0.14) x 10⁻³

Summary

- |V_{cb}|
 - HFLAV 2016 results
 - exclusive (D*Iv): (39.05 +/- 0.47(exp) +/- 0.58(th)) x 10⁻³
 - inclusive: (42.19 +/- 0.78) x 10⁻³
 - Evidence has been mounting in the past two years that the CLN parameterization is biasing the exclusive result
 - On two independent D*Iv data sets BGL results in $|V_{cb}|$ being ~2 σ higher than CLN
- |V_{ub}|
 - HFLAV 2016 results
 - πIv: (3.70 +/- 0.10(exp) +/- 0.12(th)) x 10⁻³
 - inclusive (BLNP): (4.44 +/- 0.15 +0.21/-0.22) x 10⁻³
 - For $|V_{ub}|$ however, the ~3 σ discrepancy remains to be understood

Cabibbo-Kobayashi-Maskawa quark mixing

$$\left(egin{array}{c} d' \ s' \ b' \end{array}
ight) \, = \, {f V} \, \left(egin{array}{c} d \ s \ b \end{array}
ight)$$

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$\mathbf{V}\mathbf{V}^{\dagger} = \mathbf{V}^{\dagger}\mathbf{V} = 1$$

- The unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix transforms the flavour eigenstates into the physical quark states
- The CKM element magnitudes determine the possible quark flavour transitions in charged current
 processes

 $-\mathcal{L}_{W^{\pm}} = rac{g}{\sqrt{2}} \ \overline{u_{Li}} \ \gamma^{\mu} \ (V_{\mathrm{CKM}})_{ij} \ d_{Lj} \ W^{+}_{\mu} + \mathrm{h.c.}$

CP violation

$$V_{\text{CKM}} = V_{\text{CKM}} = \lambda^{\text{Voltenstein parametrization of } v_{\text{CKM}}} = \lambda^{\text{Voltenstein parametrization of } v_{\text{CKM}}} = \lambda^{1 - \frac{1}{2}\lambda^{2} - \frac{1}{8}\lambda^{4}} + \lambda^{1 - \frac{1}{2}\lambda^{2} - \frac{1}{8}\lambda^{4}(1 + 4A^{2})} = \lambda^{3}(\rho - i\eta) + \lambda^{3}(\rho - i\eta) + \lambda^{3}(1 - (1 - \frac{1}{2}\lambda^{2})(\rho + i\eta)) + \lambda^{2} + \frac{1}{2}A\lambda^{4}(1 - 2(\rho + i\eta)) = 1 - \frac{1}{2}A^{2}\lambda^{4}$$

 $M_{\rm o}$

- However, $V_{\rm CKM}$ also contains a complex phase, responsible for all CP-violating phenomena in the SM
- CPV established (>5 σ) in 17 observables (in K and B physics) \rightarrow extremely constrained system
- New physics would typically disturb the SM pattern of CPV

The CKM unitarity triangle

Linac

1999 – 2010: B factory at KEK (Japan)

KEKB double ring e⁺e⁻ collider

$e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$

Belle detector

The Belle detector

Belle and BaBar luminosity

The LHCb experiment

- General purpose LHC experiment covering the forward region
- Precise tracking, excellent particle identification

LHCb data taking

