WG2: Vub, Vcb and semileptonic/leptonic b decays including tau

Effect of QED corrections on R(D)

Teppei Kitahara

Karlsruhe Institute of Technology

in collaboration with **Stefan de Boer** and **Ivan Nisandzic**

Phys.Rev.Lett.120 (2018) no.26, 261804 [arXiv:1803.05881]

10th International Workshop on the CKM Unitarity Triangle September 18, 2018, Heidelberg University

Semileptonic B decay

- Semileptonic *B*-meson decays induced by $b \rightarrow clv$ transitions play an important role for testing the Standard Model at low energy: $|V_{cb}|$ and $|V_{cb}|$ flavor universality
- **Lepton flavor universality** is violated by only tau lepton mass which leads to smaller phase space and subleading scalar form factors $f_0(q^2)$ and $A_0(q^2)$

SU(2)_L gauge symmetry
$$W^{\pm}$$
 W^{\pm} W^{\pm

light lepton universalities in kaon, pion and τ decays have been checked

$$K^{+}
ightarrow \pi^{0} \ell^{+} \nu (\gamma) \quad r_{\mu e}(K^{+}) = 0.998(9)$$
 $K_{L}
ightarrow \pi^{-} \ell^{+} \nu (\gamma) \quad r_{\mu e}(K_{L}) = 1.003(5)$
 $\pi^{+}
ightarrow \ell^{+} \nu (\gamma) \quad r_{\mu e}(\pi^{+}) = 1.0042(33)$
 $r_{\mu e}^{SM} = (g_{W\mu \bar{\nu}}/g_{We\bar{\nu}})^{2} = 1$
 $r_{\mu e}^{+}
ightarrow \ell^{+} \nu (\gamma) \quad r_{\mu e}(\tau^{+}) = 1.000(4)$
[Rainer Wanke, KAON 2007; Cristina Lazz Particle Divisional Conference, 2011]

[Rainer Wanke, KAON 2007; Cristina Lazzeroni, IoP Nuclear and Particle Divisional Conference, 2011]

R(D) and $R(D^*)$

Violation of the lepton flavour universality has been announced in R(D) and $R(D^*)$

$$R(D^{(*)+}) = \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)+}\tau^-\bar{\nu})}{\mathcal{B}(\bar{B}^0 \to D^{(*)+}\ell^-\bar{\nu})}$$
$$R(D^{(*)0}) = \frac{\mathcal{B}(B^- \to D^{(*)0}\tau^-\bar{\nu})}{\mathcal{B}(B^- \to D^{(*)0}\ell^-\bar{\nu})}$$

- Theoretically clean: dominant uncertainty from LD QCD in form factors is partially canceled
- \blacksquare CKM dependence ($|V_{cb}|$) is canceled
- We separately define $R(D^+)$ and $R(D^0)$ to distinguish different QED corrections in neutral and charged B decays

Status of R(D) and $R(D^*)$

LHCb can not measure D^{*0} precisely $[D^{*0} \rightarrow D^0 \gamma, D^0 \pi^0 (\rightarrow \gamma \gamma)]$

Status of R(D) and $R(D^*)$

—> 3.9σ deviation including all correlations <—</p>

Status of R(D) and $R(D^*)$

long-distance QED corrections

invisible photon energy

our work →

sum of invisible emissions and one-loop corrections gives physical quantum correction = long-distance QED corrections Emitted photon energy corresponds to dropped lepton energy

small bremsstrahlung in μ - and τ -

Soft-photon corrections

At large distance ($\mu \lesssim \Lambda_{\rm QCD}$), the QED interactions of the charged scalar mesons are well described by the **scalar QED**.

We distinguish neutral and charged-B decay

Soft-photon corrections

- E_{max} is the maximum total energy of undetected soft photons in the rest frame of the *B*-meson: $E_{\text{max}} = 20 \sim 30 \text{ MeV}$ in current photon detectors
 - →NOTE: the explicit photon cut is not set in the semileptonic search but the hard photons do not contribute to the fit of data
- The soft-photon approximation is used for analytic evaluation: we keep $O(\ln E_{\text{max}})$ and $O(E^0_{\text{max}})$ and drop $O(E_{\text{max}})$, which is valid only $l = \tau$ and μ
- Real soft emissions = $O(\ln E_{\text{max}}) + O(E^{0}_{\text{max}})$
 - $O(\ln E_{\text{max}})$ terms are resumed
 - Finite terms $[O(E^0_{max})]$ are numerically comparable to $O(\ln E_{max})$
- Vertex corrections = $O(E^0_{\text{max}})$ and μ -dependent ; $\mu \lesssim \Lambda_{\text{QCD}}$ for scalar QED
 - We separate $l_{\mu}=0$ contribution and the other (l is loop momentum)
 - Coulomb pole $(\alpha/v_{\rm rel})$ exits only in $R(D^+)$ case, and we resumed them
- Both of contributions depend on lepton kinematics → source of LFU violation

Result [de Boer, TK, Nisandzic, PRL120 (2018) no.26, 261804]

$$\begin{split} \frac{d^2\Gamma}{dq^2ds_{D\ell}} &= \frac{d^2\Gamma_0}{dq^2ds_{D\ell}} \Omega_B^{D^+} \Omega_C \big[1 + \frac{\alpha}{\pi} \big(F_D + F_\ell - 2F_{D\ell} - 2H_{D\ell} \big) \big] + \frac{\alpha}{\pi} \frac{d^2\tilde{\Gamma}^{D^+}}{dq^2ds_{D\ell}} \,, \\ \\ \text{with} \quad & \Omega_B^{D^+} &= \left(\frac{2E_{\max}}{\sqrt{m_D m_\ell}} \right)^{-\frac{2\alpha}{\pi}(1-2b_{D\ell})} \,, \quad \Omega_B^{D^0} &= \left(\frac{2E_{\max}}{\sqrt{m_B m_\ell}} \right)^{-\frac{2\alpha}{\pi}(1-2b_{B\ell})} \,, \quad \Omega_C &= -\frac{2\pi\alpha}{\beta_{D\ell}} \frac{1}{e^{-\frac{2}{\beta_{D\ell}^{\infty}}} - 1} \\ \\ & F_i &= \frac{1}{2\beta_{Bi}} \ln \frac{1+\beta_{Bi}}{1-\beta_{Bi}} \,, \\ \\ & F_{D\ell} &= \frac{1}{2} \frac{m_D m_\ell}{\sqrt{1-\beta_{D\ell}^2}} \int_0^1 dz \, \frac{E(z)}{P(z)[E(z)^2 - P(z)^2]} \ln \frac{E(z) + P(z)}{E(z) - P(z)} \,, \\ \\ & F_{B\ell} &= \frac{1}{4\beta_{B\ell}} \left\{ \text{Li}_2 \left(\frac{1-\beta_{B\ell}}{2} \right) - \text{Li}_2 \left(\frac{1+\beta_{B\ell}}{2} \right) + 4\text{Li}_2 \left(\beta_{B\ell} \right) - \text{Li}_2 \left(\beta_{B\ell}^2 \right) + \ln 2 \ln \frac{1+\beta_{B\ell}}{1-\beta_{B\ell}} \right. \\ & \quad \left. + \frac{1}{2} \ln^2 \left(1 - \beta_{B\ell} \right) - \frac{1}{2} \ln^2 \left(1 + \beta_{B\ell} \right) \right\} \,, \\ \\ & H_{ij} &= -\frac{1}{2\beta_{ij}} \left\{ \frac{1}{2} \ln^2 \frac{m_i}{m_j} - \frac{1}{8} \ln^2 \frac{1+\beta_{ij}}{1-\beta_{ij}} - \frac{1}{2} \ln^2 \left| \frac{\Delta^i_{ij} + \Delta_{ij}\beta_{ij}}{\Delta^i_{ij} + \Delta_{ij}\beta_{ij}} \right| - \text{Li}_2 \left(\frac{2\Delta_{ij}\beta_{ij}}{\Delta^i_{ij} + \Delta_{ij}\beta_{ij}} \right) - \text{Li}_2 \left(\frac{2\Delta_{ij}\beta_{ij}}{\Delta^i_{ij} + \Delta_{ij}\beta_{ij}} \right) \right\} \\ & \quad + \frac{1}{4} \ln \frac{m_i m_j}{\mu^2} - \frac{1}{2} - \frac{m_i^2 - m_j^2}{4s_{ij}} \ln \frac{m_i}{m_j} - \frac{1}{4}\Delta_{ij}\beta_{ij} \ln \frac{1+\beta_{ij}}{1-\beta_{ij}} - \frac{\Delta_{ij}}{2} \ln \frac{m_i}{m_j} - \frac{\Delta^i_{ij}}{4\beta_{ij}} \ln \frac{1+\beta_{ij}}{1-\beta_{ij}} \,, \\ \\ \text{where} \\ \\ & b_{i\ell} = \frac{1}{4\beta_{i\ell}} \ln \frac{1+\beta_{i\ell}}{1-\beta_{i\ell}} \,, \quad \beta_{D\ell} = \left[1 - \frac{4m_D^2 m_\ell^2}{\left(s_{D\ell} - m_D^2 - m_\ell^2 \right)^2} \right]^{\frac{1}{2}} \,, \quad \beta_{B\ell} = \left(1 - \frac{m_\ell^2}{E^2} \right)^{\frac{1}{2}} \,, \quad E_\ell = \frac{s_{D\ell} + q^2 - m_D^2}{2m_B} \,, \\ \\ \Delta_{ij} = \frac{s_{ij} - m_i^2 - m_j^2}{2s_{i\ell}} \,, \quad \Delta^{i,j}_{ij} = \frac{s_{ij} + m_{i,j}^2 - m_{j,i}^2}{2s_{i\ell}} \,, \\ \\ \Delta_{ij} = \frac{s_{ij} - m_i^2 - m_j^2}{2s_{i\ell}} \,, \quad \Delta^{i,j}_{ij} = \frac{s_{ij} + m_{i,j}^2 - m_{j,i}^2}{2s_{i\ell}} \,, \\ \end{array}$$

what we did

- We obtained analytic full-one loop QED long-distance correction, which is three parameter function; E_{max} and 2 Dalitz variables $[(p_D + p_\ell)^2, (p_B p_D)^2]$
- We resumed two potentially large contributions; $(\alpha \ln E_{\text{max}})^n$ from an arbitrary number of real photon emissions $(\pi \alpha/\beta_{D\ell})^n$ from ladder of photons
- IR-divergence $(m_{\gamma} \rightarrow 0)$ cancels between |real emissions|² and loops (vertex and wave-function corrections) : **We checked analytically**
- numerically crosschecked with LoopTools and Package-X [Hahn, Perez-Victoria '99; Patel '15]
- analytically crosschecked with $P \rightarrow PPP$ QED correction (e.g., $K \rightarrow 3\pi$) when spin dependent terms are dropped [Isidori '08]

Effect of QED corrections on *R*(*D*)

[de Boer, TK, Nisandzic, PRL120 (2018) no.26, 261804]

We conclude that the QED corrections to $R(D^+)$ and $R(D^0)$ are different at 1-1.5%

$B^0 \rightarrow D^+ l^- v$

QED corrections (%)	B ⁰ → D+l·v	Ω _B (<i>E</i> _{max} = 20MeV)	Ωc	F _D	Fi	F _{DI}	H _{DI} (/=0)	H _{DI} (<i>I</i> >0) (<i>μ</i> =200 MeV)	IB-loop (μ=200 MeV)	TOTAL
	Br(<i>T</i>)	-0.72	3.22	0.26	0.27	-0.65	-0.64	-0.10	-0.10	1.41
	Br(μ)	-3.14	2.31	0.28	0.73	-3.10	-1.40	1.25	0.24	-2.84
	R(<i>D</i> +)	2.50	0.89	-0.02	-0.45	2.52	0.77	-1.33	-0.34	4.38

 ΩB : $log(E_{max})$ contributions from full real emissions

ΩC: Coulomb correction

FD: finite terms $[=O(E_{max})]$ of real emission from D+

FI: finite terms of real emission from /

FDI: finite terms of interference between real emissions from D+ and I

HDI: loop correction between D+ and /

IB-loop: loop correction containing Inner-Bremsstrahlung vertex

$B^- \rightarrow D^0 f V$

(%) SU	B-→ D ⁰ Fv	Ω_{B} (E_{max} = 20MeV)	Ωc	F _B	Fı	F _{BI}	H _{BI} (<i>I</i> =0)	H _{BI} (<i>I</i> >0) (<i>μ</i> =200 MeV)	IB-loop (μ=200 MeV)	TOTAL
QED corrections	Br(<i>T</i>)	-0.22	-	0.23	0.27	-0.53	0.03	-0.09	0.37	0.03
	Br(μ)	-2.93	_	0.23	0.74	-2.79	0.35	1.11	0.19	-2.98
	R(<i>D</i> ⁰)	2.79	-	0.00	-0.46	2.32	-0.31	-1.19	0.18	3.11

 ΩB : $log(E_{max})$ contributions from full real emissions

ΩC: Coulomb correction

FB: finite terms $[=O(E_{max})]$ of real emission from B

FI: finite terms of real emission from /

FBI: finite terms of interference between real emissions from B- and /

HBI: loop correction between B- and /

IB-loop: loop correction containing Inner-Bremsstrahlung vertex

PHOTOS MC simulation

[Barberio, Eijk, Was, '91; Barberio, Was, '94; Davidson, Przedzinski, Was '16]

- PHOTOS Monte-Carlo generator can simulate modifications of the kinematic variables induced by **final-state** photon radiations
- PHOTOS is utilized in Belle/BaBar/LHCb for B semileptonic decay search
- For general decay processes, PHOTOS can simulate final-state radiation in the leading-logarithmic collinear approximation
 - All virtual corrections including Coulomb pole are not covered in PHOTOS results
 - Quantum interference between two real photon emissions are not covered in PHOTOS (< version 2.13) results
 - LHCb *does* **include** the **interference** between two different real photons from different **final charged particle**
- Numerical comparison with PHOTOS analysis is required to predict QED corrections to $R(D^{0,+})_{SM}$. Ongoing discussion with a few LHCb colleagues to size up the accuracy of PHOTOS

Missing mass squared analysis

- The experiments (Belle/BaBar/LHCb) have not explicitly utilized the photon cut E_{max} for event selections for B semileptonic decay
- The experiments rely on missing mass squared analysis for the event selection

$$M_{
m miss}^2 \equiv \left(p_{e^+e^-} - p_{B_{
m tag}} - p_D - p_\ell \right)^2 = p_{\overline{
u}}^2 = 0$$
 (ideal)

If single undetectable photon exists...

= Gaussian distribution around 0 by detector resolution

$$= (p_{\nu} + p_{\gamma})^2 = 2E_{\nu}E_{\gamma} (1 - \cos\theta_{\nu\gamma}) > 0 \rightarrow \text{positive shift of the distribution}$$

$$\langle \cos \theta_{\nu \gamma} \rangle \sim 0$$

$$\langle \cos heta_{
u\gamma}
angle \sim 0 \quad \left[E_{\gamma} \lesssim E_{
m max} pprox rac{m_B}{m_B^2 - s_{D\ell}} \hat{M}_{
m miss, \gamma}^2
ight] \hat{M}_{
m miss, \gamma}^2 = 0.1 \, {
m GeV}^2 \ {
m and} \ s_{D\ell} = 10 \, {
m GeV}
ightharpoonup E_{
m max} pprox 30 \, {
m MeV}$$

$$\hat{M}_{\mathrm{miss},\gamma}^2 = 0.1 \,\mathrm{GeV}^2$$
 and $s_{D\ell} = 10 \,\mathrm{GeV}$ \longrightarrow $E_{\mathrm{max}} \approx 30 \,\mathrm{MeV}$

Miss^2 distribution of selected events

[Belle, PRD92 (2015) no.7, 072014]

[de Boer, TK, Nisandzic, PRL]

data implies slight asymmetry of the distribution

(0/) :::	$\hat{M}^2_{\mathrm{miss},\gamma}$	0.05	0.1	0.2
)	<i>Β</i> (D+μ)	-2.8	-1.9	-1.0
 /	<i>Β</i> (D ⁰ μ)	-2.9	-2.3	-1.6

Conclusions

- We analytically evaluated soft-photon corrections to $B \rightarrow D\tau\nu$ and $B \rightarrow D\mu\nu$ using the soft-photon approximation
- Soft-photon corrections depend on lepton's kinematics: mass and velocity and hence can violate lepton flavor universality, which is larger than the QCD uncertainty of form factors
- Numerical comparison with PHOTOS analysis is required to predict QED corrections to $R(D^{0,+})_{SM}$

Outlook

- **Beyond soft-photon approximation** (including electron mode, $E_{\text{max}}>100\text{MeV}$ (structure dependence contributions), missing mass squared analysis in 4-body phase space)
- soft-photon corrections to $B \rightarrow D^*lv [R(D^*)]$
- soft-photon corrections to exclusive $|V_{cb}|$

