Search for $\overline{B} \to 3\mu\nu$ **at LHCb**

Svende Braun on behalf of the LHCb collaboration

Heidelberg University, Physikalisches Institut

CKM 2018, Heidelberg September 17-21, 2018

Motivation

- fully **leptonic decays of** *B* ⁺ **mesons** are naturally rare
- branching fractions is proportional to the coupling strength $|V_{ub}|^2$

$B^+\to\tau^+\nu_\tau$:

has precise SM predictions due to absence of hadrons in final state :

$$
\mathcal{B}(B^+\to \tau^+\nu_{\tau})=\frac{G_F^2 m_B m_{\tau^+}^2}{8\pi}\left[1-\frac{m_{\tau^+}^2}{m_B^2}\right]^2 t_B^2 |V_{ub}|^2 \tau_{B^+}
$$

• decay rate is helicity suppressed by factor: $(\frac{m_{\tau}}{m_{B}})^2$ \rightarrow highly sensitive to BSM particles, such as charged Higgs in 2HDM

Leptonic B decays

$B^+\to\tau^+\nu_\tau$

- most precise measurements done by Belle and BaBar: [Phys. Rev. D92 \(2015\) 051102,](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.051102) [Phys. Rev. Lett. 110 \(2013\) 131801,](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.131801) [Phys. Rev. D88 \(2013\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.031102) [031102\(R\),](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.031102) [Phys. Rev. D81 \(2010\) 051101\(R\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.81.051101)
- are consistent with SM predictions of B*SM* = ((144 ± 31)*x*10−⁶ (HFLAV December 2017)
- $B^+ \to \tau^+ \nu_\tau$ at LHCb ?
	- τ reconstruction very challenging: short lifetime and further decay into neutrinos
	- B vertex reconstruction from only one track highly challenging in busy LHC environment

Leptonic B decays

$$
B^+\to\mu^+\nu_\mu
$$

- $B^+ \to \mu^+ \nu_\mu$ even further supressed by factor: $(\frac{m_\mu}{m_B})^2$
- measurements performed by Belle and Babar: [Phys. Rev. Lett. 121, 031801 \(2018\),](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.031801) [Phys. Rev.](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.81.051101) [D81 \(2010\) 051101\(R\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.81.051101)
- also consistent with SM predictions of $B_{SM} = (3.80 \pm 0.31)x10^{-7}$

$B^+ \to \gamma \mu^+ \nu_\mu$

- adding a photon lifts the strong suppression of the $B^+ \rightarrow \mu^+ \nu_{\mu}$ mode
- SM branching fraction of $\mathcal{O}(10^{-6})$ expected
- measurements performed by Belle: [Phys. Rev. D 91, 112009 \(2015\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.112009) gives $\mathcal{B}(B^+ \to \gamma \mu^+ \nu_\mu) < 3.4 \times 10^{-6}$
- $B^+ \to \gamma \mu^+ \nu_\mu$ at LHCb ?
	- \cdot μ reconstruction very good
	- but B vertex not further constrained from $\gamma \rightarrow$ hard to reconstruct neutrals

$B^+ \to \mu^+ \mu^- \mu^+ \nu_\mu$

- here photon decays into pair of muons
- very good muon reconstruction
- B vertex well defined from three muon tracks
- gets contributions from $B^+\to (\gamma*\to\mu^+\mu^-)\mu^+\nu_\mu$ and $B^+\to (\textit{V}\to\mu^+\mu^-)\mu^+\nu_\mu,$ where V is a vector meson decaying into two muons (ρ, ω)

recent theoretical calculation based on vector meson dominance predicts ${\cal B}(B^+ \to \mu^+ \mu^- \mu^+ \nu_{\mu}) \approx$ 1.3x10 $^{-7}$ [\[Phys. Atom. Nucl. 81 \(2018\) 34\]](https://link.springer.com/article/10.1134%2FS1063778818030092)

 \rightarrow decay has been never observed before

Analysis Strategy for $B^+ \to \mu^+ \mu^- \mu^-$

LHCb-PAPER-2018-037 in preparation

- **dataset:** full Run I (2011+2012) and 2016 \rightarrow 4.7 fb⁻¹ pp data
- performed blinded analysis
- normalize branching fraction to $B^+ \to \mathrm{J}/\psi (\to \mu^+ \mu^-) K^+$
- reconstruct B meson using **corrected mass** variable:

 $m_{B_{corr}} = \sqrt{m_{3\mu}^2 + p_T^{'2}} + p_T'$

with $m_{3\mu}$ is invariant mass of 3 muons,

 p_T^{\prime} missing momentum transverse to flight direction of B candidate

Selection

LHCb-PAPER-2018-037 in preparation

Topology of decay

- select 3 good quality muon tracks originating from the same vertex
- vertex needs to be displaced from primary vertex (PV)
- good trimuon vertex
- B^+ direction points in the same direction as the line from PV to SV
- require that at most one muon station hit is allowed to be shared between the muon candidates

Selection

LHCb-PAPER-2018-037 in preparation

Choice of q^2 region

- Two combinations of invariant mass squared are possible with two opposite sign muons
- restrict search into region with $\min(q(\mu^+,\mu^-)) < 960 \, \text{MeV}/c^2$
- reduces combinatorial background
- expected signal yield outside of region is minimal
- remove backgrounds from J/ψ and $\psi(2S)$ decays using mass vetos

MC simulation $B^+ \to \mu^+ \mu^- \mu^+ \nu_\mu$ decay

- nominal model: photon pole for one of the muon pair and flat mass distribution for third muon and neutrino
- phase space model for systematic checks
- vector meson dominance (VMD) model as proposed in [\[Phys. Atom. Nucl. 81 \(2018\) 34\]](https://link.springer.com/article/10.1134%2FS1063778818030092)

Main Backgrounds

LHCb-PAPER-2018-037 in preparation

- *combinatorial background:* random combinations of 3 muons passing the selection \rightarrow reduce it using a region around B mass of [4000-7000 $\rm{MeV\!/}c^2$] \rightarrow train **dedicated BDT** to remove it: rejects 99% of combinatorics while 40% efficient on signal
- *Partially reconstructed background:* 3 muons are correctly identified but additional particles not reconstructed e.g. $B^+\to D^0(K^+\pi^-\mu^+\mu^-)\mu^+\nu X$ \rightarrow controlled using simulation
- *other exclusive backgrounds:*
	- $B^+ \to \pi^+ \mu^+ \mu^-$ low BF and low misID probability for pion \to negligible
	- $B^+ \to K^+ \mu^+ \mu^-$ corrected mass far away from signal region \to negligible

K, π or p misidentified as muon e.g. cascade decays $B \to D(\to K \mu \nu) \mu \nu$

MisID background

- estimated from **control sample** in data $\mu\mu hX$:
	- determine different misID rates by splitting into separate 3 PID regions
	- calculate cross feed between them
- probability of K and π passing μ -PID requirements from $B^0 \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^{*0} (\rightarrow K^+ \pi^-)$ calibration sample
- misID bkg from protons can be neglected

LHCb-PAPER-2018-037 in preparation

\rightarrow train **dedicated BDT** to remove it: rejects 94% of misID while 40% efficient on signal

LHCb-PAPER-2018-037 in preparation

$$
\mathcal{B}(B^+ \to \mu^+ \mu^- \mu^+ \nu_\mu) = \mathcal{B}(B^+ \to J/\psi(\to \mu^+ \mu^-)K^+) \times \frac{\varepsilon(B^+ \to J/\psi(\to \mu^+ \mu^-)K^+)}{\varepsilon(B^+ \to \mu^+ \mu^- \mu^+ \nu_\mu)}
$$

$$
\times \frac{N(B^+ \to \mu^+ \mu^- \mu^+ \nu_\mu)}{N(B^+ \to J/\psi(\to \mu^+ \mu^-)K^+)}
$$

• use external $\mathcal{B}(B^+ \to \mathrm{J}/\psi (\to \mu^+ \mu^-) K^+)$ measurement from PDG

take most efficiencies from MC, PID efficiencies from control data samples:

$$
\frac{\varepsilon(B^+\to\mu^+\mu^-\mu^+\nu_\mu)}{\varepsilon(B^+\to J/\psi(\to\mu^+\mu^-)K^+)}=0.37\pm0.003
$$

caused by lower dimuon mass and tighter PID requirements

• keep selection as similar as possible to cancel systematic uncertainty of efficiency ratio

Normalisation Fit

LHCb-PAPER-2018-037 in preparation

- perform unbinned maximum likelihood fit to *M*($\mu^+ \mu^- K^+$)
- $B^+ \to J/\psi K^+$: Ipatia function with non-Gaussian tails
- **misID bkg** $B^+ \to \mathrm{J}/\psi\pi^+$: Gaussian core with power law tails
- **combinatorial bkg**: exponential function

 \rightarrow gives \approx 300 κ $B^+ \rightarrow$ J/ψ K $^+$ candidates with 98% purity

Signal Templates

LHCb-PAPER-2018-037 in preparation

- to improve sensitivity an event-by-event uncertainty on the corrected mass is calculated by propagating the uncertainties of the PV and SV
- data is split into two equally-sized regions with **high and low fractional corrected mass uncertainty**

 \rightarrow improves the branching fraction sensitivity by 11% due to the different signal distribution in the two samples

Signal Fit

LHCb-PAPER-2018-037 in preparation

- signal: sum of two Gaussian with different power law tails
- **Combinatorial**: exponential function, free slope
- Misid bkg: from $\mu^+ \mu^- hX$ control sample, shape and yield fitted with Gaussian, power law tail at high corrected mass
- **PartReco**: shape and yield from simulation

- unbinned maximum likelihood fit is performed to the corrected mass
- signal yield is slightly negative \rightarrow total fit component slightly below sum of the backgrounds
- dashed line shows theoretical prediction of $\mathcal{B}(B^+ \to \mu^+ \mu^- \mu^+ \nu_\mu) \approx 1.3 \times 10^{-7}$ [\[Phys. Atom.](https://link.springer.com/article/10.1134%2FS1063778818030092) [Nucl. 81 \(2018\) 34\]](https://link.springer.com/article/10.1134%2FS1063778818030092)

LHCb-PAPER-2018-037 in preparation

- **No significant signal** component, set a limit of 1.4 × 10−⁸ at 95% confidence level using the CL_s method (preliminary)
- CLs method uses knowledge that true branching fraction has to be non-negative
- From pseudo-experiments **expected sensitivity** is found to be 2.8 × 10−⁸
	- \rightarrow present result represents a downward fluctuation $< 2\sigma$

Systematic Uncertainties

LHCb-PAPER-2018-037 in preparation

- **Largest systematic** uncertainty due to decay model for the signal channel: replace nominal with phase space model
- **trigger systematic** due to difference between MC and data, evaluated using $B^+\to\mathrm{J}/\psi(\to\mu^+\mu^-)K^+\to$ conservative estimate, doesn't take expected cancellation in ratio into account
- difference of modelling of the B^+ production kinematics between signal and normalisation calculated using weights

 \rightarrow systematic uncertainties added as Gaussian constraints when calculating the limit \rightarrow assumed to be fully correlated between bins of fractional corrected mass error

Conclusion

- Search performed for the rare decay $B^+ \to \mu^+ \mu^- \mu^+ \nu_\mu$ using 4.7 fb $^{-1}$ of proton-proton collision data collected by the LHCb experiment
- No signal is observed for the $B^+ \to \mu^+ \mu^- \mu^+ \nu_\mu$ decay
- Upper limit of $\mathcal{B}(\mathcal{B}^+ \to \mu^+\mu^-\mu^+\nu_\mu) < 1.4 \times 10^{-8}$ at 95% CL is set (preliminary)
- The limit on the branching fraction does not agree with a recent theoretical calculation based on the vector dominance model of ${\cal B}(B^+ \to \mu^+ \mu^- \mu^+ \nu_\mu) \approx$ 1.3x10 $^{-7}$ [\[Phys. Atom. Nucl. 81](https://link.springer.com/article/10.1134%2FS1063778818030092) [\(2018\) 34\]](https://link.springer.com/article/10.1134%2FS1063778818030092)
- Prospects: Prospects:
Statistically limited search, sensitivity scales with $\sqrt{\mathcal{L}}$ \rightarrow either observe decay very soon or set much better limits in Upgrade

→ **Stay tuned!**

Thanks for your attention!

Backup Slides

Main Backgrounds

LHCb-PAPER-2018-037 in preparation

combinatorial background:

- random combinations of 3 muons passing the selection
- don't come from same decay chain
	- \rightarrow reduce it using a region around B mass of [4000-7000 $\rm\,MeV\!/c^2$]

• train **dedicated BDT** to remove it:

- trained on signal MC and upper mass sideband $m_{B_{corr}} > 5500 \, \rm{MeV}/c^2$ data as bkg
- \bullet contains kinematic and geometric properties of B^+ candidate and muon tracks, also multiplicity of event
- most discriminating variables: isolation of decay vertex, quality of B vertex and muon IPs wrt. PV
- BDT response optimised by maximising Punzi FOM: [√] *S B*+3/2
- rejects 99% of combinatorics while 40% efficient on signal

MisID background

LHCb-PAPER-2018-037 in preparation

- misID background: kaon, pion or proton misidentified as muon e.g. cascade decays $B \to D(\to K \mu \nu) \mu \nu$
- estimated from **control sample** in data
	- same selection except reversal of muonID requirement for one track
		- \rightarrow selects sample of $\mu\mu hX$ candidates in data, with *h* any hadron
		- \rightarrow mixture of cascade decays $B \rightarrow D(\rightarrow h\mu\nu X)\mu\nu$ and combinatorial bkg
	- muon misID rate different for kaon and muon \rightarrow hadron species must be determined
	- done by isolating the hadrons into separate hadron PID regions and then take into account cross-feed between the regions:

 \rightarrow split $\mu\mu$ hX sample into 3 separate hadron PID regions consistent with the kaon, pion and proton hypotheses

- Probabilities of identifying the hadrons with a given PID requirement as a fct of p and η of the particle taken from dedicated control samples
- probability of kaon and pion passing muon PID requirements calculated from $B^0\to J/\psi(\to\mu^+\mu^-)K^{*0}(\to K^+\pi^-)$ decays as a calibration sample
- misID bkg from protons can be neglected
	- \rightarrow train **dedicated neural-network** based PID selection to remove it:
		- trained on signal MC and $\mu\mu hX$ background in data
		- rejects 94% of combinatorics while 40% efficient on signal

Normalisation Fit

LHCb-PAPER-2018-037 in preparation

- perform unbinned maximum likelihood fit to *M*($\mu^+ \mu^- K^+$)
- $B^+ \to \mathrm{J}/\psi (\to \mu^+ \mu^-)$ K⁺ described by Ipatia function with non-Gaussian tails on both sides, mean and width allowed to vary, all others fixed from simulation
- misID bkg $B^+ \to \mathrm{J}/\psi (\to \mu^+ \mu^-)\pi^+$ modelled with Gaussian core with power law tails on each side, freely varying mean and with, tail parameters fixed from simulation
- **combinatorial bkg** modelled using exponential function, decay constant allowed to vary in fit

 \rightarrow gives \approx 300 k B^+ \rightarrow $\mathrm{J}/\psi K^+$ candidates with 98% purity

Signal Fit

LHCb-PAPER-2018-037 in preparation

- unbinned maximum likelihood fit is performed to the corrected mass
- **signal shape** is modelled with the sum of two Gaussian functions with different power law tails on each side, determined from simulation
- **combinatorial bkg** modelled using exponential function, slope allowed to vary in fit, parametrisation is verified using simulation
- Misid bkg from the $\mu^+ \mu^-$ hX control sample, shape and yield fitted with a Gaussian function with a power law tail at high corrected mass
	- parametrisation cross-checked by fitting a sample with looser muonID requirement
	- uncertainties on the associated parameters are propagated to the fit using a multivariate Gaussian constraint
- **partially reconstructed background**: shape and yield taken from simulation.
- Yields are allowed to vary within constraints from a Poisson distribution in the fit

Future plans

- We are working currently on extraction $|V_{ub}|$ exclusively from $B_s^0 \to K^- \mu^+ \nu_{\mu}$, using normalisation channel of $B_s^0 \to D_s^- \, \mu^+ \nu_\mu$
- Smaller FF uncertainty expected wrt. $\Lambda_b \to p \mu \nu$: ~3% [\[Phys. Rev. D 91, 074510 \(2015\)\]](http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.074510)
- Production fraction ~10%, smaller compared to Λ_b (~20%)
- More difficult to handle background (Λ_c, D_s, D^+, D^0) w.r.t. Λ_b
- recent results on FFs:
	- from LQCD: [Phys. Rev. D 91, 074510 \(2015\),](https://journals.aps.org/prd/pdf/10.1103/PhysRevD.91.074510) [Phys. Rev. D 90, 054506 \(2014\)](https://journals.aps.org/prd/pdf/10.1103/PhysRevD.90.054506) NEW directly on BF ratio: [arXiv 1808.09285](https://arxiv.org/pdf/1808.09285.pdf)
	- from LCSR predictions at low q^2 : [arXiv 1703.04765](https://arxiv.org/pdf/1703.04765.pdf)

LHCb Detector

[JINST 3 S08005 \(2008\),](http://iopscience.iop.org/1748-0221/3/08/S08005) [Int. J. Mod. Phys. A 30, 1530022 \(2015\)](http://www.worldscientific.com/doi/abs/10.1142/S0217751X15300227)

- VELO: primary and secondary vertex
- Tracking: momentum of charged particle
- RICHs: particle identification K^{\pm} , π^{\pm}
- MUON: trigger on high p_T μ^{\pm} & PID
- Calorimeter: ECAL and HCAL for γ , e^{\pm} and hadronic energy