Exclusive semileptonic b baryon decays from lattice QCD

Stefan Meinel

CKM 2018, University of Heidelberg, September 2018

1 Overview

b (and c) baryon decay form factors from lattice QCD

Early work on $\Lambda_b \rightarrow \Lambda_c$ (quenched, focused on Isgur-Wise function):

K. C. Boweler et al. (UKQCD Collaboration), arXiv:hep-lat/9709028/PRD 1998

S. Gottlieb and S. Tamhankar, arXiv:hep-lat/0301022/Lattice 2002

Our work, using RBC/UKQCD 2 + 1 flavor ensembles:

Transition	mb	<i>a</i> [fm]	m_{π} [MeV]	Reference
$\Lambda_b \rightarrow \Lambda$	∞	0.11, 0.08	230-360	WD, DL, SM, MW, arXiv:1212.4827/PRD 2013
$\Lambda_b \rightarrow p$	∞	0.11, 0.08	230-360	WD, DL, SM, MW, arXiv:1306.0446/PRD 2013
$\Lambda_b \rightarrow p$	phys.	0.11, 0.08	230-360	WD, CL, SM, arXiv:1503.01421/PRD 2015
$\Lambda_b ightarrow \Lambda_c$	phys.	0.11, 0.08	230–360	WD, CL, SM, arXiv:1503.01421/PRD 2015; AD, SK, SM, AR, arXiv:1702.02243/JHEP 2017
$\Lambda_b \rightarrow \Lambda$	phys.	0.11, 0.08	230-360	WD, SM, arXiv:1602.01399/PRD 2016
$\Lambda_b \rightarrow \Lambda^*$	phys.	0.11	340	SM, GR, arXiv:1608.08110/Lattice2016
$\Lambda_b \rightarrow \Lambda_c^*$	phys.	0.11, 0.08	300-430	SM, GR, Later in this talk
$\Lambda_c \rightarrow \Lambda$		0.11, 0.08	140 –360	SM, arXiv:1611.09696/PRL 2017
$\Lambda_c \rightarrow p$		0.11, 0.08	230-360	SM, arXiv:1712.05783/PRD 2018

WD = William Detmold

DL = C.-J. David Lin

SM = Stefan Meinel

MW = Matthew Wingate

CL = Christoph Lehner

AD = Alakabha Datta

 $\mathsf{SK}=\mathsf{Saeed}\;\mathsf{Kamali}$

AR = Ahmed Rashed

GR = Gumaro Rendon (graduate student at U of A)

 $|V_{ub}/V_{cb}|$ from $\Lambda_b \to p\mu\bar{\nu}$ and $\Lambda_b \to \Lambda_c\mu\bar{\nu}$

$$\left| rac{V_{ub}}{V_{cb}}
ight| = 0.080 \pm 0.004_{ ext{ experiment}} \pm 0.004_{ ext{ lattice}}$$

[http://www.slac.stanford.edu/xorg/hflav/semi/summer16/html/ExclusiveVub/exclVubVcb.html] [W. Detmold, C. Lehner, S. Meinel, arXiv:1503.01421/PRD 2015] [LHCb Collaboration, arXiv:1504.01568/Nature Physics 2015] SM prediction for $R(\Lambda_c)$ from lattice QCD

$$R(\Lambda_c) = \frac{\Gamma(\Lambda_b \to \Lambda_c \ \tau^- \bar{\nu}_{\tau})}{\Gamma(\Lambda_b \to \Lambda_c \ \mu^- \bar{\nu}_{\mu})} = 0.3328 \ \pm \ 0.0074_{\rm stat} \ \pm \ 0.0070_{\rm syst}$$

[W. Detmold, C. Lehner, S. Meinel, arXiv:1503.01421/PRD 2015]

Shape of the $\Lambda_b \rightarrow \Lambda_c \mu \bar{\nu}$ diff. decay rate from LHCb

Gray rectangles (triangles = central values): Lattice QCD prediction Black circles: LHCb

[LHCb Collaboration, arXiv:1709.01920/PRD 2017]

 $\Lambda_b \rightarrow \Lambda_c \mu \bar{\nu}$ combined HQET fit to LQCD and experiment

Heavy-quark symmetry provides stronger constraints for $\Lambda_b \to \Lambda_c \ell \bar{\nu}$ than for $B \to D^{(*)} \ell \bar{\nu}$

 \rightarrow First determination of $\mathcal{O}(\Lambda^2/m_c^2)$ contributions to an exclusive decay

[F. Bernlochner, Z. Ligeti, D. Robinson, W. Sutcliffe, arXiv:1808.09464]

$\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ differential branching fraction (2015)

[W. Detmold and S. Meinel, arXiv:1602.01399/PRD 2016]

Note: the 2015 LHCb result for A_{FB}^{ℓ} , which deviated 3.4 σ from our SM prediction, was incorrect (it was actually the CP asymmetry in A_{FB}^{ℓ}).

→ Our Wilson coefficient fits [S. Meinel and D. van Dyk, arXiv:1603.02974/PRD 2016] need to be redone.

 $\Lambda_c \rightarrow \Lambda$ form factors from lattice QCD

[S. Meinel, arXiv:1611.09696/PRL2017]

Combined with the BESIII branching fraction measurements [arXiv:1510.02610/PRL2015; arXiv:1611.04382/PLB2017] and τ_{Λ_c} from PDG, this gives

 $|V_{cs}| = 0.949 \pm 0.024$ lattice ± 0.051 experiment

$\Lambda_c \rightarrow N$ form factors from lattice QCD

$$\frac{\Gamma(\Lambda_c \to n\ell^+\nu_\ell)}{|V_{cd}|^2} = \begin{cases} 0.405(16)(20) \text{ ps}^{-1}, & \ell = e, \\ 0.396(16)(20) \text{ ps}^{-1}, & \ell = \mu. \end{cases}$$

[S. Meinel, arXiv:1712.05783/PRD 2018]

1 Overview

2 $\Lambda_b \rightarrow \Lambda_c^*$ form factors

[S. Meinel and G. Rendon, work in progress]

Motivation

[G. Cohan, Talk at 2017 LHCb Implications Workshop]

The Λ_c^* baryons

Name	J^P	Mass [MeV]	Width [MeV]	Strong decay modes
$\Lambda_{c}^{*}(2595)$	$\frac{1}{2}^{-}$	2592.25(28)	2.6(6)	$\Lambda_c \pi^+ \pi^-$
$\Lambda_{c}^{*}(2625)$	$\frac{3}{2}$ -	2628.11(19)	< 0.97	$\Lambda_c \pi^+ \pi^-$

(decays proceed partly through $\Lambda_c^* \to \Sigma_c^{(*)} (\to \Lambda_c \pi) \pi)$

[2017 Review of Particle Physics]

In the following, we will treat the Λ_c^* baryons as if they were stable.

Some notation to define the form factors

$$\langle \Lambda_{c\frac{1}{2}^{-}}^{*}(\mathbf{p}',s') | \, \bar{c} \, \Gamma \, b \, | \Lambda_{b}(\mathbf{p},s) \rangle = \bar{u}(m_{\Lambda_{c\frac{1}{2}^{-}}},\mathbf{p}',s') \, \gamma_{5} \, \mathscr{G}^{(\frac{1}{2}^{-})}[\Gamma] \, u(m_{\Lambda_{b}},\mathbf{p},s)$$

$$\langle \Lambda_{c\frac{3}{2}^{-}}^{*}(\mathbf{p}',s') | \, \bar{c} \, \Gamma \, b \, | \Lambda_{b}(\mathbf{p},s) \rangle = \bar{u}_{\lambda}(m_{\Lambda_{c\frac{3}{2}^{-}}},\mathbf{p}',s') \, \mathscr{G}^{\lambda(\frac{3}{2}^{-})}[\Gamma] \, u(m_{\Lambda_{b}},\mathbf{p},s)$$

$$\sum_{s} u(m,\mathbf{p},s)\overline{u}(m,\mathbf{p},s) = m + \phi$$

$$\sum_{s'} u_{\mu}(m', \mathbf{p}', s') \bar{u}_{\nu}(m', \mathbf{p}', s') = -(m' + p') \left(g_{\mu\nu} - \frac{1}{3} \gamma_{\mu} \gamma_{\nu} - \frac{2}{3m'^2} p'_{\mu} p'_{\nu} - \frac{1}{3m'} (\gamma_{\mu} p'_{\nu} - \gamma_{\nu} p'_{\mu}) \right)$$

$\frac{1}{2}^+ \rightarrow \frac{1}{2}^-$ vector and axial vector form factors

$$\begin{aligned} \mathscr{G}^{\left(\frac{1}{2}^{-}\right)}[\gamma^{\mu}] &= f_{0}^{\left(\frac{1}{2}^{-}\right)}\left(m_{\Lambda_{b}} + m_{\Lambda_{c}^{*}}\right)\frac{q^{\mu}}{q^{2}} \\ &+ f_{+}^{\left(\frac{1}{2}^{-}\right)}\frac{m_{\Lambda_{b}} - m_{\Lambda_{c}^{*}}}{s_{-}}\left(p^{\mu} + p'^{\mu} - \left(m_{\Lambda_{b}}^{2} - m_{\Lambda_{c}^{*}}^{2}\right)\frac{q^{\mu}}{q^{2}}\right) \\ &+ f_{\perp}^{\left(\frac{1}{2}^{-}\right)}\left(\gamma^{\mu} + \frac{2m_{\Lambda_{c}^{*}}}{s_{-}}p^{\mu} - \frac{2m_{\Lambda_{b}}}{s_{-}}p'^{\mu}\right), \end{aligned}$$

$$\begin{aligned} \mathcal{G}^{\left(\frac{1}{2}^{-}\right)}[\gamma^{\mu}\gamma_{5}] &= -g_{0}^{\left(\frac{1}{2}^{-}\right)}\gamma_{5}\left(m_{\Lambda_{b}}-m_{\Lambda_{c}^{*}}\right)\frac{q^{\mu}}{q^{2}} \\ &-g_{+}^{\left(\frac{1}{2}^{-}\right)}\gamma_{5}\frac{m_{\Lambda_{b}}+m_{\Lambda_{c}^{*}}}{s_{+}}\left(\rho^{\mu}+\rho'^{\mu}-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c}^{*}}^{2})\frac{q^{\mu}}{q^{2}}\right) \\ &-g_{\perp}^{\left(\frac{1}{2}^{-}\right)}\gamma_{5}\left(\gamma^{\mu}-\frac{2m_{\Lambda_{c}^{*}}}{s_{+}}\rho^{\mu}-\frac{2m_{\Lambda_{b}}}{s_{+}}\rho'^{\mu}\right),\end{aligned}$$

$$s_{\pm} = (m_{\Lambda_b} \pm m_{\Lambda_c^*})^2 - q^2$$

$$rac{1}{2}^+
ightarrow rac{1}{2}^-$$
 tensor form factors

$$\begin{aligned} \mathscr{G}^{\left(\frac{1}{2}^{-}\right)}[i\sigma^{\mu\nu}q_{\nu}] &= -h_{+}^{\left(\frac{1}{2}^{-}\right)}\frac{q^{2}}{s_{-}}\left(p^{\mu}+p'^{\mu}-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c}^{*}}^{2})\frac{q^{\mu}}{q^{2}}\right) \\ &-h_{\perp}^{\left(\frac{1}{2}^{-}\right)}\left(m_{\Lambda_{b}}-m_{\Lambda_{c}^{*}}\right)\left(\gamma^{\mu}+\frac{2\,m_{\Lambda_{c}^{*}}}{s_{-}}\,p^{\mu}-\frac{2\,m_{\Lambda_{b}}}{s_{-}}\,p'^{\mu}\right) \end{aligned}$$

$$\begin{aligned} \mathscr{G}^{\left(\frac{1}{2}^{-}\right)}[i\sigma^{\mu\nu}\gamma_{5}q_{\nu}] &= -\widetilde{h}_{+}^{\left(\frac{1}{2}^{-}\right)}\gamma_{5}\frac{q^{2}}{s_{+}}\left(p^{\mu}+p'^{\mu}-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c}^{*}}^{2})\frac{q^{\mu}}{q^{2}}\right) \\ &-\widetilde{h}_{\perp}^{\left(\frac{1}{2}^{-}\right)}\gamma_{5}\left(m_{\Lambda_{b}}+m_{\Lambda_{c}^{*}}\right)\left(\gamma^{\mu}-\frac{2m_{\Lambda_{c}^{*}}}{s_{+}}p^{\mu}-\frac{2m_{\Lambda_{b}}}{s_{+}}p'^{\mu}\right) \end{aligned}$$

 $\frac{1}{2}^+ \rightarrow \frac{3}{2}^-$ vector and axial vector form factors

$$\begin{aligned} \mathscr{G}^{\lambda(\frac{3}{2}^{-})}[\gamma^{\mu}] &= f_{0}^{(\frac{3}{2}^{-})} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \frac{(m_{\Lambda_{b}} - m_{\Lambda_{c}^{*}}) p^{\lambda} q^{\mu}}{q^{2}} \\ &+ f_{+}^{(\frac{3}{2}^{-})} \frac{m_{\Lambda_{c}^{*}}}{s_{-}} \frac{(m_{\Lambda_{b}} + m_{\Lambda_{c}^{*}}) p^{\lambda} (q^{2} (p^{\mu} + p'^{\mu}) - (m_{\Lambda_{b}}^{2} - m_{\Lambda_{c}^{*}}^{2}) q^{\mu})}{q^{2} s_{+}} \\ &+ f_{\perp}^{(\frac{3}{2}^{-})} \frac{m_{\Lambda_{c}^{*}}}{s_{-}} \left(p^{\lambda} \gamma^{\mu} - \frac{2 p^{\lambda} (m_{\Lambda_{b}} p'^{\mu} + m_{\Lambda_{c}^{*}} p^{\mu})}{s_{+}} \right) \\ &+ f_{\perp}^{(\frac{3}{2}^{-})} \frac{m_{\Lambda_{c}^{*}}}{s_{-}} \left(p^{\lambda} \gamma^{\mu} - \frac{2 p^{\lambda} p'^{\mu}}{m_{\Lambda_{c}^{*}}} + \frac{2 p^{\lambda} (m_{\Lambda_{b}} p'^{\mu} + m_{\Lambda_{c}^{*}} p^{\mu})}{s_{+}} + \frac{s_{-} g^{\lambda \mu}}{m_{\Lambda_{c}^{*}}} \right) \end{aligned}$$

$$\begin{aligned} \mathcal{G}^{\lambda(\frac{3}{2}^{-})}[\gamma^{\mu}\gamma_{5}] &= -g_{0}^{(\frac{3}{2}^{-})}\gamma_{5} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \frac{(m_{\Lambda_{b}} + m_{\Lambda_{c}^{*}})p^{\lambda}q^{\mu}}{q^{2}} \\ &-g_{+}^{(\frac{3}{2}^{-})}\gamma_{5} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \frac{(m_{\Lambda_{b}} - m_{\Lambda_{c}^{*}})p^{\lambda}(q^{2}(p^{\mu} + p'^{\mu}) - (m_{\Lambda_{b}}^{2} - m_{\Lambda_{c}^{*}}^{2})q^{\mu})}{q^{2}s_{-}} \\ &-g_{\perp}^{(\frac{3}{2}^{-})}\gamma_{5} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \left(p^{\lambda}\gamma^{\mu} - \frac{2p^{\lambda}(m_{\Lambda_{b}}p'^{\mu} - m_{\Lambda_{c}^{*}}p^{\mu})}{s_{-}}\right) \\ &-g_{\perp}^{(\frac{3}{2}^{-})}\gamma_{5} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \left(p^{\lambda}\gamma^{\mu} + \frac{2p^{\lambda}p'^{\mu}}{m_{\Lambda_{c}^{*}}} + \frac{2p^{\lambda}(m_{\Lambda_{b}}p'^{\mu} - m_{\Lambda_{c}^{*}}p^{\mu})}{s_{-}} - \frac{s_{+}g^{\lambda\mu}}{m_{\Lambda_{c}^{*}}} \right) \end{aligned}$$

 $\frac{1}{2}^+ \rightarrow \frac{3}{2}^-$ tensor form factors

$$\begin{aligned} \mathscr{G}^{\lambda(\frac{3}{2}^{-})}[i\sigma^{\mu\nu}q_{\nu}] &= -h_{+}^{(\frac{3}{2}^{-})}\frac{m_{\Lambda_{b}}m_{\Lambda_{c}^{*}}}{s_{-}}\frac{p^{\lambda}(q^{2}(p^{\mu}+p^{\prime\mu})-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c}^{*}}^{2})q^{\mu})}{m_{\Lambda_{b}}s_{+}} \\ &-h_{\perp}^{(\frac{3}{2}^{-})}\frac{m_{\Lambda_{b}}m_{\Lambda_{c}^{*}}}{s_{-}}\frac{m_{\Lambda_{b}}+m_{\Lambda_{c}^{*}}}{m_{\Lambda_{b}}}\left(p^{\lambda}\gamma^{\mu}-\frac{2p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}+m_{\Lambda_{c}^{*}}p^{\mu})}{s_{+}}\right) \\ &-h_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\frac{m_{\Lambda_{b}}m_{\Lambda_{c}^{*}}}{s_{-}}\frac{m_{\Lambda_{b}}+m_{\Lambda_{c}^{*}}}{m_{\Lambda_{b}}}\left(p^{\lambda}\gamma^{\mu}-\frac{2p^{\lambda}p^{\prime\mu}}{m_{\Lambda_{c}^{*}}}+\frac{2p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}+m_{\Lambda_{c}^{*}}p^{\mu})}{s_{+}}+\frac{s_{-}g^{\lambda\mu}}{m_{\Lambda_{c}^{*}}}\right)\end{aligned}$$

$$\begin{aligned} \mathscr{G}^{\lambda(\frac{3}{2}^{-})}[i\sigma^{\mu\nu}q_{\nu}\gamma_{5}] &= -\widetilde{h}_{+}^{(\frac{3}{2}^{-})}\gamma_{5}\frac{m_{\Lambda_{b}}m_{\Lambda_{c}^{*}}}{s_{+}}\frac{p^{\lambda}(q^{2}(p^{\mu}+p^{\prime\mu})-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c}^{*}}^{2})q^{\mu})}{m_{\Lambda_{b}}s_{-}} \\ &-\widetilde{h}_{\perp}^{(\frac{3}{2}^{-})}\gamma_{5}\frac{m_{\Lambda_{b}}m_{\Lambda_{c}^{*}}}{s_{+}}\frac{m_{\Lambda_{b}}-m_{\Lambda_{c}^{*}}}{m_{\Lambda_{b}}}\left(p^{\lambda}\gamma^{\mu}-\frac{2p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}-m_{\Lambda_{c}^{*}}p^{\mu})}{s_{-}}\right) \\ &-\widetilde{h}_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\gamma_{5}\frac{m_{\Lambda_{b}}m_{\Lambda_{c}^{*}}}{s_{+}}\frac{m_{\Lambda_{b}}-m_{\Lambda_{c}^{*}}}{m_{\Lambda_{b}}}\left(p^{\lambda}\gamma^{\mu}+\frac{2p^{\lambda}p^{\prime\mu}}{m_{\Lambda_{c}^{*}}}+\frac{2p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}-m_{\Lambda_{c}^{*}}p^{\mu})}{s_{-}}-\frac{s_{+}g^{\lambda\mu}}{m_{\Lambda_{c}^{*}}}\right) \end{aligned}$$

Λ_c^* interpolating fields

We work in the Λ_c^* rest frame to allow exact spin-parity projection. We use

$$\begin{aligned} (\Lambda_c^*)_{j\gamma} &= \epsilon^{abc} \, (C\gamma_5)_{\alpha\beta} \left[\tilde{c}^a_\alpha \, \tilde{d}^b_\beta \, (\nabla_j \tilde{u})^c_\gamma - \tilde{c}^a_\alpha \, \tilde{u}^b_\beta \, (\nabla_j \tilde{d})^c_\gamma \right. \\ &+ \tilde{u}^a_\alpha \, (\nabla_j \tilde{d})^b_\beta \, \tilde{c}^c_\gamma - \tilde{d}^a_\alpha \, (\nabla_j \tilde{u})^b_\beta \, \tilde{c}^c_\gamma \end{aligned}$$

(~ denotes Gaussian smearing) [S. Meinel and G. Rendon, arXiv:1608.08110/Lattice2016]

This requires light-quark propagators with derivative sources.

We project to $J^P = \frac{1}{2}^-$ and $J^P = \frac{3}{2}^-$ using
$$\begin{split} P_{jk}^{(\frac{1}{2}^-)} &= \frac{1}{3}\gamma_j\gamma_k\frac{1+\gamma_0}{2}, \\ P_{jk}^{(\frac{3}{2}^-)} &= \left(g_{jk} - \frac{1}{3}\gamma_j\gamma_k\right)\frac{1+\gamma_0}{2}. \end{split}$$

Lattice methods

• Gauge field configurations generated by the RBC and UKQCD collaborations

```
[Y. Aoki et al., arXiv:1011.0892/PRD 2011]
```

- u, d, s quarks: domain-wall action
 [D. Kaplan, arXiv:hep-lat/9206013/PLB 1992; V. Furman and Y. Shamir, arXiv:hep-lat/9303005/NPB 1995]
- All-mode averaging with 1 exact and 32 sloppy propagators per configuration

```
[E. Shintani et al., arXiv:1402.0244/PRD 2015]
```

- c, b quarks: anisotropic clover with three parameters, re-tuned more accurately to $D_s^{(*)}$ and $B_s^{(*)}$ dispersion relation and HFS
- "Mostly nonperturbative" renormalization [A. El-Khadra *et al.*, hep-ph/0101023/PRD 2001]
- Three-point functions with 9 source-sink separations

Lattice parameters

Name	$N_s^3 \times N_t$	β	am _{u,d}	am _s	<i>a</i> (fm)	m_π (MeV)	Run status
C01	$24^{3} \times 64$	2.13	0.01	0.04	pprox 0.111	pprox 430	1/4 cfgs done
C005	$24^3 imes 64$	2.13	0.005	0.04	pprox 0.111	pprox 340	1/4 cfgs done
F004	$32^3 imes 64$	2.25	0.004	0.03	pprox 0.083	pprox 300	1/4 cfgs done

 Λ_c^* two-point functions

preliminary

Results from 24³ \times 64, $am_{u,d}=0.005$ ensemble, 78 configs \times 32 sources $a^{-1}=1.785(5)$ GeV

Extracting the form factors from ratios of 3pt and 2pt functions

t = source-sink separation t' = current insertion time

We have data for two different Λ_b momenta: $\mathbf{p} = (0,0,2)\frac{2\pi}{L} \approx 0.9 \text{ GeV}$ and $\mathbf{p} = (0,0,3)\frac{2\pi}{L} \approx 1.4 \text{ GeV}$

Extracting the form factors from ratios of 3pt and 2pt functions

Schematically,

 $R_f(\mathbf{p}, t) = \sqrt{(\text{kinematic factors}) \times (\text{polarization vectors}) \times (\text{ratio at } t' = t/2)}$ $\rightarrow f(\mathbf{p}) \text{ for large } t$ Example: $R_{f_{\perp}}$ for $\Lambda_b \to \Lambda_c^* \left(\frac{3}{2}\right)$ preliminary

Results from $24^3 \times 64$, $am_{u,d} = 0.005$ ensemble, 78 configs \times 32 sources

 $\mathbf{p} = (0, 0, 2) \frac{2\pi}{L}$

$$\Lambda_b
ightarrow \Lambda_c^* \left(rac{1}{2}^-
ight)$$
 vector form factors

very preliminary

very preliminary

Only the statistical uncertainties are shown.

very preliminary

Only the statistical uncertainties are shown.

very preliminary

Only the statistical uncertainties are shown.

very preliminary

Only the statistical uncertainties are shown.

very preliminary

Only the statistical uncertainties are shown.

To predict $R(\Lambda_c^*)$, we will combine the lattice QCD form factors (which are limited to low recoil) with experimental data for the shapes of the $\Lambda_b \to \Lambda_c^* \mu \bar{\nu}$ differential decay rates, making use of HQET.

[P. Boer, M. Bordone, E. Graverini, P. Owen, M. Rotondo, and D. Van Dyk, arXiv:1801.08367]

Outlook

 $\Lambda_b
ightarrow p \ell ar{
u}$, $\Lambda_b
ightarrow \Lambda_c \ell ar{
u}$

- A higher-precision lattice QCD calculation of the form factors is underway (extra slide).
- LHCb measurement of R(Λ_c)?

 $\Lambda_b
ightarrow \Lambda \ell^+ \ell^-$

- To Do: New fit of Wilson coefficients using the 2018 LHCb angular analysis.
- Can the differential branching be measured more precisely? (Limited by normalization mode $\Lambda_b \to J/\psi \Lambda$?)

$\Lambda_b o \Lambda_c^*(2595) \ell \bar{ u}$ and $\Lambda_b o \Lambda_c^*(2625) \ell \bar{ u}$

- A first lattice QCD calculation at high q^2 is underway.
- Need to combine with experimental data for the shape of the Λ_b → Λ^{*}_cμν̄ decay rates to
 predict R(Λ^{*}_c).

 $\Lambda_b
ightarrow \Lambda^*(1520) \ell^+ \ell^-$

- A first lattice QCD calculation at high q^2 is underway.
- Can LHCb isolate the $\Lambda^*(1520)$ contribution to $\Lambda_b \to p K \ell^+ \ell^-$?

Forthcoming improved calculation of $\Lambda_b \rightarrow p, \Lambda, \Lambda_c$ form factors

- Remove data sets with $m_{u,d}^{(\mathrm{val})} < m_{u,d}^{(\mathrm{sea})}$, add two new ensembles
- For $\Lambda_b \to \Lambda$: physical $m_s^{(val)}$
- More accurate tuning of charm and bottom actions
- All-mode-averaging for higher statistics

$N_s^3 \times N_t$	β	$am_{u,d}^{(sea)}$	$am_{u,d}^{(val)}$	$am_s^{(sea)}$	<i>a</i> (fm)	$m_\pi^{(m sea)}$ (MeV)	$m_\pi^{(m val)}$ (MeV)	Status
$24^3 \times 64$	2.13	0.005	0.005	0.04	pprox 0.111	pprox 340	\approx 340	done
$-24^3 \times 64$	2.13	0.005	0.002	0.04	≈ 0.111	≈ 340	≈ 270	
213 61	2.12	0.005	0.001	0.04	~ 0.111	~ 240	~ 250	
-24 × 04	2.15	0.005	0.001	0.04	~ 0.111	~ 340	~ 230	
$48^3 \times 96$	2.13	0.00078	0.00078	0.0362	pprox 0.114	pprox 140	pprox 140	done
$32^3 \times 64$	2.25	0.006	0.006	0.03	≈ 0.083	pprox 360	pprox 360	done
$32^3 \times 64$	2.25	0.004	0.004	0.03	≈ 0.083	pprox 300	≈ 300	done
$-32^3 \times 64$	2.25	0.004	0.002	0.03	≈ 0.083	~ 300	~ 230	
02, / 01	2.20	0.001	0.002	0.00				
$48^{\circ} \times 96$	2.31	0.002144	0.002144	0.02144	pprox 0.071	≈ 230	≈ 230	planned

• Better source smearing

Expected completion: 2020. Hope to reduce total uncertainties by factor of 2.