CKM 2018

10TH INTERNATIONAL WORKSHOP ON THE CKM UNITARITY TRIANGLE UNIVERSITÄT HEIDELBERG, SEPTEMBER 17-21, 2018

Semileptonic $\Lambda_b \rightarrow \Lambda_c^{(*)} \mu \nu$ Decays

Marcello Rotondo

Laboratori Nazionali di Frascati

On behalf of the LHCb collaboration

CKM 2018 M. Rotondo

Why $\Lambda_b \to \Lambda_c \mu \nu$?

- B → Dµv and B → D*µv decays well studied at B-Factories
 - A lot of information about $B \rightarrow D^{**}\mu\nu$ and $B \rightarrow D\pi(\pi)\mu\nu$ also available
- Λ_b (bdu) have different spin structure and because the (ud) di-quark has j=0,
 HQET makes clean predictions
- Only few measurements (Delphi, CDFII) available for semileptonic Λ_b

$\Lambda_c^+ \ell^- \bar{\nu}_\ell$ anything	$(10.3 \pm 2.1)\%$
$\Lambda_c^+ \ell^- \overline{ u}_\ell$	$(6.2^{+1.4}_{-1.3})\%$
$arLambda_c^+\pi^+\pi^-\mathscr{C}^-\overline{ u}_{\mathscr{C}}$	$(5.6 \pm 3.1)\%$
$\Lambda_c(2595)^+\ell^-\overline{\nu}_\ell$	$(7.9^{+4.0}_{-3.5}) \times 10^{-3}$
$\Lambda_c(2625)^+\ell^-\overline{\nu}_\ell$	$(1.3^{+0.6}_{-0.5})\%$
$\Sigma_c(2455)^0\pi^+\ell^-\overline{\nu}_\ell$	
$\Sigma_c(2455)^{++}\pi^-\ell^-\overline{\nu}_\ell$	

 LHCb has the unique capability to study in detail the semileptonic Λ_b decays

$\Lambda_b \rightarrow \Lambda_c \mu \nu$

Measure differential spectrum

$$\frac{d\Gamma}{dw} = GK(w)\xi_B^2(w)$$

$$w = v_{\Lambda_b} \cdot v_{\Lambda_c} = \frac{m_{\Lambda_b}^2 + m_{\Lambda_c}^2 - q^2}{2m_{\Lambda_b}m_{\Lambda_c}}$$

• Extract information on function $\xi_B(w)$ assuming parameterizations based on phenomenological models or simple expansion around w=1

$$\xi_B(w) = 1 - \rho^2(w - 1) + \frac{1}{2}\sigma^2(w - 1)^2 + \cdots$$

- Check precise lattice results
- Test HQET predictions in baryons
- First step toward a precise |V_{cb}| from baryon decays

$\Lambda_b \rightarrow \Lambda_c \mu \nu$: yields and backgrounds PRD96,112005(2017)

Run1 data: 3fb⁻¹

$$N(\Lambda_c^+\mu^-) = (2.74 \pm 0.02) \times 10^6$$

Very large and clean sample of $\Lambda_b \to \Lambda_c \ \mu \ v \ X$

Main peaking backgrounds:

- Λ_b → Λ_c* μν with Λ_c* → Λ_cπ⁺π⁻ and Λ_cπ⁰π⁰ Fit on data using Λ_cπ⁺π⁻ decay which covers 2/3 of the Λ_c* decays
- $\Lambda_b \to \Sigma_c^{++} \pi \mu v$ and $\Sigma_c^{0} \pi \mu v$ with $\Sigma_c \to \Lambda_c \pi$ From data reconstructing $\Sigma_c \to \Lambda_c \pi$

Measured raw yields

$$\Lambda_c(2595)^+\mu^-\bar{\nu}_{\mu}$$
 8569 ± 144
 $\Lambda_c(2625)^+\mu^-\bar{\nu}_{\mu}$ 22965 ± 266
 $\Lambda_c(2765)^+\mu^-\bar{\nu}_{\mu}$ 2975 ± 225
 $\Lambda_c(2880)^+\mu^-\bar{\nu}_{\mu}$ 1602 ± 95

Significant yields with excited states: opportunity to study them

Reconstruction of the q²

- The knowledge of the Λ_b momentum P_b is needed to measure $q^2 = (P_b P_c)^2$
- No constraints from beam energy as at B-Factories
 - Hypothesis of just 1-neutrino missing and the well-measured Λ_b flight direction gives the momentum with a 2-fold ambiguity, P₊ and P₋
 - Without selection both solutions have same chances to be the correct
 - After all selections the solution with smaller P_b
 momentum is more often the correct one

- Ciezarek et al JHEP02(2017)021
 - The q² resolution can be improved exploiting other information as decay length and angle with respect to the beam line
 - Important when angular variables will be considered

Extraction of the q² spectrum

$$w = v_{\Lambda_b} \cdot v_{\Lambda_c} = \frac{m_{\Lambda_b}^2 + m_{\Lambda_c}^2 - q^2}{2m_{\Lambda_b} m_{\Lambda_c}}$$

- Sample of $\Lambda_b \to \Lambda_c \mu \nu X$ extracted in 14 bins of q^2 (take lower $p_{\Lambda b}$ solution)
- Correct for feed-down from peaking backgrounds in each bin
- Correct for selection efficiency
- Distribution unfolded with SVD technique (regularization parameter chosen from simulation)

$\Lambda_b \to \Lambda_c \mu \nu$: results

Shape	$ ho^2$	σ^2	-
Exponential*	1.65 ± 0.03	2.72 ± 0.10	_
Dipole*	1.82 ± 0.03	4.22 ± 0.12	
Taylor series	1.63 ± 0.07	2.16 ± 0.34	Corr = 94%

- Different parameterizations have good fit quality: data/HQET predictions agree
- Knowledge of $\Lambda_b \to \Lambda_c$ form-factors crucial for $R(\Lambda_c)$
- A suitable normalization would allow |V_{cb}| extraction
- Open the route to measurements of FF in other Bhadrons
- Comparison with recent lattice calculation shows good agreement
 - Support the lattice calculation used in the |V_{ub}|/|V_{cb}| measurement
- In future further L-QCD calculations would be really desirable!

Excited states $\Lambda_c^{1/2}$ and $\Lambda_c^{3/2}$

• Interesting opportunities to study $\Lambda_b \to \Lambda_c^* \mu v$ in particular the copious $\Lambda_b \to \Lambda_c(2595) \mu v$ and $\Lambda_b \to \Lambda_c(2625) \mu v$ channels

- Interesting in near future for LFU test with Λ_b semi-tauonic decays
 - Reduced feed-down from higher order excited states
 - $\Lambda_c^* \rightarrow \Lambda_c \pi^+ \pi^-$, di-pion allows a clean experimental signature
- Theoretical papers on these decays
 - Leibovich, Stewart PRD57(1998)5620
 - Pervin et al. PRC72(2005)035291
 - Gutsche et al. arXiv:1807.11300

 Sensitivity in LHCb to the form factors in these decays has been investigated in Böer et al. JHEP06(2018)155

- Böer et al. JHEP06(2018)155
- Decomposing the $\Lambda_b \to \Lambda_c^J \mu \nu$ decay rate in helicity basis
 - 6 form factors for 1/2 state
 - 8 form factors for 3/2 state
- Up to 1/m corrections can be reduced to two independent Isgur-Wise functions
 - Interestingly the same functions describe both states
- For unpolarized Λ_b the differential decay rate is

$$\frac{1}{\Gamma_0^{(\ell)}} \frac{\mathrm{d}^2 \Gamma_J^{(\ell)}}{\mathrm{d}q^2 \, \mathrm{d}\cos\theta_\ell} = \left(a_\ell^{(J)} + b_\ell^{(J)} \cos\theta_\ell + c_\ell^{(J)} \cos^2\theta_\ell \right)$$

Coefficients a,b,c depend on J and Lepton kind

- Strategy for the sensitivity study in LHCb
 - Parametrize the relevant form-factors with a phenomenological model
 - Generate and fit toys at different luminosity scaling properly the yields extracted in LHCb
 - Considering the resolution on q^2 and $\cos\theta_\ell$ as in JHEP02(2017)021

FF parameters sensitivity

- Böer et al. JHEP06(2018)155
- Form-factors parameterized with exponential functions

$$\zeta(q^2)\Big|_{\text{exp}} \equiv \zeta(q_{\text{max}}^2) \exp\left[\rho\left(\frac{q^2}{q_{\text{max}}^2} - 1\right)\right]$$

$$\zeta_{\text{SL}}(q^2)\Big|_{\text{exp}} \equiv \zeta(q_{\text{max}}^2) \delta_{\text{SL}} \exp\left[\rho_{\text{SL}} \left(\frac{q^2}{q_{\text{max}}^2} - 1\right)\right]$$

$$\zeta_{\rm SL}(q^2)\Big|_{\rm exp} \equiv \zeta(q_{\rm max}^2) \delta_{\rm SL} \exp\left[\frac{\rho_{\rm SL}}{\delta_{\rm SL}} \left(\frac{q^2}{q_{\rm max}^2} - 1\right)\right]$$

- Fits with different configurations:
 - Separately for $\Lambda_c^{1/2}$ and $\Lambda_c^{3/2}$
 - 1-Dimensional q²
 - 2-Dimensional combined q^2 and $\cos \theta_{\ell}$

Sensitivity corresponding to the data available at the end of Run2 ~20K $\Lambda_c^{1/2}$ and ~50K $\Lambda_c^{3/2}$

Best sensitivity with simultaneous 2D fit on both resonances: analysis ongoing in LHCb

Böer et al. JHEP06(2018)155

$$R(\Lambda_c^{(*)}) \equiv \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^{(*)} + \tau^- \bar{\nu}_\tau)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^{(*)} + \mu^- \bar{\nu}_\mu)}$$

- The decay into ground state is more favourable because of the large BF, higher efficiency
- With higher statistics the excited states would allow better control of the systematics due to the peaking backgrounds

• From recent calculations from Gutsche et al. arXiv:1807.11300

	$\Lambda_c^+(\frac{1}{2}^+)$	$\Lambda_c^{*+}(\frac{1}{2}^-)$	$\Lambda_c^{*+}(\frac{3}{2}^-)$
e	6.80 ± 1.36	0.86 ± 0.17	0.17 ± 0.03
μ	6.78 ± 1.36	0.85 ± 0.17	0.17 ± 0.03
au	2.00 ± 0.40	0.11 ± 0.02	0.018 ± 0.004
$R(\Lambda_c^{(*)})$	0.30 ± 0.06	0.13 ± 0.03	0.11 ± 0.02

Outlook

- Properties of semileptonic decays of b-baryons can be studied in LHCb with high precision
- Great opportunities
 - Measurements of CKM parameters, LFU tests
 - hope to get soon similar/better level of knowledge as in B meson decays
- Crucial interplay with theorists
 - L-QCD is an essential ingredient but it usually requires time
 - Predictions using other approaches are of course very welcome
- News from baryons in the next months!

BACKUP

|V_{ub}| at LHCb

- B-baryons provide complementary informations to B-mesons
- Copious production of Λ_b

- Kinematic constraints allow the determination of the p_{\lambdab} (modulo 2-fold ambiguity)
- Large background from $\Lambda_b \rightarrow \Lambda_c \mu \nu$
- LHCb determines (in the high q² region) the ratio

$$R_{exp} = rac{\mathcal{B}(\Lambda_b o p \mu
u)}{\mathcal{B}(\Lambda_b o \Lambda_c \mu
u)}$$
 Signal Normalization

Precise F.F.calculation on L-QCD

 $q^2 \text{ (GeV}^2)$

 $q^2 > 7 \text{ GeV}^2$

CKM 2018

M. Rot

$\Lambda_b \rightarrow p\mu\nu \text{ signal & } |V_{ub}|$

$$R = \frac{\mathcal{B}(\Lambda_b \to p\mu\nu)_{q^2 > 15 \ GeV^2}}{\mathcal{B}(\Lambda_b \to \Lambda_c\mu\nu)_{q^2 > 7 \ GeV^2}} =$$

$$: (0.95 \pm 0.04 \pm 0.07) \times 10^{-2}$$

$$\left| rac{|V_{ub}|}{|V_{cb}|} = 0.080 \pm 0.004_{Exp.} \pm 0.004_{F.F.} \ \sigma_{ ext{tot}} = 7\%$$

Systematics dominated by $BF(\Lambda_c \rightarrow pK\pi)=(6.46\pm0.24)\%$ HFLAV using BESIII-Belle measurements

New global picture?

CKM 2018