

LVF and other very rare decay searches at

HEb

ting the solution of the

Giulio Dujany

on behalf of the LHCb collaboration 17/09/2018 CKM 2018

Outline

Introduction

- 2 Lepton Flavour violating decays • $B^0_{(s)} \rightarrow e^{\pm}\mu^{\mp}$ • $H^0 \rightarrow \mu^{\pm}\tau^{\mp}$
- 3 Other very rare decays • $B^+ \rightarrow D_s^+ \phi$ • $\Sigma^+ \rightarrow \rho \mu^+ \mu^-$ • $\Lambda_c^+ \rightarrow \rho \mu^+ \mu^-$

Introduction

- Rare heavy flavour decays are a good place to look for New Physics
- When Standard Model is suppressed New Physics contributions could become apparent
- Sensitive also to new mediators with masses inaccessible by direct production
- Interesting in particular:
 - Flavour changing neutral currents (FCNC), in the Standard Model proceeds only via loop diagrams, possible new particles in the loops
 - Lepton flavour violating (LFV) decays, practically forbidden in the Standard Model, an observation is a clear sign of New Physics

Lepton Flavour violating decays

- Lepton flavour essentially conserved in the Standard Model
- BUT not supported by strong theoretical reasons (e.g. underlying symmetry)
- AND neutrino oscillation implies LFV in loops ($\mathcal{B} < 10^{-40}$)

$\underline{\mathsf{LFUV}} \to \underline{\mathsf{LFV}} ?$

Recently several hints of LFUV (See talks of Vitalii Lisovskyi and Adam Morris)

A natural consequence of several LFUV models is LFV in B decays, for example

[Hiller, Loose, Schönwald (2016)]

$$\begin{split} \mathcal{B}(B \to K \mu^{\pm} e^{\mp}) &\sim 3 \cdot 10^{-8} \left(\frac{1-R_K}{0.23}\right)^2, \ \mathcal{B}(B \to K (e^{\pm}, \mu^{\pm}) \tau^{\mp}) \sim 2 \cdot 10^{-8} \left(\frac{1-R_K}{0.23}\right) \\ \frac{\mathcal{B}(B_s \to \mu^+ e^-)}{\mathcal{B}(B_s \to \mu^+ \mu^-)_{\mathrm{SM}}} &\sim 0.01 \left(\frac{1-R_K}{0.23}\right)^2, \quad \frac{\mathcal{B}(B_s \to \tau^+ (e^-, \mu^-))}{\mathcal{B}(B_s \to \mu^+ \mu^-)_{\mathrm{SM}}} \sim 4 \left(\frac{1-R_K}{0.23}\right)^2. \end{split}$$

LFV experimental status

μ^- DECAY MODES		Fraction	(Γ_i/Γ)	Confidence level	р (MeV/c)
$e^- \nu_e \overline{\nu}_\mu$	LF	[f] < 1.2	%	90%	53
$e^-\gamma$	LF	< 4.2	$\times 10^{-1}$	13 90%	53
$e^{-}e^{+}e^{-}$	LF	< 1.0	$\times 10^{-1}$	12 90%	53
$e^- 2\gamma$	LF	< 7.2	$\times 10^{-1}$	11 90%	53

$$\begin{split} & \mathcal{B}\left(Z^{0} \rightarrow e^{\pm} \mu^{\mp}\right) < 7.5 \times 10^{-7} \text{ (@95\%CL)} \\ & \mathcal{B}\left(Z^{0} \rightarrow e^{\pm} \tau^{\mp}\right) < 9.8 \times 10^{-6} \text{ (@95\%CL)} \\ & \mathcal{B}\left(Z^{0} \rightarrow \mu^{\pm} \tau^{\mp}\right) < 1.2 \times 10^{-5} \text{ (@95\%CL)} \\ & \mathcal{B}\left(H^{0} \rightarrow \mu\tau\right) < 0.25\% \text{ (@95\%CL)} \\ & \mathcal{B}\left(H^{0} \rightarrow e\tau\right) < 0.61\% \text{ (@95\%CL)} \\ & \text{Idea to the theory of theory of theory of the theory of t$$

In summary no LFV observed to date, only upper limits set But several BSM models allow LFV just below current limits

Giulio Dujany (LPNHE-CNRS)

LFV & VRD @ LHCb

$\tau^- \rightarrow \rho \mu^- \mu^-$	$\mathcal{B} < 4.4 imes 10^{-7}$ @ 90% CL	[Physics Letters B 724 (2013)]
$\tau^- ightarrow \overline{p} \mu^+ \mu^-$	${\mathcal B} < { m 3.3} imes { m 10^{-7}}$ @ 90% CL	[Physics Letters B 724 (2013)]
$ au ightarrow \mu \mu \mu$	$\mathbb{B} < 4.7 imes 10^{-8}$ @ 90% CL	[JHEP O2 (2015) 121]
$D^0 ightarrow e^\pm \mu^\mp$	${\mathcal B} <$ 1.3 $ imes$ 10 $^{-8}$ @ 90% CL	[Phys. Lett. B754 (2016) 167]
$B^{O} ightarrow e^{\pm} \mu^{\mp}$	${\mathbb B} <$ 1.0 $ imes$ 10 $^{-9}$ @ 90% CL	[JHEP 1803 (2018) 078]
$B^{ m O}_{s} ightarrow e^{\pm} \mu^{\mp}$	${\mathcal B} < 5.4 imes 10^{-9}$ @ 90% CL	[JHEP 18O3 (2018) 078]
$H^0 ightarrow \mu^\pm au^\mp$	${\mathcal B} < { m 26\%}$ @ 95% CL	[arXiv:1808.07135]

And several others in the pipeline involving all 3 leptons

 $B^{f O}_{(s)}
ightarrow e^{\pm} \mu^{\mp}$

[JHEP 1803 (2018) 078]

$B^0_{(s)} ightarrow e^{\pm} \mu^{\mp}$

- LFV decay forbidden in the Standard Model but can be up to $O(10^{-11})$ in lepton non-universality scenarios
- Search uses full Run I sample (follows [Phys.Rev.Lett. 111 (2013) 141801] performed with 1 fb⁻¹)
- Uses two normalisation channels
 - $B^+ \rightarrow J/\psi K^+$ (clean final state)
 - $B^0 \rightarrow K^+ \pi^-$ (same topology as the signal)

 $B^{\rm O}_{(c)} \rightarrow e^{\pm} \mu^{\mp}$

Muon reconstruction

- Extremely performant in LHCb
 - dedicated muon chambers
 - very efficient tracking system
 - clean trigger signature

Electron reconstruction

• Resolution degraded by energy loss from bremsstrahlung

→ **e**±μ∓

- Candidates selected with improved BDT (trained with signal MC and same sign $e^\pm\mu^\pm$ background)
- BDT calibrated on $B^0 \rightarrow K^+\pi^-$ to flatten response on signal
 - Smaller systematic for efficiency estimation
- Main background from $B^0_{(s)} \rightarrow h^+ h'^-$ with both hadrons misidentified suppressed with PID

 $B^{0}_{(c)} \rightarrow e^{\pm} \mu^{\mp}$

[JHEP 1803 (2018) 078]

LHCb

Data

 $B_s^0 \rightarrow e^{\pm} \mu^{\mp}$ $B^0 \rightarrow e^{\pm} \mu^{\mp}$

···· Combinatorial ···· $\Lambda_b^0 \rightarrow p \mu^- \nu$ ···· $B^0 \rightarrow \pi^- \mu^+ \nu$

- Candidates split by number of Bremsstrahlung photons (O left; ≥ 1 right)
- Simultaneous fit to 7 bins of BDT classifier
- Best World's limits set

$$\begin{split} \mathcal{B}(\textit{B}^{0}_{s}\rightarrow\textit{e}^{\pm}\mu^{\mp}) < 5.4(6.3)\times10^{-9}\\ & @90\%(95\%)\,\text{C.L.} \end{split}$$

$$\begin{split} \mathfrak{B}(\textbf{B^{O}} \to \textbf{e}^{\pm} \mu^{\mp}) < 1.0(1.3) \times 10^{-9} \\ & \texttt{@90\%(95\%) C.L.} \end{split}$$

B^O_s limit assumes only heavy mass eigenstate to contribute

$H^0 ightarrow \mu^\pm au^\mp$

[arXiv:1808.07135 submitted to Eur Phys J. C]

- Aim: Search for LFV decay $H^0 \rightarrow \mu^{\pm} \tau^{\mp}$ of Higgs-like particle using 2 fb⁻¹ at $\sqrt{s} = 8$ TeV
- Built on the experience of the $Z^0 \to \tau^+ \tau^-$ analysis [arXiv:1806.05008 submitted to JHEP]
- Higgs mass ranging from 45 to 195 GeV (steps of 10 GeV)
 - Final state: hard prompt muon + displaced tau
 - Model independent search
 - Limits set also by CMS and ATLAS but only for 125 GeV SM Higgs ATLAS: $\mathcal{B}(H^0 \to \mu^{\pm} \tau^{\mp}) < 1.85\%$ @95% CL [JHEP11(2015)211] CMS: $\mathcal{B}(H^0 \to \mu^{\pm} \tau^{\mp}) < 0.25\%$ @95% CL [JHEP 06 (2018) 001]

 τ reconstructed in 4 different final states (for τ_{h1} and τ_{h3} allow also an extra π⁰)

- Correct the mass of au_{h3} as $m_{corr} = \sqrt{m^2 + p^2 \sin^2 \theta} + p \sin \theta$
- Require the τ to be displaced (reconstruct decay vertex for τ_{h3} while rely on IP for the others)
- Exploit isolation variables against QCD

•
$$A_{p_T} = |p_{T_{\mu}} - p_{T_{\tau}}|/(p_{T_{\mu}} + p_{T_{\tau}})$$
 used against *Vj* background in $\mu \tau_{h1}$
($A_{p_T}(sgn) < A_{p_T}(Vj)$) and against $Z \rightarrow \mu^+ \mu^-$ in $\mu \tau_{\mu}$
($A_{p_T}(sgn) > A_{p_T}(Z \rightarrow \mu^+ \mu^-)$)

- Three different selections optimised for different $m_{\mu\tau}$ regions: central, higher and lower
 - lower: lower p_T cut, more stringent isolation
 - higher: higher p_T cut on the muon
- For each mass point evaluate the best selection to use maximising the FOM $\varepsilon_{sel}/(1+\sqrt{N_{obs}})$
 - Three regions obtained (central selection 75 85 GeV, below the lower one and above the higher one)
- Signal yield obtained from simultaneous extended maximum likelihood fit
 - Signal shape from MC
 - Shapes and normalisations of main backgrounds estimated with data driven methods

$H^0 ightarrow \mu^{\pm} \tau^{\mp}$

 $H^0
ightarrow \mu^{\pm} \tau^{\mp}$

[arXiv:1808.07135 submitted to Eur Phys J. C]

Use CLs to set upper limit on product of production cross section and branching fraction

95% CL limit on $\sigma(gg \to H^0 \to \mu^{\pm}\tau^{\mp})$ goes from 22 pb (m_H = 45 GeV) to 4 pb (m_H = 195 GeV)

Additionally for SM Higgs at 125 GeV: ${\mathcal B}~(H^0 \to \mu^\pm \tau^\mp) < 26\%$

Giulio Dujany (LPNHE-CNRS)

Other very rare decays

$B^+ \rightarrow D_s^+ \phi$

- Search for pure annihilation decay (large branching fraction possible in New Physics scenarios)
- Update with Run I + Run II dataset (4.8 fb⁻¹) of previous measurement [JHEP 02(2013) 043] done with 1 fb⁻¹
- Search at the same time for $B^+ \rightarrow D_s^+ K^+ K^-$ and $B^+ \rightarrow D_s^+ \phi$
- Normalise with $B^+ \rightarrow D_s^+ (D^0 \rightarrow K^+ K^-)$

 $B^+ \rightarrow D_c^+ \phi$

• For $B^+ \rightarrow D_s^+ K^+ K^-$ fit phase-space-efficiency-corrected yields

 $\mathcal{B}(B^+ \to D_s^+ K^+ K^-) = (7.1 \pm 0.5 \text{ (stat.)} \pm 0.6 \text{ (syst.)} \pm 0.7 \text{ (norm.)}) \times 10^{-6}$

- Majority of $B^+ \to D_s^+ \varphi$ candidates expected in narrow range around φ mass and with $|\cos(\theta_K)| > 0.4$
 - simultaneous fit in four regions with different ϕ mass and $\cos(\theta_{\mathcal{K}})$
- No signal observed and upper limit set

 $\ensuremath{\mathbb{B}}(\ensuremath{\textit{B}}^+\!\rightarrow\ensuremath{\textit{D}}_{\ensuremath{\textit{s}}}^+\varphi)<4.9\times10^{-7}\,\ensuremath{\texttt{@95\% C.L.}}$

Giulio Dujany (LPNHE-CNRS)

$\Sigma^+ ightarrow p \mu^+ \mu^-$

- FCNC $s \rightarrow dll$ transition
- $1.6 \times 10^{-8} < B_{SM} < 9.0 \times 10^{-8}$ [He, Tandean, Valencia, PRD '05] dominated by long distance contributions
- Evidence from HyperCP [Phys.Rev.Lett.94:021801,2005]: three candidates with approximately same $\mu^+\mu^-$ mass close to lower kinematic limit (214.3 \pm 0.5 MeV)

New intermediate particle?

Search on Run I data (3 fb^{-1})

$$\mathcal{B}(\Sigma^+ \to \rho \mu^+ \mu^-) = (2.2^{+1.8}_{-1.3}) \times 10^{-8} (4.1\sigma)$$

No significant structure observed in $\mu^+\mu^-$ invariant mass distribution

$\Lambda_c^+ ightarrow p \mu^+ \mu^-$

- FCNC $c \rightarrow ull$ transition less explored than $b \rightarrow sll$
- Short-distance $\mathcal{B}_{SM}(\Lambda_c^+ \rightarrow p \mu^+ \mu^-) \sim 10^{-9}$
- Long-distance $\mathcal{B}_{SM}(\Lambda_c^+ \rightarrow p(V \rightarrow \mu^+ \mu^-))$ up to 10^{-6}
- Could be enhanced also by New Physics

Search on Run I data (3 fb $^{-1}$)

- 3 q^2 regions: a) nonresonant, b) ϕ , c) ω
- First observation in the ω region at 5σ

$$\begin{split} \mathfrak{B}(\Lambda_c^+ &\rightarrow \rho \omega) = (9.4 \pm 3.2 \, \text{(stat.)} \pm 1.0 \, \text{(syst.)} \\ &\pm 2.0 \, \text{(ext.)}) \times 10^{-4} \end{split}$$

$${\mathcal B}(\Lambda_c^+\!\to\! \rho\mu^+\mu^-)<7.7\times 10^{-8}$$
 @ 90% C.L.

- LFV good place to look for new physics expecially now
- LHCb active player of the field with analyses involving all three leptons and more results to come in the future
 - World's best upper limit on $B^0_{(s)} \rightarrow e^{\pm} \mu^{\mp}$
 - $\blacktriangleright\,$ Search for decay $H^0 \to \mu^\pm \tau^\mp$ of Higgs-like particle in mass range 45-195~GeV
- LHCb active also in search of other very rare decays that also have the potential to uncover new physics
 - Updated limit on pure annihilation decay $B^+ \rightarrow D_s^+ \phi$
 - Evidence for $\Sigma^+ \rightarrow p\mu^+\mu^-$ but no evidence for intermediate state decaying to $\mu^+\mu^-$
 - First observation of $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ in the ω region

BACKUP

$H^0 ightarrow \mu^{\pm} \tau^{\mp}$

Selection set	Variable	$\mu \tau_e$	$\mu \tau_{h \mu \tau \mu}$ mumu		
All	$p_{\rm T}$ (τ) [GeV/c]	> 5	> 10	> 12	> 5
	$p_{\rm T}(\tau_{b3}^{\rm prong1}) [\text{GeV}/c]$		_	> 1	_
	$p_{\rm T}(\tau_{h3}^{\rm prong2})$ [GeV/c]			> 1	
	$p_{\rm T}(\tau_{b3}^{\rm prong3})$ [GeV/c]		_	> 6	_
	$p_{\rm T}(\mu) - p_{\rm T}(\tau) [\text{GeV}/c]$	> 0			
	$m \left(\tau_{h \text{ GeV}/c^2} \right]$		_	0.7 - 1.5	_
	$m_{\rm corr}$ $(\tau_{h {\rm GeV}/c^2}]$		_	> 3	_
	Time-of-flight $(\tau_{h \text{ fs}}]$		_	> 30	_
	IP(τ) [μ m]	> 10	> 10		> 50
	IP(μ) [μ m]	< 50	< 50	< 50	< 50
	$\Delta \phi$ [rad]	> 2.7	> 2.7	> 2.7	> 2.7
	$\hat{I}_{p_T}(\tau)$	> 0.9	> 0.9	> 0.9	> 0.9
	$\hat{I}_{p_{\mathrm{T}}}$ (μ)	> 0.9	> 0.9	> 0.9	> 0.9
L-selection	$p_{\rm T}$ (μ) [GeV/c]	> 20	> 20	> 20	> 20
	$A_{p_{T}}$	< 0.6	< 0.4	_	> 0.3
	I_{p_T} (τ) [GeV/c]	< 2	< 2	< 2	< 2
	$I_{p_{\mathrm{T}}}$ (μ) [GeV/c]	< 2	< 2	< 2	< 2
C-selection	$p_{\rm T}$ (μ) [GeV/c]	> 30	> 30	> 30	> 30
	$A_{p_{T}}$	_	< 0.5	_	> 0.3
H-selection	$p_{\rm T}$ (τ) [GeV/c]	> 20	> 20	> 20	_
	$p_{\rm T}$ (μ) [GeV/c]	> 40	> 40	> 40	> 50
	$A_{p_{T}}$	_	_	_	> 0.4

Selection

 $H^0
ightarrow \mu^{\pm} \tau^{\mp}$

Systematics

	μau_e	$\mu \tau_{h\mu \tau_{\mu}}$ mumu		
Luminosity	1.16	1.16	1.16	1.16
Tau branching fraction	0.22	0.18	0.48	0.23
PDF	2.6 - 7.1	3.5 - 7.2	2.6 - 7.3	3.0 - 7.9
Scales	0.9 - 1.9	0.8 - 1.7	0.9 - 1.7	0.9 - 1.9
Reconstruction efficiency	1.8 - 3.6	1.9 - 5.4	3.3 - 7.1	1.5 - 3.3
Selection efficiency	2.5 - 6.0	1.9 - 4.1	4.0 - 9.3	3.8 - 8.5

Backgrounds

Table 1: DD = using data-driven method, MC = from simulation

Process	Normalization	Note
$Z \rightarrow \tau \tau$	DD + MC	Use $N = \sigma \mathcal{L} \varepsilon$.
$Z \rightarrow ll$	DD	Use prompt dimuon peak [80,100] ${\rm GeV}/c^2$ as control. Use data-validated mis-ID rate.
QCD	DD	Use same-sign candidates as control.
Vj	DD	Use same-sign candidates as control.
$t\overline{t}$,VV, $Z ightarrow b\overline{b}$	MC	Small, use $N=\sigma\mathcal{L}arepsilon$

 $H^0
ightarrow \mathfrak{u}^{\pm} au^{\mp}$

$ m(K^{+}K^{-}) - m (M_{0}V/a^{2})$	Helicity Category		
$ m(\mathbf{K} \cdot \mathbf{K}) - m_{\phi} (\mathbf{Mev}/c)$	$ \cos \theta_K > 0.4$	$ \cos\theta_K < 0.4$	
< 10	82%	6%	
(10, 40)	11%	1%	

Giulio Dujany (LPNHE-CNRS)

[JHEP O1 (2018) 131]

