

© José Luiz Bernardes Ribeiro / CC BY-SA 4.0

D decays at LHCb

Chris Burr, on behalf of the LHCb collaboration 18th September @ CKM 2018, Heidelberg

- Measurement of angular and CP asymmetries in $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ and $D^0 \rightarrow K^+ K^- \mu^+ \mu^-$ decays
- Measurement of the branching fractions of the decays $D^+ \rightarrow K^- K^+ K^+, D^+ \rightarrow \pi^- \pi^+ K^+ \text{ and } D_c^+ \rightarrow \pi^- K^+ K^+$

[JHEP 08 (2018) 008]

[PHYS. REV. LETT. 121 (2018) 091801]

Brand [LHCB-PAPER-2018-033] (in preparation

Measurement of D_s^{\pm} production asymmetry in pp collisions at $\sqrt{s}=7$ and 8 TeV

- $\succ D_s^{\pm}$ system production asymmetry is not caused by valence quarks Can be caused by beam drag:

Analysis overview

Measure D[±]_s production asymmetry using D[±]_s → (φ → K⁺K⁻) π[±] decays
> 2.9x10⁶ (9.1x10⁶) signal decays from 1.0 fb⁻¹ (2.0 fb⁻¹) taken in 2011 (2012) at √s = 7 TeV (8 TeV)

Input for CP-violation studies and helps probe the production mechanisms

Color connections with quark remnants 'drag' antiquarks toward the beam

Color connections with di-quark remnants 'drag' quarks toward the beam

> Previous measurement using only 7 TeV data showed a small excess of D_{c}^{-}

Measurement of D_s^{\pm} production asymmetry in *pp* collisions at $\sqrt{s}=7$ and 8 TeV

> Use four bins in p_{τ} and three in rapidity, combine to give a total asymmetry

$$A_P\left(D_s^+\right) = \frac{1}{1 - f_{bkg}} \left(A_{raw} - A_D\right)$$

Invariant mass distributions for the "down" magnet polarity with fit results overlaid

Analysis details

¹ <u>10.1016/j.nima.2014.06.081</u>

Measurement of D_s^{\pm} production asymmetry in *pp* collisions at $\sqrt{s}=7$ and 8 TeV

 $\succ D_s^{\pm}$ from decays of b-hadrons Estimated to be (4.12 ± 1.23)% of all signal car Taken from LHCb production asymmetry measurements of b hadrons > Background asymmetry found to be small in comparison to the precision of this measurement

Detection asymmetries taken from separate control samples Tracking, particle identification and trigger asymmetries contribute

> All bins agree to within 2σ between the "up" and "down" magnet polarity

Chris Burr \circ D decays at LHCb \circ CKM 2018, Heidelberg

Asymmetry corrections

$$A_P\left(D_s^+\right) = \frac{1}{1 - f_{bkg}} \left(A_{raw} - A_D - f_{bkg} A_P\right)$$
ndidates

Measurement of D_s^{\pm} production asymmetry in *pp* collisions at $\sqrt{s}=7$ and 8 TeV

Combine both magnet polarities to give 12 binned results:

min min

		y	
$p_{ m T} \; [{ m GeV} / c \;]$	2.0-3.0	3.0-3.5	3.5-4.5
2.5 - 4.7	$-0.59 \pm 0.40 \pm 0.32$	$-0.34 \pm 0.37 \pm 0.13$	$-0.45 \pm 0.39 \pm 0.14$
4.7 - 6.5	$-0.73 \pm 0.29 \pm 0.27$	$-0.15 \pm 0.31 \pm 0.10$	$-0.73 \pm 0.30 \pm 0.13$
6.5 - 8.5	$-0.32 \pm 0.27 \pm 0.06$	$-0.49 \pm 0.31 \pm 0.10$	$-0.40 \pm 0.36 \pm 0.17$
8.5 - 25.0	$-0.48 \pm 0.17 \pm 0.08$	$-0.32 \pm 0.26 \pm 0.10$	$-0.74 \pm 0.39 \pm 0.09$

> Agrees with the $K^*(892)^0$ and non-resonant Dalitz regions \blacktriangleright Combining all 12 p_T/y bins results gives a total asymmetry $A_P(D_s^+) = (-0.52 \pm 0.13 \pm 0.10)\%$

Corresponds to a 3.3σ deviation from the no asymmetry hypothesis

Uncertainties given as: ± statistical ± systematic

7

Measurement of D_s^{\pm} production asymmetry in *pp* collisions at $\sqrt{s}=7$ and 8 TeV

> Pythia includes models for mechanisms that cause production asymmetries

Compare the LHCb tuning of Pythia 8.1 with these results > Pythia predicts a strong dependence in both p_{T} and y

► No kinematic dependence found in data

Comparison with Pythia

Measurement of angular and CP asymmetries in $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ and $D^0 \rightarrow K^+ K^- \mu^+ \mu^-$ decays

► LHCb recently observed $D^0 \to \pi^+ \pi^- \mu^+ \mu^-$ and $D^0 \to K^+ K^- \mu^+ \mu^-$ ► $\mathscr{B} \left(D^0 \to \pi^- \pi^+ \mu^+ \mu^- \right) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7}$ ► $\mathscr{B} \left(D^0 \to K^- K^+ \mu^+ \mu^- \right) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}$ Rarest charm decays observed so far!

Short distance contributions from FCNC processes (left)

Long distance contributions at tree level with intermediate resonances (right)

Measurement of angular and CP asymmetries in $D^0 \to \pi^+\pi^-\mu^+\mu^-$ and $D^0 \to K^+K^-\mu^+\mu^-$ decays

Make first measurement of angular and CP asymmetries ► Also increase data luminosity by 2.5x (previously 2012 data, now 2011-2016)

Standard model asymmetries are negligibly small \succ Can be inflated up to O(1%) in some BSM models Complimentary to branching ratio measurements J. High Energy Phys. 04 (2013) 135 Phys. Rev. D 90, 014035 N. Eur. Phys. J. C (2015) 75: 567

for new physics: [Phys. Rev. D 93, 074001 (2016)] [Phys. Rev. D 98, 035041 (2018)]

$$A_{FB} = \frac{\Gamma\left(\cos\theta_{\mu} > 0\right) - \Gamma\left(\cos\theta_{\mu} < 0\right)}{\Gamma\left(\cos\theta_{\mu} > 0\right) + \Gamma\left(\cos\theta_{\mu} < 0\right)} \qquad A_{2\phi} = \frac{\Gamma\left(\sin 2\phi > 0\right) - \Gamma\left(\sin 2\phi < 0\right)}{\Gamma\left(\sin 2\phi > 0\right) + \Gamma\left(\sin 2\phi < 0\right)} \qquad A_{CP} = \frac{\Gamma\left(D^{0} \to h^{+}h^{-}\mu^{+}\mu^{-}\right) - \Gamma\left(\bar{D}^{0} \to h^{+}h^{-}\mu^{+}\mu^{-}\right)}{\Gamma\left(D^{0} \to h^{+}h^{-}\mu^{+}\mu^{-}\right) + \Gamma\left(\bar{D}^{0} \to h^{+}h^{-}\mu^{+}\mu^{-}\right)}$$

Forward backward asymmetry

Triple product asymmetry

Analysis overview

The first measurement of asymmetries that are considered promising probes

CP asymmetry

Measurement of angular and CP asymmetries in $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ and $D^0 \rightarrow K^+ K^- \mu^+ \mu^-$ decays

► Using 5 fb⁻¹ collected between 2011 and 2016 at $\sqrt{s} = 7$, 8 and 13 TeV

- Measured integrated and as a function of dimuon mass > π π: <525MeV/c², η, ρ^o/low- ω , ρ^o/high- ω , φ-low, φ-high, >1100 MeV/c² **K** K: <525MeV/c², η, ρ^o/ω
 - > Only determined in regions with a significant yield

► Use $D^{*+} \rightarrow D^0 \pi^+$ decays to tag the flavour of the D^0

Efficiency variations are corrected by training a BDT Separate simulated decays from before/after applying the selection Correct efficiency using per event weights from the classifier output

Ratio between the generator level and fully selected decays for $\pi \pi$ (left) and KK (right) as a function of classifier output

5E

Analysis details

	Signal asymmetries			
$m(\mu^+\mu^-)$				
$[MeV/c^2]$	A _{FB} [%]	Α _{2φ} [%]	A _{CP} [%]	
		$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$		
<525	$2\pm20\pm2$	$-28 \pm 20 \pm 2^{-1}$	$17\pm20\pm2$	
525-565				
565-780	$8.1\pm7.1\pm0.7$	$7.4\pm7.1\pm0.7$	$-12.9 \pm 7.1 \pm 0.7$	
780–950	$7\pm10\pm1$	$-14 \pm 10 \pm 1$	$17 \pm 10 \pm 1$	
950-1020	$3.1\pm6.5\pm0.6$	$1.2\pm6.4\pm0.5$	$7.5\pm6.5\pm0.7$	
1020-1100	$0.9\pm5.6\pm0.7$	$1.4\pm5.5\pm0.6$	$9.9\pm5.5\pm0.7$	
>1100				
Full range	$3.3\pm3.7\pm0.6$	$-0.6\pm3.7\pm0.6$	$4.9\pm3.8\pm0.7$	
		$D^0 \rightarrow K^+ K^- \mu^+ \mu^-$		
<525	$13 \pm 26 \pm 4$	$9 \pm 26 \pm 3$	$-33 \pm 26 \pm 4$	
525-565				
>565	$1\pm12\pm1$	$22\pm12\pm1$	$13 \pm 12 \pm 1$	
Full range	$0\pm11\pm2$	$9\pm11\pm1$	$0\pm11\pm2$	

> All detection asymmetries are compatible with zero

No observed dependency on dimuon mass

Results integrated across $m(\mu^+\mu^-)$

$$A_{FB} \left(D^{0} \to \pi^{+} \pi^{-} \mu^{+} \mu^{-} \right) = \left(3.3 \pm 3.7 \pm 0.6 \right) \%$$

$$A_{2\phi} \left(D^{0} \to \pi^{+} \pi^{-} \mu^{+} \mu^{-} \right) = \left(-0.6 \pm 3.7 \pm 0.6 \right) \%$$

$$A_{CP} \left(D^{0} \to \pi^{+} \pi^{-} \mu^{+} \mu^{-} \right) = \left(4.9 \pm 3.8 \pm 0.7 \right) \%$$

 $A_{FB} \left(D^0 \to K^+ K^- \mu^+ \mu^- \right) = (0 \pm 11 \pm 2) \%$ $A_{2\phi} \left(D^0 \to K^+ K^- \mu^+ \mu^- \right) = (9 \pm 11 \pm 1) \%$ $A_{CP} \left(D^0 \to K^+ K^- \mu^+ \mu^- \right) = (0 \pm 11 \pm 2) \%$

Uncertainties given as: ± statistical ± systematic

13

Measurement of angular and CP asymmetries in $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$ and $D^0 \rightarrow K^+K^-\mu^+\mu^-$ decays

Measurement of the branching fractions of the decays $D^+ \to K^- K^+ K^+, D^+ \to \pi^- \pi^+ K^+$ and $D_s^+ \to \pi^- K^+ K^+$

Large uncertainties in branching fractions for the DCS decays of $D^+_{(s)} \rightarrow hhh$ Up to 23% uncertainty, previous $D^+ \rightarrow K^- K^+ K^+$ measurement was based on 65 ± 15 signal candidates ► LHCb can significantly improve the precision

Three main measurements of doubly Cabibbo suppressed decays

► Also make a control measurement of the CS decay $\frac{\mathscr{B}(D^+ \to K^- K^+ \pi^+)}{\mathscr{B}(D^+ \to K^- \pi^+ \pi^+)}$

Analysis overview

Measurement of the branching fractions of the decays $D^+ \to K^- K^+ K^+$, $D^+ \to \pi^- \pi^+ K^+$ and $D_s^+ \to \pi^- K^+ K^+$.

Determine signal yields from a binned maximum likelihood fit to M(hhh) > Data is split by charge, magnet polarity and, for the normalisation channels, $D_{(s)}^+$ momentum

Chris Burr \circ D decays at LHCb \circ CKM 2018, Heidelberg

> Gaussian and 2 double sided crystal ball distributions used for signal with an exponential for background

Measurement of the branching fractions of the decays $D^+ \to K^- K^+ K^+$, $D^+ \to \pi^- \pi^+ K^+$ and $D_s^+ \to \pi^- K^+ K^+$.

Determine signal yields from a binned maximum likelihood fit to M(hhh) > Gaussian and 2 double sided crystal ball distributions used for signal with an exponential for background

Chris Burr \circ D decays at LHCb \circ CKM 2018, Heidelberg

	Yields $[\times 10^3]$		
own	MagUp	Total	$+K^{+-}$
± 0.33	66.69 ± 0.33	134.30 ± 0.47	
± 0.99	393.72 ± 0.98	794.9 ± 1.4	
± 0.38	33.56 ± 0.38	67.24 ± 0.54	
± 3.6	11482.0 ± 3.6	23139.1 ± 5.1	
± 10	101008 ± 10	204290 ± 14	eV/c^2
± 9.0	78530.2 ± 8.9	158727 ± 13	
± 3.5	11414.3 ± 3.5	23043.7 ± 5.0	$+\pi^+$
	ates	11	1
\sim	- south	f A	
<i>M</i> (π ⁻ K	$^{2}_{K^{+}}$ [GeV/ c^{2}]	1.85 1.9 $M(K^-K^+\pi^+)$ [C	GeV/c^2
· ·	/ • ·		-

Measurement of the branching fractions of the decays $D^+ \to K^- K^+ K^+$, $D^+ \to \pi^- \pi^+ K^+$ and $D_s^+ \to \pi^- K^+ K^+$.

Efficiencies vary across the Dalitz plane > Phase space Monte Carlo is used due to unavailability of a suitable amplitude model \blacktriangleright Instead the efficiency is computed in O(100) bins in the Dalitz plane

Efficiency corrections

Selection chosen to suppress both combinatorial and peaking backgrounds

Efficiency map (left) and Dalitz plots (right) for $D^+ \rightarrow K^- K^+ K^+$

Measurement of the branching fractions of the decays $D^+ \to \overline{K^- K^+ K^+}$, $D^+ \to \pi^- \pi^+ K^+$ and $D_s^+ \to \pi^- K^+ K^+$.

> World's best measurements in all cases

PDG 201 Ratio $\mathscr{B}\left(D^+ \to K^- K^+ K^+\right)$ $(9.5 \pm 2.2) \times$ $\mathscr{B}(D^+ \to K^- \pi^+ \pi^+)$ $\frac{\mathscr{B}\left(D^{+} \to \pi^{-}\pi^{+}K^{+}\right)}{\mathscr{B}\left(D^{+} \to K^{-}\pi^{+}\pi^{+}\right)}$ $(5.77 \pm 0.22) \times$ $\mathscr{B}\left(D_{s}^{+}\to\pi^{-}K^{+}K^{+}\right)$ $(2.33 \pm 0.23) >$ $\mathscr{B}\left(D_{s}^{+} \to K^{-}K^{+}\pi^{+}\right)$ $\mathscr{B}\left(D^+ \to K^- K^+ \pi^+\right)$ $(10.59 \pm 0.18)\%$ $(10.282 \pm 0.002 \pm 0.068)\%$ 2.5 $\mathscr{B}(D^+ \to K^- \pi^+ \pi^+)$

8	This analysis	Improven
10 ⁻⁴	$(6.541 \pm 0.025 \pm 0.042) \times 10^{-4}$	45
× 10 ⁻³	$(5.231 \pm 0.009 \pm 0.023) \times 10^{-3}$	9
× 10 ^{−3}	$(2.372 \pm 0.024 \pm 0.025) \times 10^{-3}$	6.5

Uncertainties given as: ± statistical ± systematic

Measurement of the branching fractions of the decays $D^+ \to K^- K^+ K^+$, $D^+ \to \pi^- \pi^+ K^+$ and $D_s^+ \to \pi^- K^+ K^+$.

> World's best measurements in all cases Combining with the PDG 2018 average for the denominator:

$$\mathscr{B}\left(D^{+} \to K^{-}K^{+}K^{+}\right) = \left(5\right)$$
$$\mathscr{B}\left(D^{+} \to \pi^{-}\pi^{+}K^{+}\right) = \left(4\right)$$
$$\mathscr{B}\left(D_{s}^{+} \to \pi^{-}K^{+}K^{+}\right) = \left(1.29\right)$$

 $\mathscr{B}\left(D^+ \to K^- K^+ \pi^+\right) = \left(9.233 \pm 0.002 \pm 0.061 \pm 0.288\right) \times 10^{-3}$

 $5.87 \pm 0.02 \pm 0.04 \pm 0.18) \times 10^{-5}$

 $.70 \pm 0.01 \pm 0.02 \pm 0.15) \times 10^{-4}$

 $93 \pm 0.013 \pm 0.014 \pm 0.040) \times 10^{-4}$

Uncertainties given as: \pm statistical \pm systematic \pm normalisation channel branching ratio

Measurement of the branching fractions of the decays $D^+ \to K^- K^+ K^+$, $D^+ \to \pi^- \pi^+ K^+$ and $D_s^+ \to \pi^- K^+ K^+$.

- > LHCb is a charm factory and has the world's largest sample of charm decays
- Huge samples allow for rare and high precision measurements to be made
- ► Many more analyses to come using Run 1 and Run 2 data
- Longer term: LHCb's first upgrade begins at the end of the year
 Will allow for measurements with an order of magnitude larger samples

)

- > LHCb is a charm factory and has the world's largest sample of charm decays
- Huge samples allow for rare and high precision measurements to be made
- Many more analyses to come using Run 1 and Run 2 data
- Longer term: LHCb's first upgrade begins at the end of the year > Will allow for measurements with an order of magnitude larger samples

Any Questions?

