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Rare kaon decays
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loop suppressed in the SM (FCNC via
W-W or γ/Z-exchange diagrams)

hard to observe in nature deep probe 
into flavour mixing and SM/BSM

J-PARC’s KOTO and CERN’s NA62 are
measuring these decays

results expected on the time scale of 5 years
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Experiments

• KOTO (J-PARC) 
• direct CP violation 
• GIM → top dominated and  

charm suppressed, pure SD 
• phase 2 aims at  

10% measurement of BR

KL ! ⇡0⌫⌫̄

• NA62 (CERN) 
• CP conserving  
• small LD contribution, candidate for lattice

z

K+ ! ⇡+⌫⌫̄

see also:
• Kamamoto’s talk  

in plenary session
• Koval’s talk 

candidates for lattice computation

K+ ! ⇡+⌫⌫̄

K+ ! ⇡+l+l� Ks ! ⇡0l+l�
• 1-photon exchange LD dom. 
• SM prediction mainly ChPT 
• lattice can predict ME and LECs 
• well suited for experiment

K+ ! ⇡+l+l� Ks ! ⇡0l+l�
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2nd order weak processes

2nd order weak decay
→ 2 insertions of HW/Jμ

Aim here: compute non-perturbative physics when 1/x~ΛQCD

Aµ = (q2)

Z
d
4
xh⇡(p)|T [Jµ(0)HW (x)] |K(k)i

with dominant 1-photon contribution:K+ ! ⇡+l+l�consider
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Difficulties
1st order weak MEs now bread & butter on the lattice

2nd order weak ME on the lattice new development —   
currently we are learning how to do rare kaon decays, 𝜖K, ΔMK  
(similar difficulties also in QCD+QED for decay rate)

(see http://flag.unibe.ch)

1. Spectral representation:  Euclidean space intermediate states  
    lead to artefacts that need to be controlled  

2. Renormalisation: EW operator contact terms lead to UV div. 

3. Finite volume effects: The finite-volume corrections from  
     intermediate on-shell states can be large

Complications

Isidori et al. PLBB 633 (2006) 75-83, Christ et al. PRD91 (2015), 114510 
RBC/UKQCD PRD92 (2015) 094512, PRD94 (2016) 114516, PRD93 (2016) 114517, PRL118 (2017) 252001, arXiv:1806.11520!6

http://flag.unibe.ch
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Spectral representation - 
Minkowski

complications arise when considering the amplitude  
in Euclidean space …

strange intermediate states

non-strange intermediate states

Ac
µ(q

2) =

Z
d
4
xh⇡c(p)|T [Jµ(0)HW (x)] |Kc(k)i
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Spectral representation - 
Euclidean

Ac
µ(q

2) =

Z
d
4
xh⇡c(p)|T [Jµ(0)HW (x)] |Kc(k)i

integrate EW operators over Ta-Tb

see also C. Kelly’s talk!8



Spectral representation - 
Euclidean

exponential in first terms on r.h.s.  
➤ 1st line:  

➤ E>EK: exponential term vanishes as Ta→∞ 
➤ E<EK: exponential term grows as Ta→∞, must be removed  

(possible intermediate states π, ππ, πππ) 
➤ 2nd line: no problem, all intermediate states E larger Eπ

A
c
µ(Ta, Tb, q

2) =

1Z

0

dE
⇢(E)

2E

h⇡c(p)|Jµ(0)|E,kihE,k|HW (0)|Kc(k)i
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⇣
1� e
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⌘

+

1Z

0

dE
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2E
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⇣
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�(E�E⇡(k))Tb

⌘
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Spectral representation - 
Euclidean

subtraction of exponentially increasing states: 
➤ π: either get amplitudes from 2pt and 3pt functions and subtract  

    or replace  
 
 
    where cS such that                                                     kills the  
    unwanted divergent contribution and does not contribute  
    to the amplitude itself

HW (x) ! H
0
W (x) = HW (x) + cS(k)s̄(x)d(x)

h⇡c(k)|H 0
W (0,k)|Kc(k)i = 0

A
c
µ(Ta, Tb, q

2) =
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0
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Spectral representation - 
Euclidean

subtraction of exponentially increasing states: 
➤ ππ: disallowed by O(4) invariance but can be present as  

    discretisation effect — needs to be monitored  

hπjðpÞjs̄ðxÞdðxÞjE;pi ¼ i
E − EπðpÞ
m s − m d

hπjðpÞjVs̄d
0 ðxÞjE;pi

ð28Þ

hE;kjs̄ðxÞdðxÞjKjðkÞi¼ i
EKðkÞ−E
m s−m d

hE;kjVs̄d
0 ðxÞjKjðkÞi:

ð29Þ

Using (22) and (23) we find that the total contribution of
csðkÞs̄d to the amplitude Aj

μðq2Þ is proportional to:
Z

d3xe−iq·xhπjðpÞj½JμðtJ;xÞ;Qs̄d%jKjðkÞi ¼ 0 ð30Þ

because of the vanishing commutator between the flavor-
diagonal current Jμ and the flavor nondiagonal vector
charge Qs̄d ¼

R
d3yVs̄d

0 ðtH ; yÞ. Thus the physical ampli-
tude is invariant under the transformation in Eq. (25). This
property is independent of the value of csðkÞ [and thus
from the tuning condition (26)].

3. Removal of the two-pion divergence

In principle, a two pion intermediate state can contribute
to a rare kaon decay through the process illustrated in
Fig. 4. The matrix elements of vector and axial currents
between a single-pion and a two-pion state have the
following form factor decomposition:

hπðp1ÞjVμjπðp2Þπðp3Þi ¼ εμνρσpν
1p

ρ
2p

σ
3Fðs; t; uÞ ð31Þ

where s¼ ðp1þp2Þ2, t ¼ ðp1− p3Þ2 and u¼ ðp2−p3Þ2.
We now show that the vector current does not contribute.

Indeed, in Fig. 4 the ππ → πγ' vertex gives the following
factor:

εμνρσpνkρ
Z

d4l
ð2πÞ4

lσFðs; t; uÞ
ðl2þM2

πÞ½ðk − lÞ2þM2
π%
: ð32Þ

Because ofOð4Þ invariance the integral in (32) can only be
a linear combination of pσ and kσ which gives a vanishing
contribution once contracted with the Levi-Civita symbol.

In the lattice theory, the cubic symmetry is sufficient for
the integral (or the corresponding sum in a finite volume) to
be a vector, but with corrections which vanish as the lattice
spacing a → 0. At finite lattice spacing however, there is a
nonzero two-pion contribution from lattice artifacts.
For example, since the four-component quantity
fðk1Þ3; ðk2Þ3; ðk3Þ3; ðk4Þ3g transforms as the same four-
dimensional irreducible representation of the cubic group
as k, one can imagine terms of the form a2εμνρσpνkρðkσÞ3 to
be present. These terms will be amplified by the growing
exponential factor in (22) and will need to be considered in
the analysis. By studying the behavior with a2 and Ta we
anticipate being able to confirm our expectation that these
effects are very small. For example, in our study of ΔMK ,
the KL-KS mass difference [21,22], with an inverse lattice
spacing of 1.73 GeVand a pion mass of 330 MeV, we find
that the on-shell two-pion contributions are just a few
percent and the artifacts are of Oð3%Þ of these. Assuming
similar factors here, the exponential factor e½EKðkÞ−E%Ta in
(22) would be insufficient for practical values of Ta to make
the two-pion contribution significant until the calculations
reach subpercent precision.

4. Removal of the three-pion divergence

Contributions containing three-pion intermediate states
are generated by diagrams such as those in Fig. 5. By
comparing the measured widths of KS → ππ decays to
those ofKS;þ → πππ decays we estimate the relative phase-
space suppression to be a factor of Oð1=500Þ or smaller.
Moreover, as explained above, we already expect the on-
shell two-pion contribution to be very small (of order a few
percent) and so we anticipate that the on-shell three-pion
contribution is negligibly small.
For the diagram in Fig. 5(a) the contribution to the

growing exponential in (22) can be avoided completely by
restricting the calculations to q2≤ 4M2

π , thus cutting out a
small region of phase-space. This still allows us to
determine the amplitudes in most of the q2 range and to
compare lattice results with ChPT-based phenomenological
models and data where this is available. Although it is the
diagram in Fig. 5(a) which is dominant in phenomeno-
logical analyses based on ChPT [17], the imaginary part,
corresponding to the three-pion intermediate state, is
neglected. The exponentially growing terms from diagrams

FIG. 4. Two-pion intermediate state contribution to the rare
kaon decay amplitude. The dotted and dashed lines represent,
respectively, the kaon and pion propagators.

FIG. 5. Examples of contributions from a three-pion inter-
mediate state to rare kaon decays.
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➤ πππ: comparison of experimental width (PDG) suggests  
    - πππ to be highly suppressed wt. respect to ππ  
    - techniques similar as for ππ possible but it’s own  
       research topic (K→πππ)
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Renormalisation

➤ Q1 and Q2 in HW renormalise multiplicatively (chiral fermions) 
➤ Jμ conserved  
➤ divergences: 

➤ quadratic divergence can appear as x→0  
but gauge invariance reduces it to a logarithmic one 

➤ remaining logarithmic divergence cancelled via GIM  
(→ need charm quark in lattice simulation)

where the operators are generalizations of those in Eq. (8)

Qqq0
1 ¼ ðs̄iγLμdiÞðq̄jγLμq0jÞ and

Qqq0
2 ¼ ðs̄iγLμdjÞðq̄jγLμq0iÞ: ð35Þ

Since the components with q ≠ q0 do not contribute to the
matrix elements for K → πlþl− decays, one is able to
rewrite HW in Eq. (34) in the form given in Eq. (7).

B. Additional divergences as HWðxÞ
approaches Jð0 Þ

In diagrams of the “loop” class in topologies S and E (cf.,
Fig. 9 and 10), there are insertions of the form illustrated in
Fig. 6. This has been studied in some detail in [1] and we
briefly summarize the conclusions. The vector current Jν to
which the photon couples is the conserved one whereas the
vector current JLμ from the weak Hamiltonian is a local one;
the label L represents Local. By power counting the loop
integral appears to be quadratically divergent. This is
reminiscent of the evaluation of the one-loop contribution
to the vacuum polarization in QED and QCD and just as in
those cases, electromagnetic gauge invariance implies that
there is a transversality factor of qμqν − q2gμν and the order
of divergence is reduced by two to a logarithmic one. [In
momentum space with a lattice action the Ward identity
qνJν ¼ 0 becomes q̂νJν ¼ 0, with q̂ν ≡ ð2=aÞ sinðaqν=2Þ].
This structure was verified and the divergence explicitly
calculated in [1] in one-loop lattice perturbation theory for
Wilson, clover and twisted-mass fermions. The logarithmic
divergence is mass independent, and so cancels exactly in
the GIM subtraction between the diagrams with u and
c-quark loops.
The above argument can be extended straightforwardly

to higher-order diagrams in which the gluons are contained
within the u or c quark loop in Fig. 6. The emission of one
or more gluons from the u or c propagators in the loop to be
absorbed by a quark or gluon propagator which is external
to the loop reduces the order of divergence, again leading to
a convergent loop integration as JνðxÞ approaches HW . The
remaining divergences are those which are associated with
the renormalization of HW .

We have seen that as a result of gauge invariance and the
GIM mechanism in the four-flavor theory there are no
additional UV divergences in

R
d4xhπjT½Jð0ÞHWðxÞ&jKi

coming from the short distance region x≃ 0. In the three-
flavor theory, gauge invariance still protects the correlation
function from quadratic divergences, but then there remains
a logarithmic term which can be removed using non-
perturbative renormalization techniques [25].

VI. CONCLUSIONS

Precision flavor physics will continue to be a central tool
in searches for new physics and in guiding and constraining
the construction of theories beyond the standard model.
Lattice QCD simulations play an important role in quanti-
fying the nonperturbative hadronic effects in weak proc-
esses. We must therefore continue to both improve the
precision of the determination of standard quantities (such
as leptonic decay constants, semileptonic form factors,
neutral meson mixing amplitudes etc.) and to extend the
range of physical quantities which become amenable to
lattice simulations. In this paper we propose a procedure for
the evaluation of the long-distance effects in the rare kaon
decay amplitudes K → πlþl−. These effects represent a
significant (and unknown) fraction of the amplitudes. In a
companion paper [2] we discuss the prospects for the
evaluation of long distance contributions to the rare decays
K → πνν̄ which will soon be measured by the NA-62
experiment at CERN and the KOTO experiment at J-PARC.
These decays are dominated by short-distance contribu-
tions, but given that they will soon be measured, it is
interesting also to determine the long-distance effects
which are expected to be of the order of a few percent
for Kþ decays.
In the previous sections we have explained how the

technical issues needed to perform the lattice simulations
can be resolved. Unphysical terms which grow exponen-
tially with the range of the time integration, generally
present when evaluating long-distance effects containing
intermediate states with energies which are less than those
of the external states, were shown in Sec. III C to be absent
or small. They could potentially arise from the presence of
intermediate states consisting of one, two or three pions and
we considered each of these cases in turn. Similarly, the
corresponding finite-volume corrections are small provided
that the invariant mass of the lepton-pair is smaller than
2Mπ . Ultraviolet effects were discussed in Sec. V. We
envisage using the lattice conserved electromagnetic vector
current Jμ so no renormalization of this operator is
required. In addition to the now standard renormalization
of the weak Hamiltonian HW , we need to consider the
possible additional ultraviolet divergences which may arise
when Jμ and HW approach each other. Electromagnetic
gauge invariance implies that no quadratic divergence is
present [1] and in the four-flavor theory the remaining
logarithmic divergence is canceled by the GIMmechanism.

FIG. 6. A potentially quadratically divergent insertion into the
S and E classes of diagram. Jν represents the conserved
electromagnetic current and JLμ;ij is the local vector current
ūjγμui or c̄jγμci from Q1;2.
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094512-9Γð3Þ
H ðtH ;pÞ ¼

ZπZ
†
KMH ðpÞ

4EπðpÞEKðpÞ
e−EπðpÞtπe−½EKðpÞ−EπðpÞ%tH ;

ð15Þ

with MH ðpÞ ¼ hπðpÞjHWð0ÞjKðpÞi. We also define the
3-point function of the electromagnetic current:

Γð3ÞPj

Jμ ðt; tJ;p;kÞ

¼
Z

d3xe−iq·xhϕPjðt;pÞJμðtJ;xÞϕ†
Pjð0;kÞi; ð16Þ

where P denotes the pseudoscalar meson (P ¼ π or K) and
j its charge. This correlation function has the following
asymptotic behavior for t ≫ tJ ≫ 0:

Γð3ÞPj

Jμ ðt; tJ;p;kÞ ¼
jZPj2MPj

Jμ ðp;kÞ
4EPjðpÞEPjðkÞ

e−ðt−tJÞEPj ðkÞe−tJEPj ðpÞ;

ð17Þ

where MPj

Jμ ðp;kÞ ¼ hPjðEPjðpÞ;pÞjJμð0ÞjPjðEPjðkÞ;kÞi
[note that MP0

J0 ðp;pÞ ¼ 0].

3. 4-point functions

In order to compute the amplitude (6), we define the
following unintegrated 4-point correlation function:

Γð4Þj
μ ðtH ; tJ;k;pÞ ¼

Z
d3x

Z
d3ye−iq·xhϕπjðtπ;pÞT½JμðtJ;xÞHWðtH ; yÞ%ϕ†

Kjð0;kÞi; ð18Þ

where 0 < tJ; tH < tπ . As explained in the next section, the rare kaon decay amplitudes are obtained by integrating
Γð4Þj
μ ðtH ; tJ;k;pÞ over tH and tJ (or by exploiting time translation symmetry and integrating over their difference).
We now perform the quark Wick contractions in (18) to generate the diagrams which need to be evaluated. Assuming

isospin symmetry in the quark masses, m u ¼ m d, 20 types of diagrams have to be computed for the charged correlator
and 2 additional ones are needed for the neutral correlator. We organize these diagrams in 5 classes, which are presented in
Fig. 7–11. It is convenient to define the factor

ZKπðtπ;k;pÞ ¼
ZπZ

†
K

4EπðpÞEKðkÞ
e−EπðpÞtπ ; ð19Þ

which represents the propagation of the external pseudoscalar mesons in Γð4Þj
μ ðtH ; tJ;k;pÞ. This factor does not contribute

to the rare kaon decay amplitude and we choose to define the normalized unintegrated correlator ~Γð4Þj
μ ≡ Γð4Þj

μ =ZKπ.
The decay amplitudes are obtained by integrating ~Γð4Þj

μ over tH and tJ as explained in the following subsection. We note
however, that if the times are sufficiently separated for ~Γð4Þj

μ to be dominated by single particle intermediate states, then
one has:

~Γð4Þj
μ ðtH ; tJ;k;pÞ ¼

8
>><

>>:

MH ðkÞMπj
Jμ
ðp;kÞ

2EπðkÞ
e−EKðkÞtH e−EπðkÞðtJ−tH ÞeEπðpÞtJ if 0 ≪ tH ≪ tJ

MH ðpÞMKj
Jμ
ðp;kÞ

2EKðpÞ
e−EKðkÞtJ e−EKðpÞðtH−tJÞeEπðpÞtH if tJ ≪ tH ≪ tπ:

ð20Þ

FIG. 3. Diagrams contributing to the 3-point function
Γð3Þ
H ðtH ;pÞ defined in Eq. (14). The two black circles represent

the currents in the four-quark operators Qq
1;2 defined in (8).

l denotes a light (u or d) quark propagator. The different
topologies contain the operators Qq

1 or Q
q
2 depending on whether

the initial state is a charged or neutral kaon. For example, when
the initial state is Kþ, theW and S topologies contain an insertion
of Qq

2 while the C and E topologies contain an insertion of Qq
1 .
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K+ !+W

u, c, t

s

u u

d

γ l+

l- 4-fl
avo

ur

HW (x) =
GFp
2
V

⇤
usVud [C1(Q

u
1 �Q

c
1) + C2(Q

u
2 �Q

c
2)]

Ac
µ(q

2) =

Z
d
4
xh⇡c(p)|T [Jµ(0)HW (x)] |Kc(k)i

more involved due to axial current (also if local vector current)K+ ! ⇡+⌫⌫̄ !12



EXPLORATORY STUDY - 
Lattice setup

RBC/UKQCD exploratory study — unphysical mπ (because it’s cheap)

➤ domain wall fermions (243, a~0.12fm) 
➤ mπ~430MeV, mK~625MeV  

EK(k)<2Mπ → only one-𝜋 intermediate state 
➤ unphysically light charm quark mass  

mc~533MeV 
➤ no disconnected diagrams 
➤ kaon at rest

!13



Euclidean correlation 
functions

Γð3Þ
H ðtH ;pÞ ¼

ZπZ
†
KMH ðpÞ

4EπðpÞEKðpÞ
e−EπðpÞtπe−½EKðpÞ−EπðpÞ%tH ;

ð15Þ

with MH ðpÞ ¼ hπðpÞjHWð0ÞjKðpÞi. We also define the
3-point function of the electromagnetic current:

Γð3ÞPj

Jμ ðt; tJ;p;kÞ

¼
Z

d3xe−iq·xhϕPjðt;pÞJμðtJ;xÞϕ†
Pjð0;kÞi; ð16Þ

where P denotes the pseudoscalar meson (P ¼ π or K) and
j its charge. This correlation function has the following
asymptotic behavior for t ≫ tJ ≫ 0:

Γð3ÞPj

Jμ ðt; tJ;p;kÞ ¼
jZPj2MPj

Jμ ðp;kÞ
4EPjðpÞEPjðkÞ

e−ðt−tJÞEPj ðkÞe−tJEPj ðpÞ;

ð17Þ

where MPj

Jμ ðp;kÞ ¼ hPjðEPjðpÞ;pÞjJμð0ÞjPjðEPjðkÞ;kÞi
[note that MP0

J0 ðp;pÞ ¼ 0].

3. 4-point functions

In order to compute the amplitude (6), we define the
following unintegrated 4-point correlation function:

Γð4Þj
μ ðtH ; tJ;k;pÞ ¼

Z
d3x

Z
d3ye−iq·xhϕπjðtπ;pÞT½JμðtJ;xÞHWðtH ; yÞ%ϕ†

Kjð0;kÞi; ð18Þ

where 0 < tJ; tH < tπ . As explained in the next section, the rare kaon decay amplitudes are obtained by integrating
Γð4Þj
μ ðtH ; tJ;k;pÞ over tH and tJ (or by exploiting time translation symmetry and integrating over their difference).
We now perform the quark Wick contractions in (18) to generate the diagrams which need to be evaluated. Assuming

isospin symmetry in the quark masses, m u ¼ m d, 20 types of diagrams have to be computed for the charged correlator
and 2 additional ones are needed for the neutral correlator. We organize these diagrams in 5 classes, which are presented in
Fig. 7–11. It is convenient to define the factor

ZKπðtπ;k;pÞ ¼
ZπZ

†
K

4EπðpÞEKðkÞ
e−EπðpÞtπ ; ð19Þ

which represents the propagation of the external pseudoscalar mesons in Γð4Þj
μ ðtH ; tJ;k;pÞ. This factor does not contribute

to the rare kaon decay amplitude and we choose to define the normalized unintegrated correlator ~Γð4Þj
μ ≡ Γð4Þj

μ =ZKπ.
The decay amplitudes are obtained by integrating ~Γð4Þj

μ over tH and tJ as explained in the following subsection. We note
however, that if the times are sufficiently separated for ~Γð4Þj

μ to be dominated by single particle intermediate states, then
one has:

~Γð4Þj
μ ðtH ; tJ;k;pÞ ¼

8
>><

>>:

MH ðkÞMπj
Jμ
ðp;kÞ

2EπðkÞ
e−EKðkÞtH e−EπðkÞðtJ−tH ÞeEπðpÞtJ if 0 ≪ tH ≪ tJ

MH ðpÞMKj
Jμ
ðp;kÞ

2EKðpÞ
e−EKðkÞtJ e−EKðpÞðtH−tJÞeEπðpÞtH if tJ ≪ tH ≪ tπ:

ð20Þ

FIG. 3. Diagrams contributing to the 3-point function
Γð3Þ
H ðtH ;pÞ defined in Eq. (14). The two black circles represent

the currents in the four-quark operators Qq
1;2 defined in (8).

l denotes a light (u or d) quark propagator. The different
topologies contain the operators Qq

1 or Q
q
2 depending on whether

the initial state is a charged or neutral kaon. For example, when
the initial state is Kþ, theW and S topologies contain an insertion
of Qq

2 while the C and E topologies contain an insertion of Qq
1 .
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wick contractions

of the contractions involved in the construction of the
correlator. In Sec. IV B we will give a more technical
discussion of the implementation.

A. Setup of the calculation

We simulate a kaon with momentumk ¼ 0 at a time tK ¼
0 decaying into a pionwithmomentump at tπ ¼ 28.Wehave
considered three separate final state pion momenta:
p ¼ 2π

L ð1; 0; 0Þ, p ¼ 2π
L ð1; 1; 0Þ and p ¼ 2π

L ð1; 1; 1Þ, where
L ¼ 24is the spatial extent of our lattice. We will thus label
each kinematical case by the momentum p. In all cases the
current is situated halfway between the kaon and pion at
tJ¼ 14; this position is chosen such that we can integrate
over tH in a window around the current and be far enough
away from the positions of the pion/kaon interpolators to
avoid the contamination of excited state contributions. We
use Coulomb gauge-fixed wall sources in our calculation to
give goodoverlapwith the ground state pion andkaon,which
allows us to keep the kaon-pion source-sink separation as
small as possible to achieve the best possible signal for the
amplitude.
The computation of the full set of diagrams correspond-

ing to the rare kaon decay can be accomplished by
computing 14 propagators. Four are required to connect
the kaon/pion sources to the HW insertion: one strange and
one light for the kaon; two light propagators with momenta
0 and p to produce a pion with momentum p ≠ 0 (this also
allows us to make a pion with momentum 0 ). Two more
propagators are needed for the loops in the S and E and
disconnected diagrams (one light, one charm), and one
more for the strange loop in disconnected diagrams. We use
each of these seven propagators to calculate a sequential
propagator to achieve the current insertion to bring us up to
14. The types of propagators used are shown schematically
in Fig. 4. Furthermore, to construct all the 2pt and 3pt
functions required for our analysis procedure, we also
compute one additional strange propagator with momen-
tum p such that we can produce a kaon with momentum p.

B. Details of the implementation

To compute the loops in the S and E diagrams we require
the propagator from each site to that exact same site for

each color and spin index, i.e. the diagonal entries of the
inverse of the Dirac operator. This is readily accomplished
by making use of random spin-color diluted volume
sources [22–24]; the details of these sources are discussed
in Appendix A 1. With such a propagator the position of the
HW operator can be inserted at any position on the lattice,
thus enabling the integration of the position ofHW over the
whole lattice.
The insertions of the electromagnetic current can be

achieved using sequential propagators, with the current
inserted at a time tJ. We only consider the element μ ¼ 0 of
the current to save computational resources, which is
enough to extract the form factor using Eq. (2). The
computation of sequential propagators is discussed in
Appendix A 2. With the current fixed at a single time
the time ordering of the operators is straightforward to
implement, which simplifies our analysis procedure.
Another advantage is that the current is automatically
summed over the entire spatial volume. For our lattice
this spatial sum reduces the statistical error by approx-
imately a factor of 3. The primary disadvantage of this
method is that we must perform a new set of inversions if
we wish to consider the current at another temporal
position, with a different initial (final) state momentum
of the kaon (pion) or for a different polarization.
In our present calculation we omit the disconnected

diagrams where the electromagnetic current is self-
contracted (see Fig. 2). The primary reason for this is
practical: we expect the disconnected contribution to be
very noisy and thus would require a significantly larger
statistical sample to be measured to obtain a signal
comparable to the other diagrams (relative to noise).
However we also expect the disconnected contribution to
be suppressed by a factor of 1=Ncand by the approximate
SUð3Þ flavor symmetry. In the continuum we would expect
the disconnected contribution to have ∼10% of the con-
tribution of the connected part [25]. With our choice of
masses the SUð3Þ suppression is stronger and so the
disconnected diagrams are expected to be further sup-
pressed. Nevertheless, our simulation is set up such that the
disconnected contribution can be calculated separately to
the connected contributions, and can be added at a later

FIG. 4. Demonstration of how propagators are used to construct diagrams. The position of theHW operator is indicated by the shaded
square, and may be placed at any spacetime position. The insertion of the current is denoted by a black square fixed on an single time
slice and summed over space. The double line represents the part of the propagator computed using a sequential inversion; the dotted line
represents the loop propagator computed using spin-color diluted random volume sources [22].
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Ac
µ(q

2) =

Z
d
4
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Results - dominant contributions 
and GIM subtraction

noisier than W and C, it follows that the S diagram will
dominate the error on our final result. We remark that each
diagram in Fig. 5 has already been multiplied by the
appropriate renormalization constants to match to the MS
scheme, as defined in Table V of Ref. [16]. For the scale
μ ¼ 2.15 GeV, we thus multiply our bare lattice operators
Q1 and Q2 by the coefficients Clat

1 ¼ −0.2216 and Clat
2 ¼

0.6439 respectively. For this analysis we neglect any sys-
tematic errors on these Wilson coefficients, as they are not a
primary concern of our exploratory studies. However, a full
discussion of systematic errors of the renormalization of the
HW operator has previously been given in the context of
K → ππ decays; see e.g. Refs. [27,28].

Additionally in Fig. 5 we show how the S and E
diagrams are obtained by subtracting the charm loop
diagram from the up quark loop diagram, i.e. the GIM
subtraction. Here we expect the GIM subtraction to be
more severe than in the physical case, as we are using a
lighter-than-physical charm quark and a heavier-than-
physical light quark. With physical masses we should
expect the S diagram to have a larger magnitude. In the
final correlator the S and W diagrams appear to add
destructively; this may have a severe effect on the final
result if there is a large degree of cancellation between
the contributions of the S and W diagrams to the final
matrix element.

(a) (b)

FIG. 5. The contributions of each of the diagrams to the rare kaon decay corresponding to the weak operators (a) Q1 and (b) Q2, both
before and after the GIM subtraction. Each diagram has been constructed using the appropriate fractional quark charges (excluding the
overall charge factor e), and the correlators have been multiplied by the relevant renormalization constants and Wilson coefficients for
matching to the MS scheme (as described in detail in Ref. [16]). Time positions of the kaon/pion interpolators and current insertion are
indicated.

(a) (b)

FIG. 6. (a) The 4pt rare kaon decay correlator measured in our simulation with k ¼ ð0; 0; 0Þ and p ¼ 2π
L ð1; 0; 0Þ. The ground state

contribution has been constructed from fits to 2pt and 3pt correlators. (b) The 4pt correlator after removing the ground state contribution
(i.e. the single-pion and single kaon intermediate states). Time positions of the kaon/pion interpolators and the current insertion are
indicated.
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Γð3Þ
H ðtH ;pÞ ¼

ZπZ
†
KMH ðpÞ

4EπðpÞEKðpÞ
e−EπðpÞtπe−½EKðpÞ−EπðpÞ%tH ;

ð15Þ

with MH ðpÞ ¼ hπðpÞjHWð0ÞjKðpÞi. We also define the
3-point function of the electromagnetic current:

Γð3ÞPj

Jμ ðt; tJ;p;kÞ

¼
Z

d3xe−iq·xhϕPjðt;pÞJμðtJ;xÞϕ†
Pjð0;kÞi; ð16Þ

where P denotes the pseudoscalar meson (P ¼ π or K) and
j its charge. This correlation function has the following
asymptotic behavior for t ≫ tJ ≫ 0:

Γð3ÞPj

Jμ ðt; tJ;p;kÞ ¼
jZPj2MPj

Jμ ðp;kÞ
4EPjðpÞEPjðkÞ

e−ðt−tJÞEPj ðkÞe−tJEPj ðpÞ;

ð17Þ

where MPj

Jμ ðp;kÞ ¼ hPjðEPjðpÞ;pÞjJμð0ÞjPjðEPjðkÞ;kÞi
[note that MP0

J0 ðp;pÞ ¼ 0].

3. 4-point functions

In order to compute the amplitude (6), we define the
following unintegrated 4-point correlation function:

Γð4Þj
μ ðtH ; tJ;k;pÞ ¼

Z
d3x

Z
d3ye−iq·xhϕπjðtπ;pÞT½JμðtJ;xÞHWðtH ; yÞ%ϕ†

Kjð0;kÞi; ð18Þ

where 0 < tJ; tH < tπ . As explained in the next section, the rare kaon decay amplitudes are obtained by integrating
Γð4Þj
μ ðtH ; tJ;k;pÞ over tH and tJ (or by exploiting time translation symmetry and integrating over their difference).
We now perform the quark Wick contractions in (18) to generate the diagrams which need to be evaluated. Assuming

isospin symmetry in the quark masses, m u ¼ m d, 20 types of diagrams have to be computed for the charged correlator
and 2 additional ones are needed for the neutral correlator. We organize these diagrams in 5 classes, which are presented in
Fig. 7–11. It is convenient to define the factor

ZKπðtπ;k;pÞ ¼
ZπZ

†
K

4EπðpÞEKðkÞ
e−EπðpÞtπ ; ð19Þ

which represents the propagation of the external pseudoscalar mesons in Γð4Þj
μ ðtH ; tJ;k;pÞ. This factor does not contribute

to the rare kaon decay amplitude and we choose to define the normalized unintegrated correlator ~Γð4Þj
μ ≡ Γð4Þj

μ =ZKπ.
The decay amplitudes are obtained by integrating ~Γð4Þj

μ over tH and tJ as explained in the following subsection. We note
however, that if the times are sufficiently separated for ~Γð4Þj

μ to be dominated by single particle intermediate states, then
one has:

~Γð4Þj
μ ðtH ; tJ;k;pÞ ¼

8
>><

>>:

MH ðkÞMπj
Jμ
ðp;kÞ

2EπðkÞ
e−EKðkÞtH e−EπðkÞðtJ−tH ÞeEπðpÞtJ if 0 ≪ tH ≪ tJ

MH ðpÞMKj
Jμ
ðp;kÞ

2EKðpÞ
e−EKðkÞtJ e−EKðpÞðtH−tJÞeEπðpÞtH if tJ ≪ tH ≪ tπ:

ð20Þ

FIG. 3. Diagrams contributing to the 3-point function
Γð3Þ
H ðtH ;pÞ defined in Eq. (14). The two black circles represent

the currents in the four-quark operators Qq
1;2 defined in (8).

l denotes a light (u or d) quark propagator. The different
topologies contain the operators Qq

1 or Q
q
2 depending on whether

the initial state is a charged or neutral kaon. For example, when
the initial state is Kþ, theW and S topologies contain an insertion
of Qq

2 while the C and E topologies contain an insertion of Qq
1 .
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noisier than W and C, it follows that the S diagram will
dominate the error on our final result. We remark that each
diagram in Fig. 5 has already been multiplied by the
appropriate renormalization constants to match to the MS
scheme, as defined in Table V of Ref. [16]. For the scale
μ ¼ 2.15 GeV, we thus multiply our bare lattice operators
Q1 and Q2 by the coefficients Clat

1 ¼ −0.2216 and Clat
2 ¼

0.6439 respectively. For this analysis we neglect any sys-
tematic errors on these Wilson coefficients, as they are not a
primary concern of our exploratory studies. However, a full
discussion of systematic errors of the renormalization of the
HW operator has previously been given in the context of
K → ππ decays; see e.g. Refs. [27,28].

Additionally in Fig. 5 we show how the S and E
diagrams are obtained by subtracting the charm loop
diagram from the up quark loop diagram, i.e. the GIM
subtraction. Here we expect the GIM subtraction to be
more severe than in the physical case, as we are using a
lighter-than-physical charm quark and a heavier-than-
physical light quark. With physical masses we should
expect the S diagram to have a larger magnitude. In the
final correlator the S and W diagrams appear to add
destructively; this may have a severe effect on the final
result if there is a large degree of cancellation between
the contributions of the S and W diagrams to the final
matrix element.

(a) (b)

FIG. 5. The contributions of each of the diagrams to the rare kaon decay corresponding to the weak operators (a) Q1 and (b) Q2, both
before and after the GIM subtraction. Each diagram has been constructed using the appropriate fractional quark charges (excluding the
overall charge factor e), and the correlators have been multiplied by the relevant renormalization constants and Wilson coefficients for
matching to the MS scheme (as described in detail in Ref. [16]). Time positions of the kaon/pion interpolators and current insertion are
indicated.

(a) (b)

FIG. 6. (a) The 4pt rare kaon decay correlator measured in our simulation with k ¼ ð0; 0; 0Þ and p ¼ 2π
L ð1; 0; 0Þ. The ground state

contribution has been constructed from fits to 2pt and 3pt correlators. (b) The 4pt correlator after removing the ground state contribution
(i.e. the single-pion and single kaon intermediate states). Time positions of the kaon/pion interpolators and the current insertion are
indicated.
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Γð3Þ
H ðtH ;pÞ ¼

ZπZ
†
KMH ðpÞ

4EπðpÞEKðpÞ
e−EπðpÞtπe−½EKðpÞ−EπðpÞ%tH ;

ð15Þ

with MH ðpÞ ¼ hπðpÞjHWð0ÞjKðpÞi. We also define the
3-point function of the electromagnetic current:

Γð3ÞPj

Jμ ðt; tJ;p;kÞ

¼
Z

d3xe−iq·xhϕPjðt;pÞJμðtJ;xÞϕ†
Pjð0;kÞi; ð16Þ

where P denotes the pseudoscalar meson (P ¼ π or K) and
j its charge. This correlation function has the following
asymptotic behavior for t ≫ tJ ≫ 0:

Γð3ÞPj

Jμ ðt; tJ;p;kÞ ¼
jZPj2MPj

Jμ ðp;kÞ
4EPjðpÞEPjðkÞ

e−ðt−tJÞEPj ðkÞe−tJEPj ðpÞ;

ð17Þ

where MPj

Jμ ðp;kÞ ¼ hPjðEPjðpÞ;pÞjJμð0ÞjPjðEPjðkÞ;kÞi
[note that MP0

J0 ðp;pÞ ¼ 0].

3. 4-point functions

In order to compute the amplitude (6), we define the
following unintegrated 4-point correlation function:

Γð4Þj
μ ðtH ; tJ;k;pÞ ¼

Z
d3x

Z
d3ye−iq·xhϕπjðtπ;pÞT½JμðtJ;xÞHWðtH ; yÞ%ϕ†

Kjð0;kÞi; ð18Þ

where 0 < tJ; tH < tπ . As explained in the next section, the rare kaon decay amplitudes are obtained by integrating
Γð4Þj
μ ðtH ; tJ;k;pÞ over tH and tJ (or by exploiting time translation symmetry and integrating over their difference).
We now perform the quark Wick contractions in (18) to generate the diagrams which need to be evaluated. Assuming

isospin symmetry in the quark masses, m u ¼ m d, 20 types of diagrams have to be computed for the charged correlator
and 2 additional ones are needed for the neutral correlator. We organize these diagrams in 5 classes, which are presented in
Fig. 7–11. It is convenient to define the factor

ZKπðtπ;k;pÞ ¼
ZπZ

†
K

4EπðpÞEKðkÞ
e−EπðpÞtπ ; ð19Þ

which represents the propagation of the external pseudoscalar mesons in Γð4Þj
μ ðtH ; tJ;k;pÞ. This factor does not contribute

to the rare kaon decay amplitude and we choose to define the normalized unintegrated correlator ~Γð4Þj
μ ≡ Γð4Þj

μ =ZKπ.
The decay amplitudes are obtained by integrating ~Γð4Þj

μ over tH and tJ as explained in the following subsection. We note
however, that if the times are sufficiently separated for ~Γð4Þj

μ to be dominated by single particle intermediate states, then
one has:

~Γð4Þj
μ ðtH ; tJ;k;pÞ ¼

8
>><

>>:

MH ðkÞMπj
Jμ
ðp;kÞ

2EπðkÞ
e−EKðkÞtH e−EπðkÞðtJ−tH ÞeEπðpÞtJ if 0 ≪ tH ≪ tJ

MH ðpÞMKj
Jμ
ðp;kÞ

2EKðpÞ
e−EKðkÞtJ e−EKðpÞðtH−tJÞeEπðpÞtH if tJ ≪ tH ≪ tπ:

ð20Þ

FIG. 3. Diagrams contributing to the 3-point function
Γð3Þ
H ðtH ;pÞ defined in Eq. (14). The two black circles represent

the currents in the four-quark operators Qq
1;2 defined in (8).

l denotes a light (u or d) quark propagator. The different
topologies contain the operators Qq

1 or Q
q
2 depending on whether

the initial state is a charged or neutral kaon. For example, when
the initial state is Kþ, theW and S topologies contain an insertion
of Qq

2 while the C and E topologies contain an insertion of Qq
1 .
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Removing the 
exponentially rising terms

Results: exponential subtraction
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Removing the exponentially rising 
terms - comparison of methods

c1μðk;pÞ ¼
MJ;π

μ ðk;pÞMHðkÞ
2EπðkÞΔa

π
; ð25Þ

c2μðk;pÞ ¼ −MJ;K
μ ðk;pÞMHðpÞ
2EKðpÞΔb

K
; ð26Þ

where MJ;P
μ ðk;pÞ ¼ hP;pjJμjP;ki and MHðkÞ ¼

hKðkÞjHW jπðkÞi. Our analysis thus proceeds by removing
the terms proportional to c1μ and c2μ from the 4pt correlator,
and fitting the remainder to a constant to obtain Aμ, which
is the amplitude in Euclidean space, up to a factor as seen
in Eq. (12).
It is indeed possible to use Eq. (24) to fit the 4pt function

directly to remove the ground state contributions. Because
the exponents can be obtained much more accurately from
2pt functions, we simply fit the parameters Aμ, c1μ and c2μ in
the region where the ground state contributions dominate.

We find that we obtain consistent results when we use this
procedure.
The computed values for the coefficients c10 and c20

[obtained using both Eqs. (25) and (26) and the direct 4pt
fit] are shown in Table II. We remark that the coefficient c20
becomes significantly less well determined when we
increase the momentum of the pion. The reason for this
is that the matrix element MHðpÞ is difficult to determine
precisely when we have p ≠ 0. We can thus avoid intro-
ducing an unnecessarily large statistical error either by
fitting c20 directly from the 4pt correlator or by making well-
motivated approximations. The two approximations we
have considered are c20 ¼ −c10 andMHðkÞ ¼ MHðpÞ. The
first approximation holds exactly when k ¼ p; the second
holds exactly in the SUð3Þ flavor symmetric limit, i.e. when
Mπ ¼ MK . A short proof of each of these statements can be
found in Appendix B. A summary of the matrix elements
obtained using each of these methods can be found in
Table III, and are displayed graphically in Fig. 7. We
remark that the approximations of c20 need not be exact:
they are sufficient if the systematic error on the approxi-
mation is significantly smaller than the statistical error on
the final signal for the amplitude. Taking correlated
differences between the different analysis techniques
reveals that the systematic errors on these approximations
are substantially less than the statistical errors on the matrix
elements.
In Fig. 8(a) we display the Ta and in Fig. 8(b) the Tb

dependence of the integrated 4pt correlator having removed
the ground state contributions. In Fig. 8(a) we see that after
the analytic removal of the single-pion intermediate state,
no other exponentially growing states are discernible
beyond statistical errors. This suggests that contributions
from excited states are adequately suppressed. Figure 8(b)
demonstrates the slow exponential decay in Tb which is

FIG. 7. Plot of the amplitudes (in lattice units) obtained using
each of the different analysis methods.

(a) (b)

FIG. 8. The integrated 4pt correlator shown for (a)
R tJþ 8
tJ−Ta

~Γð4Þ
0 dtH to demonstrate the Ta dependence and (b)

R tJþ Tb
tJ−6

~Γð4Þ
0 dtH to

demonstrate the Tb dependence. The single-pion exponential growth has been removed using method 1. The single kaon exponential
decay has been removed using the approximation MHðpÞ ¼ MHðkÞ. The position of the plateau corresponds to A0 ¼ −0.0028ð6Þ
obtained by a fit to the data over the indicated range.
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                     form factor
Decay amplitude in terms of elm. transition form factor:

D’Ambrosio et al., JHEP 9808, 004 (1998)

✤ the |aS| and |a+| can be extracted from branching ratios 

✤ aS parameterises also the CP-violating contribution to the KL BR 
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simulations where it gives the only exponentially growing
contribution. We have demonstrated the analysis tech-
niques to remove this state cleanly with minimal systematic
errors; hence it now remains to extend our simulations to
physical masses such that the contributions of additional
exponentially growing states can be investigated.

VI. FORM FACTOR

One opportunity of lattice QCD is to test the previous
work on rare kaon decays performed using effective
theories such as SUð3Þ ChPT. One previous analysis of
the form factor [29] has led to a parametrization of the form

ViðzÞ ¼ ai þ biz þ Vππ
i ðzÞ; ð27Þ

where z ¼ q2=M2
K , and Vππ

i ðzÞ ði ¼ þ ; 0Þ is introduced to
account for ππ → γ% rescattering in K → πππ decays
arising through the diagram show in Fig. 13. The most
straightforward check is to test the relation Eq. (27) by
determining the constants ai and bi from simulation
data. The contribution of the term Vππ

i ðzÞ is significantly
smaller that the linear contribution for physical masses;
for our initial calculation we can safely neglect this
term. Experimentally the coefficients aþ and bþ have
been determined from Kþ → πþ lþ l− spectra: aþ ¼
−0.578ð16Þ and bþ ¼ −0.779ð66Þ from Kþ → πþ eþ e−

data [5] and aþ ¼ −0.575ð39Þ and bþ ¼ −0.813ð145Þ
from Kþ → πþ μþ μ− data [6].
The parametrization of Eq. (27) is expected to be a good

approximation to the Oðp6Þ ChPT form factor. It is already
well known that existing Oðp4Þ ChPT predictions [30] for
the parameter bþ do not correctly predict experimental
observations [29,31]. Analysis of this decay in ChPT up to
Oðp4Þ gives the following predictions for the coefficients
ai and bi [29],

aþ ¼ G8

GF

!
1

3
− wþ

"
; a0 ¼ −

G8

GF

!
1

3
− w0

"
; ð28 Þ

bþ ¼ − G8

GF

1

60
; b0 ¼

G8

GF

1

60
; ð29Þ

where wi are defined in terms of SUð3Þ low energy
constants (LECs) Nr

14ðμÞ, Nr
15ðμÞ and Lr

9 as

wþ ¼ 64π2

3
ðNr

14ðμÞ − Nr
15ðμÞ þ 3Lr

9ðμÞÞ þ
1

3
ln
!

μ2

MKMπ

"
;

ð30Þ

w0 ¼
32π2

3
ðNr

14ðμÞ þ Nr
15ðμÞÞ þ

1

3
ln
!

μ2

M2
K

"
ð31Þ

for some renormalization scale μ. The coefficient bþ
depends only on the LEC G8, which can be determined
using information from K → ππ decay amplitudes [32]. A
comparison with the experimental result thus demonstrates
that large corrections must be expected at Oðp6Þ. Models
that go beyond Oðp4Þ ChPT in an attempt to make
predictions for bþ have been proposed [31,33], although
such models depend heavily on vector meson masses and
thus a comparison with our lattice data is difficult.
In Fig. 14 we display the dependence of the form factor

extracted from lattice data upon z ¼ q2=M2
K . Although our

simulation takes place with highly unphysical masses of the
pion and kaon, we are able to make some insights. Since we
have only three data points at quite large spacelike
momenta, we will not be able to fully explore the ChPT
anastz in Eq. (27). Here we simply use a linear fit, which
does provide a reasonable description of our data with a
χ2=d:o:f: ¼ 0.74. The parameters we obtain, alatþ ¼ 1.6ð7Þ
and blatþ ¼ 0.7ð8Þ, are different from the parameters
obtained from phenomenological fits to experimental data,
aexpþ ¼ −0.578ð16Þ and bexpþ ¼ −0.779ð66Þ. However such
a comparison must be taken with care given the unphysical
masses used in our simulation.
The most relevant and interesting comparison we make

with experimental results at this stage is to note that the
sizes of the absolute errors on the parameters aþ and bþ

FIG. 13. The one-loop contribution to the decays K → πγ%

arising as ππ → γ% rescattering in K → πππ decays.

FIG. 14. Dependence of the form factor for the decay Kþ →
πþ lþ l− upon z ¼ q2=M2

K . Our lattice data are fit to a linear
ansatz to obtain a ¼ 1.6ð7Þ and b ¼ 0.7ð8Þ.
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               decay

component [17,18,22], for Kþ → πþνν̄ decays the contri-
bution of the charm quark is expected to be
predominantly perturbative and come from SD effects. A
one-loop perturbative calculation of the electroweak inter-
actions performed by Inami and Lim [23] shows that the
charm quark contribution to the decay amplitude is propor-
tional to − 3

4 xc log xc −
1
4 xc, where xc ¼ m 2

c=M2
W . Here, the

logarithmic term xc log xc is the largest part of the charm
contribution, which suggests that the dominant energy scale
lies between MW and m c. However, when the leading-log
QCD corrections, which sum those terms of the form
xcαns lnnþ1xc to all orders in αs, are included it is found that
the SD, charm-quark contribution is suppressed by 35%
[24–26], relative to the leading-order, Inami-Lim result.
This large suppression has two consequences. First it

motivates the work to include the SD QCD effects to
higher orders in perturbation theory [27–29]. Second it
gives increased importance to the LD QCD contributions
coming from energy scales at or below the charm quark
mass. This makes the first-principles, lattice calculation of
these LD QCD effects increasingly necessary for the
comparison between SM predictions and future experi-
mental results for this decay.
A very recent SM prediction for the Kþ → πþνν̄

branching ratio is given by [10]

BrðKþ → πþνν̄ÞSM ¼ ð9.11% 0.72Þ × 10−11: ð4Þ

To understand the origin of the uncertainty in Eq. (4), we
write the branching ratio as in Eq. (4.5) of Ref. [30]:

BrðKþ → πþνν̄ÞSM ¼ κþð1þ ΔEMÞ ·
!"

Imλt
λ5

XtðxtÞ
#

2

þ
"
Reλc
λ

Pc þ
Reλt
λ5

XtðxtÞ
#

2
$
: ð5Þ

In Eq. (5), ΔEM is the electromagnetic correction, λ ¼ jVusj
and λq ¼ V&

qsVqd are CKM (or products of CKM) matrix
elements, XtðxtÞ is the top-quark contribution (with
xt ¼ m 2

t =M2
W) and Pc is the total charm quark contribution.

More precisely, we have included the up quark contribution
in both Xt and Pc, eliminating λu by using the unitarity
relation λu þ λc þ λt ¼ 0. We distinguish two contributions
to Pc,

Pc ¼ PSD
c þ δPc;u; ð6Þ

where PSD
c is the SD contribution coming from energy

scales above the charm quark mass. The remaining LD
contribution, denoted as δPc;u, includes contributions from
both the charm and up quark loops. The parameter κþ in
Eq. (5) contains the remaining factors, including the
hadronic matrix element from semileptonic Kþ decay.
The dominant uncertainty in Eq. (4) arises from the SM

input parameters, especially the CKM matrix elements.
Because of the dominance of the top quark contribution
XtðxtÞ, the CKM matrix elements in λt associated with the
top quark have a large impact on the branching ratio. In
order to make a more precise SM prediction it is therefore
necessary to know these CKM matrix elements more
accurately. On the other hand, as a result of higher-order
perturbative calculations, especially the next-to-leading
order QCD [31,32] and the two-loop electroweak correc-
tions [30] to the top quark contribution XtðxtÞ, as well as
the next-to-next-to leading order QCD [28,29] and the
NLO electroweak corrections [33] to the charm quark
contribution PSD

c , the omitted, higher-order perturbative
effects in the top and SD charm quark contributions are no
longer the main source of theoretical uncertainty.

Although the size of the LD contribution is estimated to
be small, it now contributes a significant, if still subdomi-
nant, source for the SM uncertainty. Reference [34] gives a
phenomenological estimate of this LD effect based on
chiral perturbation theory and the operator production
expansion. The resulting estimate of the LD contribution,
δPc;u ¼ 0.04% 0.02, enhances the branching ratio
BrðKþ → πþνν̄ÞSM by 6%, which is comparable to the
8% total SM parametric error given in Eq. (4). Here the
quoted %0.02 error is necessarily a rough estimate which
cannot easily be systematically improved. This quoted error
translates into a 3% uncertainty for the branching ratio, but
it is possible that the LD contribution might be somewhat
larger or even much smaller than this estimate. We do not
have a clear answer at present and this provides the
motivation for the development of lattice techniques to
compute these LD contributions.
Lattice QCD can provide a first-principles determination

of the LD contribution with controlled errors. Therefore it
was proposed in Ref. [14] and endorsed in Ref. [29] to
perform a direct lattice QCD calculation of the LD
contribution to Kþ → πþνν̄ decay amplitudes.
Recognizing that the SM predictions will be confronted
with new NA62 measurements in the near future, it is
timely to have a lattice QCD calculation of these LD
effects.

III. METHOD

Since the dominant contribution to the Kþ → πþνν̄
amplitude comes from the top quark loop and the sub-
leading charm quark contribution is also SD dominated, it
is natural to write these contributions in terms of the matrix
element of a low-energy effective Hamiltonian,
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Eq. (5) contains the remaining factors, including the
hadronic matrix element from semileptonic Kþ decay.
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Because of the dominance of the top quark contribution
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top quark have a large impact on the branching ratio. In
order to make a more precise SM prediction it is therefore
necessary to know these CKM matrix elements more
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tions [30] to the top quark contribution XtðxtÞ, as well as
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longer the main source of theoretical uncertainty.

Although the size of the LD contribution is estimated to
be small, it now contributes a significant, if still subdomi-
nant, source for the SM uncertainty. Reference [34] gives a
phenomenological estimate of this LD effect based on
chiral perturbation theory and the operator production
expansion. The resulting estimate of the LD contribution,
δPc;u ¼ 0.04% 0.02, enhances the branching ratio
BrðKþ → πþνν̄ÞSM by 6%, which is comparable to the
8% total SM parametric error given in Eq. (4). Here the
quoted %0.02 error is necessarily a rough estimate which
cannot easily be systematically improved. This quoted error
translates into a 3% uncertainty for the branching ratio, but
it is possible that the LD contribution might be somewhat
larger or even much smaller than this estimate. We do not
have a clear answer at present and this provides the
motivation for the development of lattice techniques to
compute these LD contributions.
Lattice QCD can provide a first-principles determination

of the LD contribution with controlled errors. Therefore it
was proposed in Ref. [14] and endorsed in Ref. [29] to
perform a direct lattice QCD calculation of the LD
contribution to Kþ → πþνν̄ decay amplitudes.
Recognizing that the SM predictions will be confronted
with new NA62 measurements in the near future, it is
timely to have a lattice QCD calculation of these LD
effects.

III. METHOD

Since the dominant contribution to the Kþ → πþνν̄
amplitude comes from the top quark loop and the sub-
leading charm quark contribution is also SD dominated, it
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evaluated at a fixed point, which is used as the source for the
internal quark lines connected to that operator. The second
operator acts as the sink for all the propagators joined to it and
is summed over the desired space-time subvolume. For
higher precision we average over time translations, calculat-
ing these wall- and the point-source propagators for all 32
time slices. In theW-W diagrams in Fig. 1, we also exchange
the source and sink locations between the twoweakoperators
and average over both choices.
Each internal lepton propagator is that of an overlap

fermion with an infinite time extent and a physical lepton
mass. For the Z-exchange diagram where the decay
involves a four-quark operator and a two-quark-two-
neutrino operator, both operators can generate a closed
quark loop. Thus, we need to calculate the diagonal element
of the light, strange, and charm quark propagators
D−1ðx; xÞ for all space-time positions x. This is done by
using 32 random, space-time volume sources for each
quark flavor. We perform a complete calculation, including
all connected and disconnected diagrams.
In a lattice QCD calculation, the matrix element of the

time-integrated bilocal operator appearing in Eq. (1) is
evaluated in Euclidean space. As in the case of the
calculation of the KL-KS mass difference [7], this matrix
element can be related to the second-order amplitude of
interest if a sum over intermediate states is inserted and the
integration over Euclidean time performed:

Z
Tb

−Ta

dx0hπþνν̄jTfHAðx0ÞHBð0ÞgjKþi

¼
X

n

!
hπþνν̄jHAjnihnjHBjKþi

En − EK
ð1 − eðEK−EnÞTbÞ

þ hπþνν̄jHBjnihnjHAjKþi
En − EK

ð1 − eðEK−EnÞTaÞ
"
; ð4Þ

where we have replaced the local operators in Eq. (1) by
those integrated over space: HSðx0Þ ¼

R
d3xQSðx⃗; x0Þ. The

unphysical eðEK−EnÞTaðbÞ terms in the second and third lines
of this equation vanish for large TaðbÞ for intermediate states
more energetic than the kaon. However, these terms grow
exponentially with increasing integration range if En < EK .
These are calculated separately and their contributions
removed; see Refs. [6,7,9,11].
A second difficulty implied by Eq. (4) is the possibility

of a large contribution caused by a vanishing denominator
when a finite-volume intermediate-state energy En
approaches EK [6]. Such behavior is a well-understood
finite-volume effect and a complete correction can be
applied [15]. Thus, we must pay special attention to three
states jni ¼ jlþνi, jπ0lþνi and jðπþπ0ÞI¼2i and calculate
all the transition amplitudes for Kþ → jni and jni →
jπþνν̄i both to remove the exponentially growing terms
and to estimate finite-volume effects.
Because of the V − A structure of the weak interactions

and thevanishingmass of the final-state neutrinos, the bilocal
matrix element can be written as the product of a scalar
amplitude and the spinor quantity ūðpνÞpKð1 − γ5Þvðpν̄Þ, as
is shown in Ref. [6]. For the W-W diagrams this scalar
amplitude is written as FWWðΔ; sÞ.
For the Z-exchange diagrams the scalar amplitude is

given by a Kl3-like form factor FZ
þðsÞ. For massless

neutrinos, a second form factor, FZ
−ðsÞ does not contribute.

We compute FZ
þð0Þ for the connected diagrams as

described earlier and FZ
0 ðsÞ ¼ FZ

þ þ sFZ
−=ðM2

K −M2
πÞ for

both the connected and disconnected parts at p⃗K ¼ p⃗π ¼ 0

and s ¼ smax ¼ ðMK −MπÞ2. We calculate FZ;disc
0 ðsmaxÞ

instead of FZ;disc
þ ð0Þ to avoid using twisted momenta for

the disconnected graphs and expect this to have a small
effect since smax=ðM2

K −M2
πÞ ¼ 0.14 ≪ 1 and FZ;conn

þ ð0Þ ≈
FZ;conn
0 ðsmaxÞ as seen in Table I.
Our results for the various components of the scalar

amplitude are shown in Table I. For the W-W, type 1
diagram, the dominant contribution to FWW comes from the
lowest intermediate state jlþνi. The type 2 diagram yields
a much larger contribution than type 1. Since it involves a
fermion loop, the dominant contribution comes from short
distances where new divergences appear and a short-
distance correction is required. The jπ0lþνi intermediate
state contributes only about 8% to FWW .
For the Z-exchange diagram, the jðπþπ0ÞI¼2i state

contributes about 7%. Although with Mπ ≈ 420 MeV,

(a) (b)

(c) (d)

(e) (f)

FIG. 1. From top to bottom: quark and lepton contractions for
W-W, connected and disconnected Z-exchange diagrams. The
four dotted arrows point to possible locations for the Z-exchange
vertex. The operator labels are defined in Ref. [6]. A few,
illustrative gluon lines are also shown.
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intermediate states:

|ni = |l+⌫i, |⇡0l+⌫i, |(⇡+⇡0)I=2i
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the contribution of this state to an exponentially growing,
unphysical term or to finite-volume corrections is irrel-
evant, this state could cause significant systematic effects
for a calculation at the physical pion mass.
As described above, we have also evaluated the dis-

connected diagrams. Although the result is noisy, the size
of the disconnected diagrams is only 3% of the connected
diagrams. Thus, including the disconnected diagrams will
not affect the statistical precision of our result.
Local operator.—The matrix element of the local oper-

ator Q lat
0 is related to the matrix element of the conserved

vector current between a kaon and pion and can be
determined from Kl3 decay without reference to lattice
QCD. (Of course, for our unphysical kinematics a lattice
calculation is needed.) Here we will focus on the coefficient
of this operator, specifically the contributions to this
coefficient from the terms in the third and fourth lines of
Eq. (3): the terms that renormalize the bilocal lattice
operator discussed above.
As discussed in detail in Ref. [6], the coefficient

Xlat→RI
AB ðμRI; aÞ, which converts the lattice bilocal operator

into one defined in the RI-SMOM scheme can be deter-
mined from a nonperturbative calculation of an off-shell,
Landau-gauge-fixed Green’s function of five operators: the
four quark fields s̄, d, ν, and ν̄ carrying nonexceptional,
external Euclidean momenta and the sum of the operators
appearing in the second and third lines of Eq. (3). We use
the external four-momenta:

ps̄ ¼ ðξ; ξ; 0; 0Þ; pd ¼ ðξ; 0; ξ; 0Þ;
pν̄ ¼ ð0;−ξ; 0;−ξÞ; pν ¼ ð0; 0;−ξ;−ξÞ; ð5Þ

where −ps̄, pd, −pν̄ and pν are incoming. The RI-SMOM
scale is μ2RI ¼ p2

f ¼ 2ξ2, for f ¼ s̄, d, ν, ν̄. The spin and
color indexes of the external fermion lines are contracted in
the same fashion as those in the operator Q 0. The
coefficient Xlat→RI

AB ðμRI; aÞ is determined by requiring that
the Green’s function described above vanishes for the
momenta in Eq. (5) and a specific choice of μRI. The
resulting RI-SMOM-renormalized, bilocal operator now

has a well-defined continuum limit. In this way we obtain
Xlat→RI
AB ðμRI; aÞ for 1 GeV ≤ μRI ≤ 4 GeV.
Next we calculate the coefficient YRI→MS

AB ðμ; μRIÞ needed
to convert the RI-renormalized operator to MS renormal-
ization. This can be done directly from Eq. (3) by
evaluating both sides at the external momenta specified
in Eq. (5) at the scale μRI. The left-hand side is evaluated in
perturbation theory. On the right-hand side the first and
second lines are, in principle, nonperturbative but cancel
exactly because of the definition of the RI-SMOM scheme.
The remaining term, YRI→M̄S

AB ðμ; μRIÞ, is thus determined.
For simplicity, we choose μ ¼ μRI and evaluate Y pertur-
batively at one-loop. Knowing the Wilson coefficients X
and Y, the contribution of the local operator Q 0 is easily
computed.
Results.—Since we use an unphysical value for the charm

quark mass, m MS
c ð2 GeVÞ ¼ 863ð24Þ MeV, we reevaluate

PPT
c of Eq. (2) using this unphysical value and the NNLO

formulas of Ref. [16]. Our results, including statistical errors,
are shown in Fig. 2. Here, Pc gives the complete charm
contribution to theKþ → πþνν̄ decay, normalized so that the
decay amplitude is the matrix element of the operator
αGFλ5=ð2π

ffiffiffi
2

p
sin2 θWÞPcQ 0, where α is the fine structure

constant,GF the Fermi constant, and θW theWeinberg angle.
This description neglects the dependence of the decay
amplitude on the Dalitz variables s and Δ, which will be
small for our kinematics.
We show results from theW-W diagrams, the Z-exchange

diagrams, and their total in the left, center, and right panels.
First, as thegrayband,weplot the latticematrixelement of the
bilocal operator with only the multiplicative renormalization
of the individual four-Fermi operators included. Second, as

TABLE I. Resulting scalar amplitudes for the W-W and Z-
exchange diagrams. All the results are shown in lattice units (in
units of 10−2). The scalar amplitude FWW is evaluated at
ðΔ; sÞ ¼ ð0; 0Þ, FZ

þ at s ¼ 0 and FZ
0 at s ¼ ðMK −MπÞ2.

Scalar amplitude Contribution from state jni
FWW type 1 −1.118ð26Þ −1.138ð4Þ jlþνi
FWW type 2 9.29(14) 0.657(5) jπ0lþνi
FZ;conn
þ ð0Þ 2.133(32) % % %

FZ;conn
0 ðsmaxÞ 2.109(25) 0.1526(10) jðπþπ0ÞI¼2i

FZ;disc
0 ðsmaxÞ 0.060(12) % % %
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FIG. 2. W-W and Z-exchange diagram results, and their total,
shown from left to the right. The gray bands show the amplitude,
normalized as in Eq. (2), from the unrenormalized, bilocal
operator. The red circles indicate the RI-renormalized, bilocal
contribution. The blue diamonds give the total charm contribution
Pc while the green squares show the difference between the
lattice and perturbative results, Pc − PPT

c .
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2) bilocal RI

3) Pc after subtr. of  
     divergence

          Pc = 0.2529(±13)stat(±32)scale(−45)FV 

Pc−Pc
SD = 0.0040(±13)stat(±32)scale(−45)FV  

                               (μ=2GeV)

lattice result for mπ=420MeV,  
mc=860MeV

4) diff. wt. resp. to PT

1) bare Pc

➤ unphysical simulation 
➤ residual scale dependence small 
➤ Pc−Pc

SD small due to cancellation between W-W and Z 
will this persist in more physical simulation?

               decayK+ → π+νν̄
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✤ kaon rare decays constitute a new theoretical and technical challenge  
worthwhile to pursue in view of experimental efforts 

✤ intermediate state subtraction and renormalisation are technical  
challenges that can be managed 

✤ we are now moving towards real-world simulations 
✤ the experiments running, we are looking forward to their results 

in particular prospect of K+→π+l+l- @ NA62

✤ lattice techniques also applicable to other LD effects ΔMK, εK

Summary and outlook
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