Tests of lepton flavour universality using semitauonic B decays at LHCb

Adam Morris, on behalf of the LHCb collaboration

Aix Marseille Univ, CNRS/IN2P3, CPPM

10th International Workshop on the CKM Unitarity Triangle Heidelberg, 20th September, 2018

Lepton Flavour Universality (LFU):

- In SM, electroweak couplings of charged leptons are identical (universal).
- Difference between e, μ and τ should therefore only be driven by mass.
- Test: ratios of branching fractions to final states differing by lepton flavour.

LFU tests in semitauonic *b*-hadron decays:

$$R(X_c) = rac{\mathcal{B}(X_b o X_c au^+
u_ au)}{\mathcal{B}(X_b o X_c \mu^+
u_\mu)}.$$
 $(X_b: b ext{-hadron}, X_c: c ext{-hadron})$

Introduction

Introduction

In this talk:

- $R(D^*)$ hadronic: $B^0 \rightarrow D^{*-} \ell^+ \nu$ with $\tau^+ \rightarrow 3\pi^{\pm}(\pi^0) \overline{\nu}_{\tau}$.
- $R(D^*)$ muonic: $B^0 \rightarrow D^{*-} \ell^+ \nu$ with $\tau^+ \rightarrow \mu^+ \nu_\mu \overline{\nu}_\tau$.
- $R(J/\psi)$ muonic: $B_c^+ \rightarrow J/\psi \ell^+ \nu$ with $\tau^+ \rightarrow \mu^+ \nu_\mu \overline{\nu}_\tau$.
- Complementary strategies: different backgrounds and systematics.
- LHCb 2011+2012 data: $3 \, {\rm fb}^{-1}$ at $\sqrt{s} = 7\&8 \, {\rm TeV}.$
- Using $D^{*-}
 ightarrow \overline{D}{}^0 (
 ightarrow {\cal K}^+ \pi^-) \pi^-$ and $J\!/\psi
 ightarrow \mu^+ \mu^-.$

Predictions:

- $R(D^*) = 0.258 \pm 0.005$ [HFLAV Summer 2018]
- $R(J\!/\psi) \in [0.25, 0.28]$ [PLB452 (1999) 120, arXiv:0211021, PRD73 (2006) 054024, PRD74 (2006) 074008]

[PDG]

$R(D^*)$ with $au^+ o 3\pi^\pm(\pi^0) \overline{ u}_ au$

$R(D^*)$ hadronic: introduction

$$\mathcal{K}(D^*) = rac{\mathcal{B}(B^0 o D^{*-} au^+
u_ au)}{\mathcal{B}(B^0 o D^{*-} 3\pi^\pm)} = rac{\mathcal{N}_{ ext{sig}}}{\mathcal{N}_{ ext{norm}}} rac{arepsilon_{ ext{norm}}}{arepsilon_{ ext{sig}}} rac{1}{\mathcal{B}(au^+ o 3\pi^\pm (\pi^0) \overline{
u}_ au)}$$

- Signal and normalisation same visible final state: $D^{*-}3\pi^{\pm}$.
- $N_{\rm sig}$ from 3D binned template fit:

•
$$q^2\equiv |P_{B^0}-P_{D^*}|^2$$
,

- au^+ decay time,
- Output of BDT trained to discriminate signal from $D^*D_s^+$.
- N_{norm} from unbinned max likelihood fit to $m(D^*3\pi^{\pm})$.
- Make use of three-prong tau vertex in selection.
- Convert $\mathcal{K}(D^*)$ to $R(D^*)$:

$$R(D^*) = \mathcal{K}(D^*) rac{\mathcal{B}(B^0 o D^{*-} 3 \pi^{\pm})}{\mathcal{B}(B^0 o D^{*-} \mu^+
u_\mu)}$$

$R(D^*)$ hadronic: backgrounds

- Most abundant background: $X_b \rightarrow D^{*-} 3\pi^{\pm} X.$
 - $\sim 100 imes$ more abundant than signal.
 - Suppressed by requiring τ^+ vertex to be $4\sigma_{\Delta z}$ downstream from *B* vertex.
 - Improves S/B by factor 160.
- Remaining backgrounds: double charm modes with non-negligible lifetimes:
 - $X_b
 ightarrow D^*D_s^+X \sim 10 imes$ signal,
 - $X_b \rightarrow D^* D^+ X \sim 1 imes$ signal,
 - $X_b \rightarrow D^* D^0 X \sim 0.2 \times$ signal.

[PRD 97, 072013 (2018)]

$R(D^*)$ hadronic: backgrounds

Discriminate between signal and double charm backgrounds using a BDT that exploits the resonant structures in the $3\pi^{\pm}$ systems from τ^+ and D_s^+ decays.

Control samples of $D^*D_s^+X$, D^*D^+X and D^*D^0X used to correct simulation.

$R(D^*)$ hadronic: fit and result

- Projections of 3D binned template fit shown for t(τ) (left) and q² (right) for each of the BDT bins.
- Signal purity increases with BDT output, while $D^*D_s^+X$ fraction decreases.
- Dominant background at high BDT output D*D+X due to long D+ lifetime.

•
$$N_{\rm sig} = 1296 \pm 86$$
, $N_{\rm norm} = 17660 \pm 158$.

 $\mathcal{K}(D^*) = 1.97 \pm 0.13\, ext{(stat)} \pm 0.18\, ext{(syst)}$

 $R(D^*) = 0.291 \pm 0.019 \,(\text{stat}) \pm 0.026 \,(\text{syst}) \pm 0.013 \,(\text{ext}).$

• 0.9σ above SM, compatible with experimental average.

[PRL 120, 171802 (2018), PRD 97, 072013 (2018)]

3/22

$R(D^*)$ hadronic: systematic uncertainties

- Uncertainties on double charm backgrounds should improve with more data and improved external measurements.
- Uncertainty on efficiency ratio should improve with more statistics.

Source	$rac{\delta R(D^*)}{R(D^*)}$ [%]
Simulated sample size	4.7
Empty bins in templates	1.3
Signal decay model	1.8
$D^{**} au u_{ au}$ and $D^{**}_s au u_{ au}$ feed-down	2.7
$D^+_s ightarrow 3\pi^\pm X$ decay model	2.5
$B ightarrow D^*D^+_s X$, D^*D^+X , D^*D^0X backgrounds	3.9
Combinatorial background	0.7
$B\! ightarrow D^{st\!-\!3}\pi^\pm X$ background	2.8
Efficiency ratio	3.9
Normalisation channel efficiency	2.0
(modelling of $B^0 o D^{st -} 3 \pi^\pm$)	
Total systematic uncertainty	9.1

[PRL 120, 171802 (2018), PRD 97, 072013 (2018)]

$R(D^*)$ with $au^+ o \mu^+ u_\mu \overline{ u}_ au$

$R(D^*)$ muonic: introduction

$$R(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

- Both modes have same visible final state: $D^{*-}\mu^+$.
- Neither fully reconstructable, due to neutrinos.
 - B^0 momentum approximated using B^0 decay vertex and scaling visible longitudinal momentum by $m(B^0)/m(D^{*-}\mu^+)$
 - Resolution on kinematic variables enough to distinguish between au/μ modes.
- 3D binned template fit to extract yields:
 - $q^2\equiv |P_{B^0}-P_{D^*}|^2$,
 - $m_{\rm miss}^2 \equiv |P_{B^0} P_{D^*} P_{\mu^+}|^2$,
 - $E_{\mu^+}^* \equiv$ muon energy in B^0 rest frame.

$R(D^*)$ muonic: fit and result

- Projections of 3D binned template fit shown for m_{miss}^2 (left) and $E_{\mu^+}^*$ (right) in each of the q^2 bins
- Dominant component is $B^0
 ightarrow D^* \mu^+
 u_\mu$
- $B^0
 ightarrow D^* au^+
 u_ au$ signal purity increases with q^2
- Backgrounds:
 - D** feed-down
 - Double charm
 - Combinatorial
 - Misidentified muon

 $R(D^*) = 0.336 \pm 0.027 \, (\text{stat}) \pm 0.030 \, (\text{syst})$

• 1.9σ above SM

$R(D^*)$ muonic: systematics

- MC statistics largest systematic.
- Mis-ID μ template: reduce with improved rejection and more sophisticated technique.

Source	$\delta R(D^*)[imes 10^{-2}]$
Simulated sample size (model)	2.0
Misidentified μ template shape	1.6
$\overline{B}{}^0 \! ightarrow D^{st+}(au^-/\mu^-) \overline{ u}$ form factors	0.6
$\overline{B} ightarrow D^{st+} X_c (ightarrow \mu u X') X$ shape corrections	0.5
${\cal B}(\overline{B}\! ightarrow D^{**} au^- \overline{ u}_{ au})/{\cal B}(\overline{B}\! ightarrow D^{**} \mu^- u_{\mu})$	0.5
$\overline{B} ightarrow D^{stst} (ightarrow D^st \pi \pi) \mu u$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\overline{B} o D^{stst} (o D^{st+} \pi) \mu^- \overline{ u}_\mu$ form factors	0.3
$\overline{B} ightarrow D^{*+}(D^+_s ightarrow au u) X$ fraction	0.1
Simulated sample size (normalisation)	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form-factors	0.2
${\cal B}(au^- o \mu^- \overline{ u}_\mu u_ au)$	< 0.1
Total systematic uncertainty	3.0

[PRL 115, 112001 (2015)]

$R(J\!/\psi)$ with $au^+\! ightarrow\mu^+ u_\mu\overline u_ au$

$R(J/\psi)$ muonic: introduction

$$R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \, \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \, \mu^+ \nu_{\mu})}$$

- Both modes have same visible final state: $J/\psi \mu^+$.
- 3D binned template fit to extract yields:
 - B_c^+ decay time,
 - $m_{\rm miss}^2$,
 - $Z(E^*_{\mu^+}, q^2) \equiv$ flattened 4 × 2 histogram of $E^*_{\mu^+}$ and q^2 .
- B_c^+ decay form factors not precisely determined; constrained experimentally from this analysis.
- Low rate of B_c^+ production, but no long-lived *D*-meson background.

$R(J/\psi)$ muonic: fit and result

- Projections of 3D binned template fit shown.
- Largest component is $B_c^+ o J/\psi \, \mu^+
 u_\mu$ (19140 \pm 340 candidates).
- $B_c^+ \rightarrow J/\psi \, \tau^+ \nu_{ au}$ in red (1400 ± 300 candidates).
- Main background: $X_b \rightarrow J/\psi + \text{mis-ID}$ hadron.
- First evidence of the decay $B_c^+ \rightarrow J/\psi \, \tau^+ \nu_{\tau}$ (3 σ significance).

 $R(J\!/\psi\,) = 0.71 \pm 0.17\,(ext{stat}) \pm 0.18\,(ext{syst})$

• 2σ above the SM.

$R(J/\psi)$ muonic: systematics

- *B*⁺_c form factors: recent improvements should enter into updated measurement.
- MC statistics second-largest systematic.

Source	$\delta R(J/\psi)[imes 10^{-2}]$
Simulation sample size	8.0
$B_c^+ o J\!/\psi$ form factors	12.1
$B_c^+ o \psi(2S)$ form factors	3.2
Bias correction	5.4
$B_c^+ ightarrow J\!/\psi X_c X$ cocktail composition	3.6
Z binning strategy	5.6
Misidentification background strategy	5.4
Combinatorial background cocktail	4.5
Combinatorial $J\!/\psi$ sideband scaling	0.9
Empirical reweighting	1.6
Semitauonic $\psi(2S)$ and χ_c feed-down	0.9
Fixing $A_2(q^2)$ slope to zero	0.3
Efficiency ratio	0.6
${\cal B}(au^+\! ightarrow\mu^+ u_\mu\overline u_ au)$	0.2
Total systematic uncertainty	17.7

[PRL 120, 121801 (2018)]

Summary and conclusions

Summary

LHCb has made 3 tests of LFU with semitauonic B decays so far:

$$\begin{array}{lll} R(D^*) \mbox{ (hadronic)} &=& 0.291 \pm 0.019 \mbox{ (stat)} \pm 0.026 \mbox{ (syst)} \pm 0.013 \mbox{ (ext)}, \\ R(D^*) \mbox{ (muonic)} &=& 0.336 \pm 0.027 \mbox{ (stat)} \pm 0.030 \mbox{ (syst)}, \\ R(J/\psi) &=& 0.71 \ \pm 0.17 \ \mbox{ (stat)} \pm 0.18 \ \mbox{ (syst)}. \end{array}$$

Average of LHCb $R(D^*)$ results is 1.9σ above SM:

 $R(D^*) = 0.310 \pm 0.016 \,(\text{stat}) \pm 0.022 \,(\text{syst}).$

World averages

Between LHCb, BaBar and Belle: 9 measurements of LFU with semitauonic *B* decays so far.

- $6 \times R(D^*)$, $2 \times R(D)$, $1 \times R(J/\psi)$.
- All lie above the SM expectation.
- $R(D^*)$ average 3.0 σ from SM.

[HFLAV Summer 2018]

R(D) included for context

World averages

R(D*) BaBar, PRL109,101802(2012) 0.5 $\Delta \gamma^2 = 1.0$ contours Belle, PRD92.072014(2015) LHCb. PRL115.111803(2015) Average of SM predictions Belle, PRD94.072007(2016) 0.45 $R(D) = 0.299 \pm 0.003$ Belle, PRL118.211801(2017) LHCb, PRL120,171802(2018) R(D*) = 0.258 ± 0.005 0.4 Average 0.35 2σ 0.3 0.25 HFLAV Summer 2018 0.2 0.2 0.3 0.4 0.5 0.6 R(D)

[HFLAV Summer 2018]

- HFLAV summer 2018 $R(D) - R(D^*)$ average is 3.8 σ from the SM.
- Reduction from 4.1σ due to increase in theory uncertainties.

Conclusions and prospects

- Hints of LFU violation in semitauonic *B* decays.
 - $R(D) R(D^*)$: 3.8 σ away from SM.
 - $R(J/\psi)$: 2 σ above SM.
- LHCb results only use Run 1 data: Runs 2,3,4... will bring much larger statistics.
- Many systematics will reduce with more data and more MC
- Others will reduce with improved external measurements (BESIII, Belle II)
- Analyses of more modes:
 - $b \to c \tau^- \overline{\nu}_{\tau}$: $R(D^+)$, $R(D^0)$, $R(D_s^{+(*)})$, $R(\Lambda_c^{+(*)})$...
 - $b \rightarrow u \tau^- \overline{\nu}_{\tau}$: $\Lambda^0_b \rightarrow p \tau^- \overline{\nu}_{\tau}$, $B^+ \rightarrow p \overline{p} \tau^+ \nu_{\tau}$...
- New observables beyond ratios of branching fractions, *e.g.* angular analyses to discriminate between NP models.

Backup slides

$R(D^*)$ with $au^+ o 3\pi^\pm(\pi^0) \overline{ u}_ au$

$R(D^*)$ hadronic

$$egin{aligned} \mathcal{R}(D^*) &= \mathcal{K}(D^*) rac{\mathcal{B}(B^0 o D^{*-} 3 \pi^{\pm})}{\mathcal{B}(B^0 o D^{*-} \mu^+
u_{\mu})} \ \mathcal{K}(D^*) &= rac{N_{ ext{sig}}}{N_{ ext{norm}}} rac{arepsilon_{ ext{norm}}}{arepsilon_{ ext{sig}}} rac{1}{\mathcal{B}(au^+ o 3 \pi^{\pm}(\pi^0) \overline{
u}_{ au})} \end{aligned}$$

- N_{sig} from 3D binned template fit
- N_{norm} from unbinned fit to $m(D^{*-}3\pi^{\pm})$
- Efficiencies *ε* from MC
- $\mathcal{B}(\tau^+ \to 3\pi^\pm \overline{
 u}_{ au}) = (9.31 \pm 0.05) \,\% \,[\text{PDG}]$
- $\mathcal{B}(\tau^+ \to 3\pi^\pm \pi^0 \overline{\nu}_{\tau}) = (4.61 \pm 0.05) \,\% \,[\text{PDG}]$
- $\mathcal{B}(B^0 \rightarrow D^{*-} 3\pi^{\pm})$ [LHCb, BaBar, Belle]
- $\mathcal{B}(B^0 \rightarrow D^{*-} \mu^+ \nu_\mu)$ [PDG]

*R(D**) hadronic: BDT

Adam Morris (CPPM)

LFU tests with semitauonic B decays at LHCb

$R(D^*)$ hadronic: D_s^+ , D^0 , D^+ control channels

$R(D^*)$ hadronic: normalisation

- Fit $m(D^{*-}3\pi^{\pm})$ for the number of B^0 candidates
 - Signal: sum of Gaussian and Crystal Ball with shared mean
 - Background: exponential function
- Fit $m(3\pi^{\pm})$ in 5.20 $< m(D^{*-}3\pi^{\pm}) <$ 5.35 GeV/ c^2 for number of D_s^+ candidates
 - Signal: Gaussian distribution
 - Background: exponential function
- $N_{\rm norm}$ is the difference of the two

 $N_{
m norm} = 17660 \pm 143 \, (
m stat) \pm 64 \, (
m syst) \pm 22 (D_s^+)$

$R(D^*)$ hadronic: neutral isolation

$R(D^*)$ hadronic: $X_b \rightarrow D^{*-} 3\pi^{\pm} X$ MC sample

- Inclusive $X_b \rightarrow D^{*-} 3\pi^{\pm} X$ MC sample
- Shown: different parents of the $3\pi^{\pm}$ system
 - Blue: *B*⁰
 - Yellow: other *b*-hadrons
 - Signal $B^0
 ightarrow D^{*-} au^+
 u_ au$
 - Prompt: directly from X_b
 - Charm (D_s^+, D^0, D^+)
 - B1B2: $3\pi^{\pm}$ and D^0 from different X_b
 - au^+ from a D_s^+ decay
 - $D^{**} au^+
 u_{ au}$ (*i.e.* more highly-excited $D^{(*)}$ states)
- Top: after initial selection
- Middle: all candidates in the template fit
- Bottom: 3 highest BDT bins

LHCb ГНСр

${\cal R}(D^*)$ hadronic: $D^{*-}D^+_s$ control sample

${\sf R}(D^*)$ hadronic: D^+_s decay model

• $X_b \rightarrow D^{*-}D_s^+X$ control sample obtained using BDT output

$R(D^*)$ hadronic: D_s^+ decay model

- $au^+
 ightarrow a_1(1260)^+ (
 ightarrow
 ho^0 \pi^+) \overline{
 u}_ au$
- Dominant source of ho^0 in D_s^+ decays due to $\eta' o
 ho^0 \gamma$
- Crucial to describe η' contribution accurately
- Fit results used to describe the $D_s^+
 ightarrow 3\pi^\pm X$ model in the template fit

$R(D^*)$ hadronic: D_s^+ decay model fit results

D_s^+ decay	Relative contribution	Correction to MC	
$\eta\pi^+(X)$	0.156 ± 0.010		
ηho^+	0.109 ± 0.016	0.88 ± 0.13	
$\eta\pi^+$	0.047 ± 0.014	0.75 ± 0.23	
$\eta'\pi^+(X)$	0.317 ± 0.015		
$\eta' ho^+$	0.179 ± 0.016	0.710 ± 0.063	
$\eta^\prime \pi^+$	0.138 ± 0.015	0.808 ± 0.088	
$\phi\pi^+(X),\ \omega\pi^+(X)$	0.206 ± 0.02		
ϕho^+ , ωho^+	0.043 ± 0.022	0.28 ± 0.14	
$\phi\pi^+$, $\omega\pi^+$	0.163 ± 0.021	1.588 ± 0.208	
η3π	0.104 ± 0.021	1.81 ± 0.36	
$\eta' 3\pi$	0.0835 ± 0.0102	5.39 ± 0.66	
$\omega 3\pi$	0.0415 ± 0.0122	5.19 ± 1.53	
$K^0 3\pi$	0.0204 ± 0.0139	1.0 ± 0.7	
$\phi 3\pi$	0.0141	0.97	
$ au^+ (o 3\pi(N) \overline{ u}_ au) u_ au$	0.0135	0.97	
$X_{nr}3\pi$	0.038 ± 0.005	6.69 ± 0.94	

Adam Morris (CPPM)

LFU tests with semitauonic B decays at LHCb

$R(D^*)$ hadronic: fit projections

Fit component	Normalisation
$B^0 ightarrow D^{*-} au^+ (ightarrow 3 \pi \overline{ u}_ au) u_ au$	$N_{ m sig} imes f_{ au ightarrow 3\pi u}$
$B^0 ightarrow D^{st -} au^+ (ightarrow 3\pi \pi^0 \overline{ u}_ au) u_ au$	$N_{ m sig} imes (1 - f_{ au ightarrow 3 \pi u})$
$B ightarrow D^{**} au^+ u_{ au}$	$N_{ m sig} imes f_{D^{**} au u}$
$B ightarrow D^{*-}D^+X$	$f_{D^+} imes N_{D_s}$
$B ightarrow D^{st -} D^0 X$ different vertices	$f_{D^0}^{ u_1 u_2} imes N_{D^0}^{ m sv}$
$B ightarrow D^{st -} D^0 X$ same vertex	$\tilde{N}_{D^0}^{sv}$
$B^0 ightarrow D^{st-}_s D^+_s$	$N_{D_s} \times f_{D_s^+}/k$
$B^0 ightarrow D^{*-}_s D^{*+}_s$	$N_{D_s} imes 1/k$
$B^0 o D^{*-} D^*_{s0}(2317)^+$	$N_{D_s} imes f_{D_{ro}^{*+}}/k$
$B^0 ightarrow D^{st-} D_{s1}(2460)^+$	$N_{D_s} imes f_{D_{c1}^+}^{so}/k$
$B^{0,+} ightarrow D^{st st} D^+_s X$	$N_{D_s} \times f_{D_s^+ X}/k$
$B^0_s ightarrow D^{*-}_s D^+_s X$	$N_{D_s} \times f_{(D_s^+X)_s}/k$
$B ightarrow D^{st-} 3\pi X$	$N_{B \to D^* 3 \pi X}$
B1B2 combinatorics	N _{B1B2}
Combinatoric D^{*-}	N _{notD*}

Adam Morris (CPPM)

$R(D^*)$ hadronic: fit results

Parameter	Fit result	Constraint
N _{sig}	1296 ± 86	
$f_{ au ightarrow 3\pi u}$	0.78	0.78 (fixed)
$f_{D^{**}\tau\nu}$	0.11	0.11 (fixed)
$N_{D^0}^{sv}$	445 ± 22	445 ± 22
$f_{D^0}^{v_1v_2}$	0.41 ± 0.22	
\tilde{N}_{D_s}	6835 ± 166	
f_{D^+}	0.245 ± 0.020	
$N_{B ightarrow D^* 3 \pi X}$	424 ± 21	443 ± 22
$f_{D^+_{-}}$	0.494 ± 0.028	0.467 ± 0.032
$f_{D_{r_0}^{*+}}^{-s}$	$0^{+0.010}_{-0.000}$	$0^{+0.042}_{-0.000}$
$f_{D_{-1}^+}$	0.384 ± 0.044	0.444 ± 0.064
$f_{D_{\epsilon}^{+}X}$	0.836 ± 0.077	0.647 ± 0.107
$f_{(D_{\epsilon}^{+}X)_{\epsilon}}$	0.159 ± 0.034	0.138 ± 0.040
\hat{N}_{B1B2}	197	197 (fixed)
$N_{\text{not}D^*}$	243	243 (fixed)

LHCb ГНСр

$R(D^*)$ hadronic: more detailed systematics

Contribution	Value in %
${\cal B}(au^+ o 3\pi\overline{ u}_{ au})/{\cal B}(au^+ o 3\pi(\pi^0)\overline{ u}_{ au})$	0.7
Form factors (template shapes)	0.7
Form factors (efficiency)	1.0
au polarisation effects	0.4
Other $ au$ decays	1.0
$B ightarrow D^{stst} au^+ u_{ au}$	2.3
$B^0_s o D^{st au}_s au^+ u_{ au}$ feed-down	1.5
$D^+_{m s} ightarrow 3\pi X$ decay model	2.5
$D_{s}^{ar{+}}$, D^{0} and D^{+} template shape	2.9
$B ightarrow D^{st -} D^+_s(X)$ and $B ightarrow D^{st -} D^0(X)$ decay model	2.6
$D^{*-}3\pi X$ from B decays	2.8
Combinatorial background (shape + normalisation)	0.7
Bias due to empty bins in templates	1.3
Size of simulation samples	4.1
Trigger acceptance	1.2
Trigger efficiency	1.0
Online selection	2.0
Offline selection	2.0
Charged-isolation algorithm	1.0
Particle identification	1.3
Normalisation channel	1.0
Signal efficiencies (size of simulation samples)	1.7
Normalisation channel efficiency (size of simulation samples)	1.6
Normalisation channel efficiency (modeling of $B^0 \rightarrow D^{*-}3\pi$)	2.0
Total uncertainty	9.1

$R(D^*)$ hadronic: feed-down systematics

- $B^0
 ightarrow D^{**} au
 u$ and $B^+
 ightarrow D^{**} au
 u$ constitute potential feed-down to the signal
- $D^{**}(2420)^0$ is reconstructed using its decay to $D^{*+}\pi^+$ as a cross-check
- The observation of the $D^{**}(2420)^0$ peak allows to compute the $D^{**}3\pi$ BDT distribution and to deduce a $D^{**}\tau\nu$ upper limit with the following assumption:
 - $D^{**0}\tau\nu = D^{**}(2420)^0\tau\nu$ (no sign of $D^{**}(2460)^0$)

•
$$D^{**+} au
u = D^{**0} au
u$$

- This upper limit is consistent with the theoretical prediction
- Subtraction in the signal of 0.11 \pm 0.04 due to $D^{**} au
 u$ events leading to an error of 2.3%

LFU tests with semitauonic B decays at LHCb

$R(D^*)$ hadronic: prospects for systematics

Source	$\frac{\delta R(D^*)}{R(D^*)}$ [%]	Future
Simulated sample size	4.7	Produce more MC (fast simulation)
Empty bins in templates	1.3	
Signal decay model	1.8	
$D^{**} \tau \nu_{\tau}$ and $D_s^{**} \tau \nu_{\tau}$ feed-down	2.7	Measure $R(D^{**}(2420)^0)$
$D^+_s ightarrow 3\pi^\pm X$ decay model	2.5	BESIII measurement
$B ightarrow D^*D^+_s X$, D^*D^+X , D^*D^0X backgrounds	3.9	Improves with stats
Combinatorial background	0.7	
$B\! ightarrow D^{st\!-} 3\pi^{\pm}X$ background	2.8	Stronger rejection
Efficiency ratio	3.9	Improves with stats
Normalisation channel efficiency	2.0	
(modelling of $B^0 o D^{*-} 3\pi^\pm$)		
Total systematic uncertainty	9.1	

$R(D^*)$ hadronic: prospects for systematics

- Shape of $B \rightarrow D^*DX$ background (2.9%): scale with statistics
- $D_s^+
 ightarrow 3\pi X$ decay model (2.5%): BESIII future measurement.
- Branching fraction of $B^0
 ightarrow D^*3\pi$: can be precisely measured by Belle II.
- $B \to D^{*-} 3\pi X$ background: strong cut on $\sigma_{\Delta z}$ between the au and the D^0 vertices.
- With more data, measure $R(D^{**}(2420)^0)$ and constrain D^{**} feed-down
- Efficiency ratio: will improve with more data.

$R(D^*)$ with $au^+ o \mu^+ u_\mu \overline{ u}_ au$

$R(D^*)$ muonic: kinematics

 $egin{aligned} R(D^*) &= rac{\mathcal{B}(B^0 o D^{*-} au^+
u_ au)}{\mathcal{B}(B^0 o D^{*-} \mu^+
u_\mu)} \ ext{with} \ au^+ o \mu^+
u_\mu ar
u_ au \end{aligned}$

- Precise SM prediction: $R(D^*) = 0.258 \pm 0.005$ [HFLAV]
- Normalisation mode with the same visible final state
- $\mathcal{B}(au^+ o \mu^+
 u_\mu ar{
 u}_ au) = (17.39 \pm 0.04)\%$
- Separate τ and μ via a 3D binned template fit to:
 - $q^2 \equiv |P_{B^0} P_{D^*}|^2$,
 - $m_{\text{miss}}^2 \equiv |P_{B^0} P_{D^*} P_{\mu^+}|^2$,
 - $E_{\mu^+}^* \equiv$ muon energy in B^0 rest frame.
- Background and signal shapes extracted from control samples and

simulation validated against data

Adam Morris (CPPM)

 E_{μ}^{*}

 m_{miss}^2

 $q^{2} = (p_{\ell} + p_{\nu})^{2}$ $= m_{W^{*}}^{2}$

Problem of missing neutrino: no analytical solution for \vec{p}_B . Approximate *B* momentum with $p_B^z = \frac{m_B}{m_{D^*\mu}} p_{D^*\mu}^z$ and exploit the measured *B* flight trajectory. This leads to ~18% resolution on q^2 , m_{miss}^2 and E_{μ}^* , enough to preserve the discrimining features of the original variables.

$R(D^*)$ muonic: kinematics

	$D^* au u_ au$	$D^*\mu u_\mu$
$m_{\rm miss}^2$	> 0	\simeq 0
E^*_{μ}	softer	harder
q^2	$> m_{ au}^2$	> 0

au mode (red) and μ mode (blue) using truth (top) and reconstructed (bottom) quantities.

Adam Morris (CPPM)

$R(D^*)$ muonic: control samples

- \overline{B} ightarrow $[D_1, D_2^*, D_1'] \mu^- \overline{
 u}_\mu$ control sample.
 - Require exactly 1 track selected by the isolation MVA with the opposite charge to the D*+ candiadte.

$R(D^*)$ muonic: control samples

 $\overline{B}
ightarrow D^{**} (
ightarrow D^{*+} \pi^+ \pi^-) \mu^- \overline{
u}_{\mu}$ control sample.

• Require exactly two tracks with opposite charge selected by the isolation MVA.

$R(D^*)$ muonic: control samples

- $B \rightarrow D^{*+}X_c (\rightarrow \mu \nu X')X$ control sample.
 - Require isolation MVA to identify a track consistent with the *B* vertex and at least one track with K[±] hypothesis near the *B*.

циср

$R(D^*)$ muonic: fit projections

$R(J\!/\psi)$ with $au^+\! ightarrow\mu^+ u_\mu\overline u_ au$

$R(J/\psi)$ muonic

• Generalisation of $R(D^*)$ to B_c^+

$$egin{aligned} R(J\!/\psi\,) &= rac{\mathcal{B}(B_c^+ o J\!/\psi\, au^+
u_ au)}{\mathcal{B}(B_c^+ o J\!/\psi\,\mu^+
u_\mu)} \end{aligned}$$

- Prediction: $R(J/\psi) \in [0.25, 0.28]$ [PLB452 (1999) 120, arXiv:0211021, PRD73 (2006) 054024, PRD74 (2006) 074008]
- B_c^+ decay form factors not yet precise
- Like in $R(D^*)$, use m^2_{miss} , E^*_{μ} and q^2 . Add information from B^+_c decay time
- Imperfect reconstruction due to missing neutrinos. The broad shapes of the distributions are smeared but their discriminating power is preserved

$R(J/\psi)$ muonic: kinematics

Adam Morris (CPPM)

LFU tests with semitauonic B decays at LHCb

$R(J/\psi)$ muonic: Z variable

Trick to make a 3D fit with 4 variables: the Z variable merges information from q^2 and E_{μ}^* $q^2 \,({\rm GeV}^2)$ 10.12Z = 4Z=5Z=6Z=77.15Z = 0Z = 1Z=2Z = 3 $\rightarrow E_{\mu} (\text{GeV})$ 0.68 1.151.643.18

$R(J/\psi)$ muonic: fit projections in bins of Z

$R(J/\psi)$ muonic: fit projections in bins of Z

$R(J/\psi)$ muonic: feed-down

Adam Morris (CPPM)

Angular observables

Full angular distribution in $B o D^* (o D\pi) \ell \overline{ u}_\ell$

The full angular distribution is given by

$$\begin{aligned} \frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{\ell}d\cos\theta_{D}d\chi} &= \frac{3G_{F}^{2}|V_{cb}|^{2}}{256(2\pi)^{4}m_{B}^{3}}q^{2}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2}\sqrt{\lambda_{D^{*}}(q^{2})} \times B(D^{*} \to D\pi) \times \left\{ \\ [|H_{+}|^{2}+|H_{-}|^{2}]\left(1+\cos^{2}\theta_{\ell}+\frac{m_{\ell}^{2}}{q^{2}}\sin^{2}\theta_{\ell}\right)\sin^{2}\theta_{D}+2[|H_{+}|^{2}-|H_{-}|^{2}]\cos\theta_{\ell}\sin^{2}\theta_{D} \\ &+4|H_{0}|^{2}\left(\sin^{2}\theta_{\ell}+\frac{m_{\ell}^{2}}{q^{2}}\cos^{2}\theta_{\ell}\right)\cos^{2}\theta_{D}+4|H_{t}|^{2}\frac{m_{\ell}^{2}}{q^{2}}\cos^{2}\theta_{D} \\ &-2\beta_{\ell}^{2}\left(\Re[H_{+}H_{-}^{*}]\cos2\chi+\Im[H_{+}H_{-}^{*}]\sin2\chi\right)\sin^{2}\theta_{\ell}\sin^{2}\theta_{D} \\ &-\beta_{\ell}^{2}\left(\Re[H_{+}H_{0}^{*}+H_{-}H_{0}^{*}]\cos\chi+\Im[H_{+}H_{0}^{*}-H_{-}H_{0}^{*}]\sin\chi\right)\sin2\theta_{\ell}\sin2\theta_{D} \\ &-2\Re\left[H_{+}H_{0}^{*}-H_{-}H_{0}^{*}-\frac{m_{\ell}^{2}}{q^{2}}\left(H_{+}H_{t}^{*}+H_{-}H_{t}^{*}\right)\right]\cos\chi\sin\theta_{\ell}\sin2\theta_{D} \\ &-2\Im\left[H_{+}H_{0}^{*}+H_{-}H_{0}^{*}-\frac{m_{\ell}^{2}}{q^{2}}\left(H_{+}H_{t}^{*}-H_{-}H_{t}^{*}\right)\right]\sin\chi\sin\theta_{\ell}\sin2\theta_{D} +8\Re[H_{0}H_{t}^{*}]\frac{m_{\ell}^{2}}{q^{2}}\cos\theta_{\ell}\cos^{2}\theta_{D}\right\} \end{aligned}$$

$B o D^* (\to D\pi) \ell \overline{ u}_{\ell}$: observables sensitive to NP

What can be extracted from the proposed observables:

$$\begin{aligned} d\Gamma/dq^2 & \left[|H_+|^2 + |H_-|^2 + |H_0|^2 \right] \left(1 + \frac{m_\ell^2}{2q^2} \right) + \frac{3}{2} \frac{m_\ell^2}{q^2} |H_t|^2 \\ 1 - \mathcal{A}_{\lambda_\ell} & |H_+|^2 + |H_-|^2 + |H_0|^2 + 3|H_t|^2 \\ \mathcal{A}_{FB} & |H_+|^2 - |H_-|^2 + 2\frac{m_\ell^2}{q^2} \Re \Big[H_0 H_t^* \Big] \\ \mathcal{R}_{L,T} & |H_+|^2 + |H_-|^2 \\ \mathcal{A}_5 & |H_+|^2 - |H_-|^2 \\ \mathcal{C}_X & \Re \Big[H_+ H_-^* \Big] \\ \mathcal{S}_X & \Im \Big[H_+ H_-^* \Big] \\ \mathcal{S}_X & \Im \Big[(H_+ + H_-) H_0^* - \frac{m_\ell^2}{q^2} \Big((H_+ - H_-) H_t^* \Big] \\ \mathcal{A}_9 & \Re \Big[(H_+ - H_-) H_0^* - \frac{m_\ell^2}{q^2} \Big((H_+ + H_-) H_t^* \Big] \\ \mathcal{A}_{10} & \Im \Big[(H_+ - H_-) H_0^* \Big] \end{aligned}$$
(=0 in the SM)
$$\mathcal{A}_{11} & \Re \Big[(H_+ + H_-) H_0^* \Big] \end{aligned}$$

Best discriminating variable to NP

$$Heff = \frac{G_F}{\sqrt{2}} V_{cb} \Big[(1 + g_V) \overline{c} \gamma_\mu b \\ + (-1 + g_A) \overline{c} \gamma_\mu \gamma_5 b \\ + g_5 i \partial_\mu (\overline{c} b) \\ + g_P i \partial_\mu (\overline{c} \gamma_5 b) \\ + g_T i \partial_\nu (\overline{c} i \sigma_{\mu\nu} b) \Big] (\overline{\ell} \gamma^\mu (1 - \gamma_5) \nu_\ell)$$

 $\times:$ "not sensitive"

* * *: "maximally sensitive"

Quantity	gv	gА	gs	ØР	gт
\mathcal{A}^{D}_{FB}	×	-	***	_	*
$\mathcal{A}^{D}_{\lambda_{ au}}$	×	-	***	-	**
$\mathcal{A}_{FB}^{D^*}$	*	***	-	***	*
$\mathcal{A}^{D^*}_{\lambda_{ au}}$	×	×	-	**	*
$R_{L,T}$	×	×	-	**	**
A_5	**	**	-	*	***
C _x	*	×	-	**	**
S_{χ}	***	***	-	×	***
A_8	**	**	-	**	***
A_9	*	*	-	**	**
A ₁₀	**	**	-	×	**
A ₁₁	×	×	_	**	**