$b \rightarrow sl^+l^-$ LFU measurements at LHCb

10th International Workshop on the CKM Unitarity Triangle

Heidelberg, 20 September 2018

L A B O R A T O I R E DE L'ACCÉLÉRATEUR L I N É A I R E

Vitalii Lisovskyi (LAL) on behalf of the LHCb Collaboration LHCb THCp

What is LFU?

- Lepton Flavor Universality: couplings of electroweak bosons to different leptons are independent of their flavor.
 - The only difference can emerge from the lepton masses.
- LFU tested up to a percent precision in $Z \rightarrow l^+l^-$, $J/\psi \rightarrow l^+l^-$ decays, etc. [PRD 98, 030001 (2018)]
- What keeps us awake at night: LFU tests in *B* decays
- There are two areas of recent interest:
 - Charged LFU $(b \rightarrow c l^- \overline{\nu_l})$: see previous talk by Adam
 - Neutral LFU $(b \rightarrow sl^+l^-)$: now
 - FCNC, loop only in the SM

Focus on the experimental aspects, see theory talks for proposed models

Why rare decays?

- If New Physics is there, its effects are most probably tiny
- Rare decays $b \rightarrow sl^+l^-$: $BR \sim 10^{-8} \dots 10^{-6}$
 - e.g. $BR(B^+ \to K^+ l^+ l^-) = (4.51 \pm 0.23) \cdot 10^{-7} [PDG average <u>PRD 98, 030001 (2018)</u>]$
- How many events do we expect?
 - $\sigma_{b\bar{b}} \approx 72 \mu b$ at 7 TeV [PRL 118, 052002 (2017)], twice more at 13 TeV
 - Luminosity: 3 fb⁻¹ in Run I $\rightarrow \sim 2.6 \cdot 10^{11} b\overline{b}$ pairs produced
 - Hadronisation fraction: $f_{u,d} \approx 0.4$, $f_s \approx 0.1$, $f_{\Lambda_b} \approx 0.08$ [Eur. Phys. J. C77 (2017) 895]
 - So, we have $\sim 47000 B^+ \rightarrow K^+ l^+ l^-$ decays happened in the LHCb acceptance
- But: trigger, reconstruction, offline selection
 - \rightarrow O(200) $B^+ \rightarrow K^+ e^+ e^-$ and O(1200) $B^+ \rightarrow K^+ \mu^+ \mu^-$ events

So, how do we test LFU?

•
$$R_X[q_{min}^2, q_{max}^2] = rac{\int_{q_{min}^2}^{q_{max}^2} dq^2 rac{d\Gamma(B \to X\mu^+\mu^-)}{dq^2}}{\int_{q_{min}^2}^{q_{max}^2} dq^2 rac{d\Gamma(B \to Xe^+e^-)}{dq^2}}$$

- in certain ranges of $q^2 = m^2(l^+l^-)$
 - Avoid contamination from resonances
 - Avoid getting close to the mass threshold

So, how do we test LFU?

•
$$R_X[q_{min}^2, q_{max}^2] = rac{\int_{q_{min}^2}^{q_{max}^2} dq^2 \frac{d\Gamma(B \to X\mu^+\mu^-)}{dq^2}}{\int_{q_{min}^2}^{q_{max}^2} dq^2 \frac{d\Gamma(B \to Xe^+e^-)}{dq^2}}{dq^2}$$

- in certain ranges of $q^2 = m^2(l^+l^-)$
 - Avoid contamination from resonances
 - Avoid getting close to the mass threshold
- On practice: measure double ratio
 - $R_X = \frac{BR(B \to X\mu^+\mu^-)}{BR(B \to Xe^+e^-)} \cdot \frac{BR(B \to XJ/\psi(e^+e^-))}{BR(B \to XJ/\psi(\mu^+\mu^-))}$
- The blue part is what we want to measure, red part should be exactly one
 - Cancellation of efficiencies and systematic uncertainties (electron tracking, trigger etc.)

So, how do we test LFU?

•
$$R_X[q_{min}^2, q_{max}^2] = rac{\int_{q_{min}^2}^{q_{max}^2} dq^2 \frac{d\Gamma(B \to X\mu^+\mu^-)}{dq^2}}{\int_{q_{min}^2}^{q_{max}^2} dq^2 \frac{d\Gamma(B \to Xe^+e^-)}{dq^2}}$$

- in certain ranges of $q^2 = m^2(l^+l^-)$
 - Avoid contamination from resonances
 - Avoid getting close to the mass threshold
- On practice: measure double ratio • $R_X = \frac{BR(B \to X\mu^+\mu^-)}{BR(B \to Xe^+e^-)} \cdot \frac{BR(B \to XJ/\psi(e^+e^-))}{BR(B \to XJ/\psi(\mu^+\mu^-))}$

- The blue part is what we *want* to measure, red part should be exactly one
 - Cancellation of efficiencies and systematic uncertainties (electron tracking, trigger etc.)
- What we *really* measure is the number of events (*N*)

• $R_X = \frac{N(B \to X\mu^+\mu^-)}{\varepsilon(B \to X\mu^+\mu^-)} * \frac{\varepsilon(B \to XJ/\psi(\mu^+\mu^-))}{N(B \to XJ/\psi(\mu^+\mu^-))} * \frac{N(B \to XJ/\psi(e^+e^-))}{\varepsilon(B \to XJ/\psi(e^+e^-))} * \frac{\varepsilon(B \to Xe^+e^-)}{N(B \to Xe^+e^-)}$

• Efficiencies ($\boldsymbol{\varepsilon}$) are taken from the simulation

Main complications

- Electrons and muons have very different signatures in our detector
 - Bremsstrahlung
 - Trigger
 - Resolution
 - Tracking
 - Bin migration
- Backgrounds:

. . .

- Combinatorial
- Misidentifications
- Partially reconstructed
- Validation of simulation using real data

Electrons vs muons: bremsstrahlung

- Electrons emit bremsstrahlung photons when cross the material
- Match electron tracks to photon clusters in the ECAL
 - Correct electron momenta by "attaching" photons
 - 3 categories of events: 0, 1, >1 photons attached to dielectron pair e
 - Different invariant mass shapes due to under- or over-correcting
- ECAL resolution is worse than tracker
- Bin migration included in systematics

ECAL

 E_1

Magnet

 E_0

Electrons vs muons: trigger

• Trigger on e and μ is done in a different way:

- ECAL is very busy: plenty of photons (incl. from π^0 s)
 - High thresholds $(E_T \sim 3 \text{GeV}) \rightarrow \text{lower statistics}$
- But: can trigger on **hadron**, or the **rest of event**
 - Add "Hadron" and "TIS" trigger categories to electron sample
- Need a strong control of trigger efficiencies
 - Use data-driven techniques

Backgrounds

- Misidentifications: exploit LHCb's PID system
 - PID efficiencies measured using high-purity calibration samples
 - Tag & probe technique

• Partially reconstructed backgrounds:

- In particular, semileptonic decays having same *visible* final state
- Or from excited states of final state hadrons...
- Usually located below the signal peak so of less concern for muon mode
- Use the momentum balance for electron mode to reduce the background
- **Combinatorial background**: train an MVA against it

Fits: R_{K^*}

Fits: R_{K^*}

Cross-checks

- Before testing the LFU in rare decays, could we confirm LFU in the decays precisely measured in the past?
- $R_{K^*} = \frac{N(B \to K^* \mu^+ \mu^-)}{\varepsilon(B \to K^* \mu^+ \mu^-)} * \frac{\varepsilon(B \to K^* J/\psi(\mu^+ \mu^-))}{N(B \to K^* J/\psi(\mu^+ \mu^-))} * \frac{N(B \to K^* J/\psi(e^+ e^-))}{\varepsilon(B \to K^* J/\psi(e^+ e^-))} * \frac{\varepsilon(B \to K^* e^+ e^-)}{N(B \to K^* e^+ e^-)}$
 - Check that the red part is indeed compatible with unity!
 - $r_{J/\psi} = 1.043 \pm 0.006 \pm 0.045$
 - Very stringent test of absolute efficiency control
 - Check stability of this ratio as function of kinematics, geometry etc.
- Also in agreement with expectations:
 - Double ratio $R_{\psi(2S)}$ (replace $B \to K^* l^+ l^-$ by $B \to K^* \psi(2S)(l^+ l^-)$)
 - $BR(B \rightarrow K^* \mu^+ \mu^-)$
 - $r_{\gamma} = \frac{BR(B \to K^* \gamma)}{BR(B \to K^* J/\psi)}$ with photon conversions

Results (which you already know by heart)

- Two results published so far
 - Dominant uncertainty: $N(B \rightarrow Xe^+e^-)$
- $\mathbf{R}_{\mathbf{K}^*}$ using $B^0 \to K^{*0}l^+l^-$ decays, Run I data
 - [JHEP 08 (2017) 055]
 - Two bins: $q^2 = 0.045 \dots 1.1 \ GeV^2$ and $1.1 \dots 6 \ GeV^2$
 - $R_{K^*}^{low} = 0.66^{+0.11}_{-0.07}(stat) \pm 0.03(syst)$
 - $R_{K^*}^{central} = 0.69^{+0.11}_{-0.07}(stat) \pm 0.05(syst)$
 - ~2.2 σ and ~2.4 σ deviations, respectively
- R_K using $B^+ \rightarrow K^+ l^+ l^-$ decays, Run I data
 - [Phys. Rev. Lett. 113, 151601 (2014)]
 - $q^2 = 1 \dots 6 \ GeV^2$
 - $R_K = 0.745^{+0.090}_{-0.074}(stat) \pm 0.036(syst)$
 - ~2.6 σ deviation from unity

What's coming next?

- Update of the *R_K* measurement with 2011... 2016 data [now in review]
 - Run I sample: improved electron reconstruction; updated strategy
 - Run II sample: lower electron trigger thresholds, so larger electron statistics
 - Many cross-checks currently ongoing
- Update of the R_{K^*} with 2011... 2016 data also in the pipeline
- Many various other R_X analyses ongoing
 - So far, all the LFU tests were performed with *B* mesons only
 - LHCb has also collected large samples of B_s^0 mesons and Λ_b^0 baryons

LFU with baryons?

- One of ideas is the first LFU test with *b*-baryons
 - Different spin structure and phase space, possible surprises?
 - Do we see a deviation from unity also in baryonic mode?

•
$$R_{pK} = \frac{BR(\Lambda_b^0 \to pK\mu^+\mu^-)}{BR(\Lambda_b^0 \to pKe^+e^-)} \cdot \frac{BR(\Lambda_b^0 \to pKJ/\psi(e^+e^-))}{BR(\Lambda_b^0 \to pKJ/\psi(\mu^+\mu^-))}$$

- Why this final state: easier experimentally than long-lived $\boldsymbol{\Lambda}$
 - Develop a pilot analysis on higher-statistics inclusive mode, then catch up with others (also ongoing)
- Complication is the *pK* spectrum: e.g. $\Lambda_b^0 \rightarrow pKJ/\psi [PRL 115, 072001 (2015)]$
 - How fair is to say the SM prediction for R_{pK} (with that complex resonant content) is equal to 1?
- $\Lambda_b^0 \rightarrow p K \mu^+ \mu^-$ was observed [<u>JHEP 06 (2017) 108</u>]

Longer-term prospects

- We are collecting data right now!
 - On track for about 9.5 fb⁻¹ in Run I+II
 - To be analyzed during the LS2
- LHCb Upgrades are coming [arXiv:1808.08865]
 - Plan to collect up to 50 fb⁻¹ until 2030
 - Proposal to reach 300 fb⁻¹ until 2037
 - Exciting prospects for precision measurements
 - LFU tests with $b \rightarrow dl^+l^-$ will be possible

 R_{K} [1,6] LHCb Upgrade II $R_{\kappa} \cdot [1,6]$ Scenario I R_o [1,6] LHCb Upgrade II ----Distinguish Scenario II between LHCb Upgrade II Scenario III NP scenarios ---LHCb Upgrade II Scenario IV LHCb Run 1 0.8 0.4 0.6 1.2 [arXiv:1808.08865] R_{x}

Conclusions

• Intriguing measurements by LHCb: hints of lepton non-universality?

Conclusions

• Intriguing measurements by LHCb: hints of lepton non-universality?

- New ideas & updated measurements are coming
- LHCb will become even more powerful soon!
- These related talks might be interesting:
 - *b* -> *sll results from LHCb* by Gabriela Pomery
 - Experimental Status of B anomalies by Tom Blake
 - *LVF and other very rare decay searches at LHCb* by Giulio Dujany
 - LFU tests with semitauonic decays at LHCb by Adam Morris

Stay tuned!

One day we will be able to distinguish between various species:

Standard Model penguins

New Physics

backup