BSM physics and violation of lepton flavor universality

Olcyr Sumensari

hep-ph/1806.05689, 1808.08179

In collaboration with

A. Angelescu, D. Bečirević, I. Dorsner, S. Fajfer, D. Faroughy and N. Košnik

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 674896.
Motivation

- A few cracks $[\approx 2 - 3\sigma]$ appeared recently in B-meson decays:

$$R_{D(*)} = \frac{\mathcal{B}(B \to D(*)\tau\bar{\nu})}{\mathcal{B}(B \to D(*)\ell\bar{\nu})} \ell \in (e,\mu)$$

$& \quad R_{D(*)}^{\text{exp}} > R_{D(*)}^{\text{SM}}$

$$R_{K(*)} = \left|\frac{\mathcal{B}(B \to K(*)\mu\mu)}{\mathcal{B}(B \to K(*)ee)}\right| \quad q^2 \in [q^2_{\text{min}},q^2_{\text{max}}]$$

$& \quad R_{K(*)}^{\text{exp}} < R_{K(*)}^{\text{SM}}$

\Rightarrow Violation of Lepton Flavor Universality (LFU)?

This talk: (i) General considerations on BSM scenarios

(ii) A viable GUT-inspired model for $R_{D(*)}$ and $R_{K(*)}$.
\((i) \quad R_{D(*)} = \mathcal{B}(B \to D(*)\tau\bar{\nu})/\mathcal{B}(B \to D(*)\ell\bar{\nu}) \)

Experiment

\[
\begin{align*}
\text{BaBar, PRL109,101802(2012)} & \quad R(D) = 0.299 \pm 0.003 \\
\text{Belle, PRD92,072014(2015)} & \quad R(D) = 0.299 \pm 0.003 \\
\text{LHCb, PRL115,111803(2015)} & \quad R(D) = 0.299 \pm 0.003 \\
\text{Belle, PRD94,072007(2016)} & \quad R(D) = 0.299 \pm 0.003 \\
\text{Belle, PRL118,211801(2017)} & \quad R(D) = 0.299 \pm 0.003 \\
\text{LHCb, PRL120,171802(2018)} & \quad R(D) = 0.299 \pm 0.003 \\
\text{Average} & \quad R(D) = 0.299 \pm 0.003 \\
\end{align*}
\]

- \(R_D \): \(B \)-factories \([\approx 2\sigma]\)
- \(R_{D^*} \): \(B \)-factories and LHCb \([< 3\sigma]\); dominated by BaBar
- LHCb confirmed tendency \(R_{J/\psi}^{\text{exp}} > R_{J/\psi}^{\text{SM}} \), i.e. \(B_c \to J/\psi\ell\bar{\nu} \)
 \(\Rightarrow \) Needs confirmation from Belle-II (and LHCb run-2)!
 \(\Rightarrow \) Other LFUV ratios will be a useful cross-check (\(R_{D_s} \), \(R_{D_s^*} \), \(R_{\Lambda_c} \) ...)

\(\chi^2 \) contours

\(\chi^2 \) probability

HFLAV Summer 2018

\(P(\chi^2) = 74\% \)
(i) \(R_{D(*)} = \mathcal{B}(B \rightarrow D(*)\tau\bar{\nu})/\mathcal{B}(B \rightarrow D(*)\ell\bar{\nu}) \)

Theory (tree-level in SM)

See talks by Monahan, Kronfeld and Vaquero Avilés-Casco

- \(R_D \): lattice QCD at \(q^2 \neq q_{\text{max}}^2 \) \((w > 1) \) available for both vector and scalar form factors

\[
\langle D(k)|\bar{c}\gamma^\mu b|B(p)\rangle = \left[(p + k)^\mu - \frac{m_B^2 - m_D^2}{q^2} q^\mu \right] f_+(q^2) + q^\mu \frac{m_B^2 - m_D^2}{q^2} f_0(q^2)
\]

with \(f_+(0) = f_0(0) \).

- \(R_{D^*} \): lattice QCD at \(q^2 \neq q_{\text{max}}^2 \) not available, scalar form factor \([A_0(q^2)]\) never computed on the lattice

Use decay angular distributions measured at B-factories to fit the leading form factor \([A_1(q^2)]\) and extract two others as ratios wrt \(A_1(q^2) \). All other ratios from HQET (NLO in \(1/m_{c,b} \)) [Bernlochner et al 2017] but with more generous error bars (truncation errors?)

see also [Bigi et al. '17]
(ii) $R_{K^{(*)}} = \mathcal{B}(B \to K^{(*)}\mu\mu)/\mathcal{B}(B \to K^{(*)}ee)$

Experiment $\approx 4\sigma$

More intro in talk by Lisovskiyi

⇒ Needs confirmation from Belle-II!

Theory (loop induced in SM)

- Hadronic uncertainties cancel to a large extent
 ⇒ Clean observables!
 [Hiller et al. '03
 \textit{working below the narrow }c\bar{c}\textit{ resonances}]

- QED corrections important, $R_{K^{(*)}} = 1.00(1)$
 [Bordone et al. '16]
General considerations on BSM scenarios
Relevant questions:

- Is there a **model of New Physics** to explain these anomalies?
- Which additional **experimental signatures** should we expect?
Relevant questions:

- Is there a **model of New Physics** to explain these anomalies?
- Which additional **experimental signatures** should we expect?

What is the **scale of New Physics**?

- $R_{D(*)}^{\text{exp}} > R_{D(*)}^{\text{SM}} \Rightarrow \Lambda_{NP} \lesssim 3 \, \text{TeV}$ [perturbative couplings]
- $R_{K(*)}^{\text{exp}} < R_{K(*)}^{\text{SM}} \Rightarrow \Lambda_{NP} \lesssim 30 \, \text{TeV}$ see also [Di Luzio et al. 2017]
Relevant questions:

- Is there a **model of New Physics** to explain these anomalies?
- Which additional **experimental signatures** should we expect?

What is the **scale of New Physics**?

- $R_{D(*)}^{\text{exp}} > R_{D(*)}^{\text{SM}} \implies \Lambda_{NP} \lesssim 3 \text{ TeV}$ [perturbative couplings]
- $R_{K(*)}^{\text{exp}} < R_{K(*)}^{\text{SM}} \implies \Lambda_{NP} \lesssim 30 \text{ TeV}$ see also [Di Luzio et al. 2017]

$R_{D(*)}^{\text{exp}}$ will be the **main guideline** of my discussion

see also talks by Allanach, Bordone, Crivellin, Di Luzio, Fajfer, Faroughy, Greljo, Hiller, Isidori, Mandal, Marzocca, Nardecchia, Straub, van Dyk, ...
Effective theory for $b \rightarrow c \tau \bar{\nu}$

$$L_{\text{eff}} = -2\sqrt{2} G_F V_{cb} \left[(1 + g_{V_L}) (\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L) \\
+ g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_\mu \nu b_L)(\bar{\ell}_R \sigma^{\mu \nu} \nu_L) \right] + \text{h.c.}$$

NB. w/o ν_R
Effective theory for $b \rightarrow c\tau \bar{\nu}$

\[\mathcal{L}_{\text{eff}} = -2\sqrt{2} G_F V_{cb} \left[(1 + g_{V_L}) (\bar{c}_L \gamma_\mu b_L) (\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R) (\bar{\ell}_L \gamma^\mu \nu_L)
\right.
\left. + g_{S_R} (\bar{c}_L b_R) (\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L) (\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L) (\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \right] + \text{h.c.} \]

Few viable solutions to $R_D(*)$:

\[\chi^2 \]

$g_{V_L} \in (0.09, 0.13)$, but not only! g_{S_L} and g_T are also viable

[Angelescu, Becirevic, Faroughy, OS. 1808.08179]
More exp. information is needed to distinguish among them!
More **exp. information** is needed to distinguish among them!

i) **Many angular observables** (e.g., A_{fb}, polarization asymmetries)

First measurements:

- $P_\tau(D^*)_{\text{exp}} = -0.38 \pm 0.51^{+0.21}_{-0.16}$ [Belle '17]
- $F_L(D^*)_{\text{exp}} = 0.60 \pm 0.08 \pm 0.03$ [Belle '18]

[see talk by Adamczyk]

[Becirevic et al. '16]
More exp. information is needed to distinguish among them!

i) Many angular observables (e.g., A_{fb}, polarization asymmetries)

First measurements:

- $P_\tau(D^*)^{\text{exp}} = -0.38 \pm 0.51^{+0.21}_{-0.16}$ [Belle '17]
- $F_L(D^*)^{\text{exp}} = 0.60 \pm 0.08 \pm 0.03$ [Belle '18] see talk by Adamczyk

ii) Other LFUV ratios:

- $R_J/\psi, R_{D_s}, R_{D_s^*}, R_{\Lambda_c} \ldots$ see talks by Morris and Rotondo
More exp. information is needed to distinguish among them!

i) Many angular observables (e.g., A_{fb}, polarization asymmetries)

First measurements:

- $P_{\tau}(D^*)^{\text{exp}} = -0.38 \pm 0.51^{+0.21}_{-0.16}$ [Belle '17]
- $F_L(D^*)^{\text{exp}} = 0.60 \pm 0.08 \pm 0.03$ [Belle '18] see talk by Adamczyk

ii) Other LFUV ratios:

- $R_{J/\psi}$, R_{Ds}, R_{Ds^*}, R_{Λ_c}… see talks by Morris and Rotondo

iii) Leptonic observables (via RGE effects)

- $g_{VL} \Rightarrow$ Corrections to $Z \to \ell\ell$, $\tau \to \mu\nu\bar{\nu}$ [Feruglio et al. 2015]
- g_{SL} and $g_{T} \Rightarrow$ Enhanced contributions to $H \to \tau\tau$ and $(g - 2)_\tau$
 [Feruglio, Paradisi, OS. 1806.10155]
$R_{D(*)}^{\text{exp}} > R_{D(*)}^{\text{SM}}$ require new bosons at the TeV scale:

- Loop constraints: e.g. $\tau \rightarrow \mu \nu \bar{\nu}$, $Z \rightarrow \ell \ell$ [Feruglio et al., '16]
- LHC direct and indirect bounds [Greljo et al. '15, Faroughy et al., '16]

In Summary:

- Charge Higgs solutions are in tension with τ_{B_c} constraint [Alonso et al. '16]
- Minimal W' models: tension with high-p_T ditau constraints
 \Rightarrow Still viable in models with ν_R [Greljo et al. '18, Asadi et al. '18]
- Scalar and vector leptoquarks (LQ) are the best candidates so far.
$R_{D(*)}^{\text{exp}} > R_{D(*)}^{\text{SM}}$ require new bosons at the TeV scale:

Challenges for New Physics:

- Loop constraints: e.g. $\tau \rightarrow \mu \nu \bar{\nu}$, $Z \rightarrow \ell\ell$ [Feruglio et al., '16]
- LHC direct and indirect bounds [Greljo et al. '15, Faroughy et al., '16]
$\frac{R_{D(*)}^{\text{exp}}}{R_{D(*)}^{\text{SM}}} > 1$ require new bosons at the TeV scale:

Challenges for New Physics:

- Loop constraints: e.g. $\tau \rightarrow \mu \nu \bar{\nu}$, $Z \rightarrow \ell\ell$ [Feruglio et al., '16]
- LHC direct and indirect bounds [Greljo et al. '15, Faroughy et al., '16]

In Summary:

- Charge Higgs solutions are in tension with τ_{BC} constraint [Alonso et al. '16]
- Minimal W' models: tension with high-p_T ditau constraints
 \Rightarrow Still viable in models with ν_R [Greljo et al. '18, Asadi et al. '18]
- Scalar and vector leptoquarks (LQ) are the best candidates so far.
Leptoquarks for $R_D(\ast)$

<table>
<thead>
<tr>
<th>Model</th>
<th>$g_{\text{eff}}^{b\rightarrow c\tau\bar{\nu}} (\mu = m_\Delta)$</th>
<th>$R_D(\ast)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_1 = (\bar{3}, 1, 1/3)$</td>
<td>$g_{V_L}, g_{S_L} = -4 g_T$</td>
<td>✓</td>
</tr>
<tr>
<td>$R_2 = (3, 2, 7/6)$</td>
<td>$g_{S_L} = 4 g_T$</td>
<td>✓</td>
</tr>
<tr>
<td>$S_3 = (\bar{3}, 3, 1/3)$</td>
<td>g_{V_L}</td>
<td>×</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$U_1 = (3, 1, 2/3)$</td>
<td>g_{V_L}, g_{S_R}</td>
<td>✓</td>
</tr>
<tr>
<td>$U_3 = (3, 3, 2/3)$</td>
<td>g_{V_L}</td>
<td>×</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Viable models for $R_D(\ast)$: [Angelescu, Becirevic, Faroughy, OS. 1808.08179]

- $U_1 (g_{V_L}), S_1 (g_{V_L} \text{ and } g_{S_L} = -4 g_T), \text{ and } R_2 (g_{S_L} = 4 g_T \in \mathbb{C})$
- Some models are excluded by other flavor constraints: $B \rightarrow K \nu\bar{\nu}, \Delta m_{B_s} \ldots$
- Possibility to distinguish them by using other $b \rightarrow c\ell\nu$ observables!

cf. e.g. [Becirevic et al. '16, Alonso et al. '16]
Leptoquarks for $R_D(\ast)$ and $R_K(\ast)$

[Angelescu, Becirevic, Faroughy, OS. 1808.08179]

see also [Greljo et al. '17]

<table>
<thead>
<tr>
<th>Model</th>
<th>$R_D(\ast)$</th>
<th>$R_K(\ast)$</th>
<th>$R_D(\ast) & R_K(\ast)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_1 = (\bar{3}, 1, 1/3)$</td>
<td>✓</td>
<td>✓*</td>
<td>✓*</td>
</tr>
<tr>
<td>$R_2 = (3, 2, 7/6)$</td>
<td>✓</td>
<td>✓*</td>
<td>✓</td>
</tr>
<tr>
<td>$S_3 = (\bar{3}, 3, 1/3)$</td>
<td>✓*</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$U_1 = (3, 1, 2/3)$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$U_3 = (3, 3, 2/3)$</td>
<td>✓*</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Building a model that can **solve all anomalies** is a very challenging task!
- Only U_1 can do it, but **UV completion needed** (more parameters).
 \[\Rightarrow\] Possible in Pati-Salam models: [Di Luzio et al. '17, Bordone et al. '17…]
- Two scalar LQs can also do the job (no extra parameters):
 \[\Rightarrow\] S_1 and S_3 [Crivellin et al. '17, Marzocca. '18], R_2 and S_3 [Becirevic et al. '18].
A viable GUT-inspired model for $R_D(*)$ and $R_K(*)$

[Becirevic, Dorsner, Fajfer, Faroughy, Kosnik, OS. 1806.05689]
Two scalar leptoquarks

• Prefer scalar to vector LQ to remain minimalistic in terms of new parameters and to be able to compute loops (VLQ – need UV completion)

• One scalar LQ alone cannot accommodate all B-physics anomalies without getting into trouble with other flavor observables.

[Angelescu, Becirevic, Faroughy and OS. 1808.08179]
Two scalar leptoquarks

Becirevic, Dorsner, Fajfer, Faroughy, Kosnik, OS. 1806.05689

- Prefer scalar to vector LQ to remain minimalistic in terms of new parameters and to be able to compute loops (VLQ – need UV completion)

- One scalar LQ alone cannot accommodate all B-physics anomalies without getting into trouble with other flavor observables.

[Angelescu, Becirevic, Faroughy and OS. 1808.08179]

- In flavor basis

$$\mathcal{L} \supset y_R^{ij} \bar{Q}_i \ell_R^j R_2 + y_L^{ij} \bar{u}_{Ri} L_j \tilde{R}_2^+ + y^{ij} \bar{Q}_i^C i \tau_2 (\tau_k S_3^k) L_j + \text{h.c.}$$

$$R_2 = (3, 2, 7/6), \quad S_3 = (\bar{3}, 3, 1/3)$$

- In mass-eigenstates basis

$$\mathcal{L} \supset (V_{CKM} y_R E_R^\dagger)^{ij} \bar{u}_{Li}^l \ell_{Rj}^l R_2^{(5/3)} + (y_R E_R^\dagger)^{ij} \bar{d}_{Li}^l \ell_{Rj}^l R_2^{(2/3)}$$

$$+ (U_R y_L U_{PMNS})^{ij} \bar{u}_{Ri}^l \nu_{Lj}^l R_2^{(2/3)} - (U_R y_L)^{ij} \bar{u}_{Ri}^l \ell_{Lj}^l R_2^{(5/3)}$$

$$- (y U_{PMNS})^{ij} \bar{d}_{Li}^l \nu_{Lj}^l S_3^{(1/3)} - \sqrt{2} y^{ij} \bar{d}_{Li}^l \ell_{Lj}^l S_3^{(4/3)}$$

$$+ \sqrt{2} (V_{CKM}^* y U_{PMNS})^{ij} \bar{u}_{Li}^l \nu_{Lj}^l S_3^{(-2/3)} - (V_{CKM}^* y)^{ij} \bar{u}_{Li}^l \ell_{Lj}^l S_3^{(1/3)} + \text{h.c.}$$
\(R_2 = (3, 2, 7/6), \quad S_3 = (\bar{3}, 3, 1/3) \)

\[
\mathcal{L} \supset \left(V_{\text{CKM}} y_R E_R^\dagger \right)^{ij} \bar{u}_{Li}^\prime \ell_{Rj}^\prime R_2^{(5/3)} + \left(y_R E_R^\dagger \right)^{ij} \bar{d}_{Li}^\prime \ell_{Rj}^\prime R_2^{(2/3)}
\]
\[
+ (U_R y_L U_{\text{PMNS}})^{ij} \bar{u}_{Ri}^\prime \nu_{Lj}^\prime R_2^{(2/3)} - (U_R y_L)^{ij} \bar{u}_{Ri}^\prime \ell_{Lj} R_2^{(5/3)}
\]
\[
- (y U_{\text{PMNS}})^{ij} \bar{d}_{Li}^C \nu_{Lj}^\prime S_3^{(1/3)} - \sqrt{2} y^{ij} \bar{d}_{Li}^C \ell_{Lj} S_3^{(4/3)}
\]
\[
+ \sqrt{2} (V_{\text{CKM}}^* y U_{\text{PMNS}})^{ij} \bar{u}_{Li}^C \nu_{Lj} S_3^{(-2/3)} - (V_{\text{CKM}}^* y)^{ij} \bar{u}_{Li}^C \ell_{Lj} S_3^{(1/3)} + \text{h.c.}
\]

and assume

\[
y_R = y_R^T \quad y = -y_L
\]

\[
y_R E_R^\dagger = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_{R}^{b\tau} \end{pmatrix}, \quad U_R y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_{L}^{c\mu} & y_{L}^{c\tau} \\ 0 & 0 & 0 \end{pmatrix}, \quad U_R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}
\]

Parameters: \(m_{R_2}, m_{S_3}, y_{R}^{b\tau}, y_{L}^{c\mu}, y_{L}^{c\tau} \) and \(\theta \)
Effective Lagrangian at \(\mu \approx m_{LQ} \):

- \(b \rightarrow c\tau\bar{\nu} \):
 \[\propto \frac{y_L^{c\tau} y_R^{b\tau}}{m_{R_2}^2} \left[(\bar{c}_R b_L)(\bar{\tau}_R \nu_L) + \frac{1}{4} (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\tau}_R \sigma^{\mu\nu} \nu_L) \right] + \ldots \]

- \(b \rightarrow s\mu\mu \):
 \[\propto \sin 2\theta \frac{|y_L^{c\mu}|^2}{m_{S_3}^2} (\bar{s}_L \gamma^\mu b_L)(\bar{\mu}_L \gamma_{\mu\mu} \mu_L) \]

- \(\Delta m_{B_s} \):
 \[\propto \sin^2 2\theta \frac{\left[(y_L^{c\mu})^2 + (y_L^{c\tau})^2 \right]^2}{m_{S_3}^2} (\bar{s}_L \gamma^\mu b_L)^2 \]

⇒ Suppression mechanism of \(b \rightarrow s\mu\mu \) wrt \(b \rightarrow c\tau\bar{\nu} \) for small \(\sin 2\theta \).

⇒ Phenomenology suggests \(\theta \approx \pi/2 \) and \(y_R^{b\tau} \) complex
Other notable constraints...

- $R_K^{\text{exp}} = 2.488(10) \times 10^{-5}$ [PDG], $R_K^{\text{SM}} = 2.477(1) \times 10^{-5}$ [Cirigliano 2007]

 $$R_K^{\text{exp}} = \frac{\Gamma(K^- \rightarrow e^- \bar{\nu})}{\Gamma(K^- \rightarrow \mu^- \bar{\nu})}$$

- $R_D^{\text{exp}} = 0.995(45)$ [Belle 2017], $R_D^{\ast \text{exp}} = 1.04(5)$ [Belle 2016]

 $$R_D^{\ast \text{exp}} = \frac{\Gamma(B \rightarrow D^{(*)} \mu \bar{\nu})}{\Gamma(B \rightarrow D^{(*)} e \bar{\nu})}$$

- $\mathcal{B}(\tau \rightarrow \mu \phi) < 8.4 \times 10^{-8}$ [PDG]

- Loops: $\Delta m_{B_s}^{\text{exp}} = 17.7(2) \text{ ps}^{-1}$ [PDG], $\Delta m_{B_s}^{\text{SM}} = (19.0 \pm 2.4) \text{ ps}^{-1}$ [FLAG 2016]

- Loops: $Z \rightarrow \mu \mu, Z \rightarrow \tau \tau, Z \rightarrow \nu \nu$ [PDG]

 $$\frac{g_\tau^V}{g_e^V} = 0.959(29), \quad \frac{g_\tau^A}{g_e^A} = 1.0019(15), \quad \frac{g_\mu^V}{g_e^V} = 0.961(61), \quad \frac{g_\mu^A}{g_e^A} = 1.0001(13)$$

 $$N_\nu^{\text{exp}} = 2.9840(82)$$
Results and predictions:

For $\Re[g_{SL}] = 0$ we get $\Im[g_{SL}] = 0.59^{+0.13(+0.20)}_{-0.14(-0.29)}$

$\Re[g_{SL}] = 0.8$ TeV, $m_{S_3} = 2.0$ TeV, $|\theta| \approx \pi/2$

$g_{SL} = 4 g_T$

NB.
Direct searches (projections to 100 fb$^{-1}$)

$m_{R_2} = 0.8$ TeV, $m_{S_3} = 2.0$ TeV, $|\theta| \approx \pi/2$
Several **distinctive predictions** wrt the SM:

- **Enhancement** of $\mathcal{B}(B \to K \nu \bar{\nu})$ by $\gtrsim 50\%$ wrt to the SM [Belle-II]

- **Upper and lower bounds** on the LFV rates: $\mathcal{B}(B \to K \mu \tau) \gtrsim 2 \times 10^{-7}$

 NB. $\mathcal{B}(B \to K^* \mu \tau)/\mathcal{B}(B \to K \mu \tau) \approx 1.8$, $\mathcal{B}(B \to K \mu \tau)/\mathcal{B}(B_s \to \mu \tau) \approx 1.25$ [Becirevic, OS, Zukanovich. 1602.00881]
Intermezzo

- $\mathcal{B}(B \rightarrow K^{(*)}\mu\tau)$ can confirm/refute other solutions of the B-anomalies too!
- For the U_1 model: $pp \rightarrow \ell\ell$ constraints set a model independent lower bound $\mathcal{B}(B \rightarrow K\mu\tau) \gtrsim \text{few} \times 10^{-7}$ (to be improved with more data!)

Even larger predictions found in a UV-complete model! [Bordone et al. '18].

- BaBar: $\mathcal{B}(B \rightarrow K\mu\tau) < 4.8 \times 10^{-5}$ (90\%CL). Can LHCb do better?
Simple and viable $SU(5)$ GUT

- Choice of Yukawas was biased by $SU(5)$ GUT aspirations

- Scalars: $R_2 \in 45, 50$, $S_3 \in 45$. SM matter fields in 5_i and 10_i

- Operators $10_i 10_j 45$ forbidden to prevent proton decay [Dorsner et al 2017]

- Available operators

\[
10_i 5_j 45 : \quad y_2^{RL} \overline{u}_i^R R_2^a \varepsilon^{ab} L_j^b, \quad y_3^{LL} \overline{Q}_i^j \varepsilon^{ab} (\tau^k S_3^k)^{bc} L_L^c.
\]

\[
10_i 10_j 50 : \quad y_2^{LR} \overline{e}_i^R R_2^a Q_L^i,^a.
\]

- While breaking $SU(5)$ down to SM the two R_2's mix – one can be light and the other (very) heavy. Thus our initial Lagrangian!

- The **Yukawas** determined from flavor physics observables at low energy remain perturbative ($\lesssim \sqrt{4\pi}$) up to the GUT scale, using one-loop running [Wise et al 2014, c.f. back-up]
Summary and perspectives

○ Building a viable model which accommodates the B-physics anomalies and remains consistent with all other measured flavor observables is difficult. **Data-driven model building!**

○ We propose a minimalistic model with two light scalar leptoquarks. Model passes all constraints and satisfactorily accommodates B-physics anomalies. **Model is of $V-A$ structure for \(b \rightarrow s \ell\ell \), but NOT for \(b \rightarrow c \ell\bar{\nu} \)**

○ Our model is GUT inspired and allows for unification with only two light LQs. **Yukawas remain perturbative after 1-loop running to \(\Lambda_{\text{GUT}} \)**

○ Our model offers several predictions to be tested at Belle-II and LHC(b). **e.g.,** \(2 \times 10^{-7} \lesssim \mathcal{B}(B \rightarrow K \mu\tau) \lesssim 8 \times 10^{-7} \)**

○ Results of the direct LHC searches might soon become relevant too. **Opportunities for direct searches at LHC!**
Thank you!

This project has received support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 674896.
Back-up
- **3.9σ combined** deviation from the SM [theory error under control?]
- Discrepancy driven by oldest exp. results (BaBar and LHCb).
- Needs **confirmation** from Belle-II (and LHCb run-2)!
SM predictions for $R_{D(*)}$

<table>
<thead>
<tr>
<th>Ref.</th>
<th>R_D</th>
<th>R_{D*}</th>
<th>dev. (R_D)</th>
<th>dev. (R_{D*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. [HFLAV]</td>
<td>$0.41(5)$</td>
<td>$0.304(15)$</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>LQCD [FLAG]</td>
<td>$0.300(8)$</td>
<td>–</td>
<td>2.3σ</td>
<td>–</td>
</tr>
<tr>
<td>Fajfer et al. ’12</td>
<td>$0.296(16)$</td>
<td>$0.252(3)$</td>
<td>2.3σ</td>
<td>3.4σ</td>
</tr>
<tr>
<td>Bigi et al. ’16</td>
<td>$0.299(3)$</td>
<td>–</td>
<td>2.3σ</td>
<td>–</td>
</tr>
<tr>
<td>Bigi et al. ’17</td>
<td>–</td>
<td>$0.260(8)$</td>
<td>–</td>
<td>2.6σ</td>
</tr>
<tr>
<td>Bernlochner et al. ’17</td>
<td>$0.298(3)$</td>
<td>$0.257(3)$</td>
<td>2.4σ</td>
<td>3.1σ</td>
</tr>
</tbody>
</table>

- LQCD determination of $A_0(q^2)$ would be very helpful.
- Soft photon corrections: first steps in [de Boer et al. ’18] Disentangling structure dependent terms, important!? – More work needed.
\[
\frac{R_{D(*)}}{R_{D(*)}^{SM}} = 1 + a_S^{D(*)} |g_S^\tau|^2 + a_P^{D(*)} |g_P^\tau|^2 + a_T^{D(*)} |g_T^\tau|^2 \\
+ a_{SV_L}^{D(*)} \text{Re}[g_S^\tau] + a_{PV_L}^{D(*)} \text{Re}[g_P^\tau] + a_{TV_L}^{D(*)} \text{Re}[g_T^\tau],
\]

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>(a_S^M)</th>
<th>(a_{SV_L}^M)</th>
<th>(a_P^M)</th>
<th>(a_{PV_L}^M)</th>
<th>(a_T^M)</th>
<th>(a_{TV_L}^M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B \to D)</td>
<td>1.08(1)</td>
<td>1.54(2)</td>
<td>0</td>
<td>0</td>
<td>0.83(5)</td>
<td>1.09(3)</td>
</tr>
<tr>
<td>(B \to D^*)</td>
<td>0</td>
<td>0</td>
<td>0.0473(5)</td>
<td>0.14(2)</td>
<td>17.3(16)</td>
<td>-5.1(4)</td>
</tr>
</tbody>
</table>
Results – a few predictions

✓ OK with $B(B_c \to \tau \nu) < 30\%$ [Alonso et al. ’17], and $\lesssim 10\%$ [Akeroyd et al. ’17]

✓ $R_{J/\psi} > R_{J/\psi}^{SM}$ increases \leftarrow new FF estimate QCDSR + latt

[Becirevic, Leljak,Melic, OS. ’18]
\[16\pi^2 \frac{d \log y_{R}^{b\tau}}{d \log \mu} = |y_{L}^{c\mu}|^2 + |y_{L}^{c\tau}|^2 + \frac{9}{2} |y_{R}^{b\tau}|^2 + \frac{y_{i}^2}{2} + \ldots \]

\(m_{S_3} = 2 \text{ TeV}, m_{R_2} = 0.8 \text{ TeV} \)