

Mixing and indirect CPV in multibody charm decays at LHCb Eva Gersabeck on behalf of the LHCb collaboration CKM 2018, 17-21 September 2018, Heidelberg THE **ROYAL**

Mixing formalism

Assuming *CPT* symmetry, the physical eigenstates can be expressed as a superposition of the flavour eigenstates

with complex coefficients p,q satisfying

$$|p|^2 + |q|^2 = 1$$

The transition probability

$$P(M^{0} \to \overline{M}^{0}, t) = \frac{1}{2} \left| \frac{q}{p} \right|^{2} e^{-\Gamma t} (\cosh(y\Gamma t) - \cos(x\Gamma t))$$

dimensionless

$$y \equiv \Delta \Gamma/(2\Gamma)$$

$$x \equiv \Delta m/\Gamma$$

$$\Delta\Gamma \equiv \Gamma_2 - \Gamma_1$$

 $\Delta m \equiv m_2 - m_1$

Width difference

Mass difference

→ Oscillation

→ Lifetime difference

D₀-D₀oscillations in K+ππ+π

Right sign amplitude

Wrong sign amplitude

$$R(t) \approx (r_D^{K3\pi})^2 - r_D^{K3\pi} R_D^{K3\pi} y_{K3\pi}' \frac{t}{\tau} + \frac{x^2 + y^2}{4} \left(\frac{t}{\tau}\right)^2$$

 $r_D^{K3\pi}$ phase space averaged ratio of DCS/CF amplitudes

 $R_D^{K3\pi} e^{-i\delta_D^{K3\pi}} \equiv \langle \cos \delta \rangle + i \langle \sin \delta \rangle$ coherence factor

$$y'_{K3\pi} \equiv y \cos \delta_D^{K3\pi} - x \sin \delta_D^{K3\pi}$$
 averaged strong phase difference

Dataset

- Using 3 fb⁻¹ of luminosity collected in Run 1 (prompt charm)
 - Experimentally challenging
 - Lower reconstruction efficiency
 - Five-dimensional phase space to parameterise the efficiency
- 11×10^6 RS and 42×10^3 WS signal candidates

The mixing fit

- The WS/RS ratio measured in 10 decay time bins
- Systematic uncertainties included
- Detection asymmetries cancel

No-mixing hypothesis rejected at 8.2 σ

-	Fit Type	Parameter	Fit result	Correlation coefficient			
	χ^2/ndf (p-value)			$r_D^{K3\pi}$	$R_D^{K3\pi} \cdot y'_{K3\pi}$	$\frac{1}{4}(x^2+y^2)$	
-	Unconstrained	$r_D^{K3\pi}$	$(5.67 \pm 0.12) \times 10^{-2}$	1	0.91	0.80	
I E'	$7.8/7 \ (0.35)$	$R_D^{K3\pi} \cdot y_{K3\pi}'$	$(0.3 \pm 1.8) \times 10^{-3}$		1	0.94	
		$\frac{1}{4}(x^2+y^2)$	$(4.8 \pm 1.8) \times 10^{-5}$			1	

Strong phase and coherence factor

- Constrained fit: x and y constrained to the WA values
- The constrained fit allows to determine a line of solutions in the $(\delta_D^{K3\pi}, R_D^{K3\pi})$ plane
- Uncertainties on $r_D^{K3\pi}$ and $R_D^{K3\pi}$ y'K3 π are greatly reduced
- Useful input to the CKM angle γ (see my talk on Monday about γ inputs)
- A combination with CLEO-c data significantly improves the precision Phys Lett B 757 (2016) 520–527

Phys. Rev. Lett. 116, 241801 (2016)

			r_D^{non}	$R_D^{non} \cdot y_{K3\pi}$	x	y
Mixing-constrained	$r_D^{K3\pi}$	$(5.50 \pm 0.07) \times 10^{-2}$	1	0.83	0.17	0.10
$11.2/8 \ (0.19)$	$R_D^{K3\pi} \cdot y'_{K3\pi}$	$(-3.0 \pm 0.7) \times 10^{-3}$		1	0.34	0.20
	x	$(4.1 \pm 1.7) \times 10^{-3}$			1	-0.40
	y	$(6.7 \pm 0.8) \times 10^{-3}$				1

Strong phase and coherence factor

Phys. Rev. Lett. 116, 241801 (2016)

significantly improves the

Phys.Lett. B757 (2016) 520-527

PRL 116 (2016) no.24, 241801

Phys.Lett. B757 (2016) 520-527

Status of mixing and indirect CPV in charm

- Mixing by now well established (D⁰→Kπ, D⁰→Kππ decays) by excluding the no-mixing hypothesis
- Mixing parameters: difficult to measure due to slow oscillation of D^o

$$x = (0.32\pm0.14)\%$$

 $y = (0.69^{+0.06}_{-0.07})\%$

HFLAV averages*
CPV allowed

*Eur. Phys. J. C77 (2017) 895 and online update at http://www.slac.stanford.edu/xorg/hflav

- y > 0: CP-even eigenstate is shorter lived than CP-odd
- x > 0?: mass splitting not yet clear
- CP violation in charm: expected to be small in the SM
 - Powerful constraints without hints for CPV: precision of A_Γ and ΔA_{CP} at sub per mille level

$$\lambda_f \equiv rac{qar{A}_{ar{f}}}{pA_f} = -\eta_{C\!P} \left|rac{q}{p}
ight| \left|rac{ar{A}_f}{A_f}
ight| e^{i\phi}$$

 $|q/p| \neq 1$ CPV in mixing

or φ≠0 CPV in the interference

Mixing in the golden mode D⁰→K_Shh

JHEP 04 (2016) 033

- K_SK-K+ and K_Sπ-π+
 - Complex assembly of different resonances including flavour and CP eigenstates
 - Different superposition of amplitudes at each point in phase-space
 - Strong phase δ_D varies continuously across phasespace
 - Multiple interfering amplitudes enhance sensitivity to mixing
 - Access to charm mixing parameters x_D and y_D

Measure indirect CP violation via parameters |q/p| and $\phi = arg(p, q)$

Techniques

The University of Manchester

- Model-independent
 - Study decay-time evolution in bins of similar strong phase difference
 - Systematics from external input (CLEO-c, BESIII)
- Model-dependent

SOCIETY

- Measure effective lifetime of individual resonances
- Difficulty at LHCb: Efficiencies varying as function of position in phase space and decay time
- The choice of the model adds irreducible systematics
- New (model independent, unbinned): Fourier analysis of the complex phase difference between D⁰ and D̄⁰ decay amplitudes (initially proposed and the sensitivity was tested for the CKM angle γ)
 Eur. Phys. J. C (2018) 78: 121

Babar 2008 optimal binning: bins with equal δ_D

Prompt vs secondary decays

- prompt charm: (from D*±→D⁰π± decays) high yield, access only to high D⁰ decay times
- secondary charm: (from $B \to D^0 \mu^{\mp} vX$ decays) high trigger efficiency, access to all D^0 decay times
- doubly-tagged secondary events: (B→D*±(→D⁰π±)μ[∓]ν decays) high trigger efficiency, clean signature, access to all D⁰ decay times, low yield

Convolution of (decay time x time resolution) and acceptance

Formalism of the unbinned technique

JHEP 04 (2016) 033

- Phase-space dependent amplitudes for
 - $D^0 o K_S^0 \pi^+ \pi^-$ decays: $\mathcal A$
 - ullet $\overline{D}^0 o K_S^0 \pi^- \pi^+$ decays: ${\cal B}$
- Fraction of D^0 events in bin i $\rightarrow T_i = \int\limits_i^{\infty} |\mathcal{A}|^2 dm_+^2 dm_-^2$
- Interference terms between amplitudes $\mathcal A$ and $\mathcal B$

$$egin{aligned} c_i &\equiv rac{1}{\sqrt{T_i T_i}} \int _i |\mathcal{A}^*| |\mathcal{B}| \cos(\Delta \delta_D) dm_+^2 dm_-^2 \ strong \ phase \ difference \ s_i &\equiv rac{1}{\sqrt{T_i T_i}} \int _i |\mathcal{A}^*| |\mathcal{B}| \sin(\Delta \delta_D) dm_+^2 dm_-^2 \end{aligned}$$

Method

JHEP 04 (2016) 033

Time-dependent decay rates expressed as

$$\mathcal{P}(D^{0}) \approx e^{\Gamma t} \left(T_{-i} - \Gamma t \sqrt{T_{i} T_{-i}} \{ y c_{i} + x s_{i} \} \right)$$

$$\mathcal{P}(\overline{D}^{0}) \approx e^{\Gamma t} \left(T_{-i} - \Gamma t \sqrt{T_{i} T_{-i}} \{ y c_{i} - x s_{i} \} \right)$$

assuming CP symmetry

- $ightharpoonup T_i$, c_i and s_i provided by CLEO
 - → allows model-independent measurement of mixing parameters x and y

Model independent measurement LHCb

- Using prompt charm, collected at 7 TeV in 2011
- Separate D⁰ signal and combinatorial background by fit to D⁰ mass m_D
- Difference in χ² between PV reconstructed with and without D⁰ to discriminate prompt against secondary decays (In χ²_{IP})

The results (1fb⁻¹)

 Two-dimensional fits to D⁰ decay time and In χ²_{IP} samples in each Dalitz bin to extract mixing parameters

$$x = (-0.86 \pm 0.53 \pm 0.17)\%$$

 $y = (0.03 \pm 0.46 \pm 0.13)\%$

- Dominant sources of systematic uncertainties from resolution, efficiency variation over phase-space, uncertainty on T_i (CLEO-c input)
- The systematics can be reduced by using more precise input measurements - BESIII

BESIII experiment, Beijing

The University of Manchester

Threshold production of charm with $e^+e^- \rightarrow \psi$ (3770) The ψ (3770) decays to *coherent* pair of D mesons

$$\psi(3770) \to \frac{1}{\sqrt{2}} \left[D^{0}(+z)\overline{D}^{0}(-z) - \overline{D}^{0}(+z)D^{0}(-z) \right]$$

$$\psi(3770) \to \frac{1}{\sqrt{2}} \left[D_{CP-}(+z)D_{CP+}(-z) - D_{CP+}(+z)D_{CP-}(-z) \right]$$

CP eigen-states: $D_{CP\pm} = [D^0 \pm \overline{D}^0]/\sqrt{2}$

- Unique access to relative strong phases, CP content & ability to extract model-independent results with charm at threshold
 - Use CP tags: reconstruct one meson as a CP eigenstate
 - Project the other meson as a superposition of D⁰ and D⁰
 - Do and Do amplitudes to a common final state interfere; Interference can change sign depending on the CP tag
 - More about the synergy of LHCb and BESIII physics in LHCb-PUB-2016-025

4x Cleo-c statistics

Summary

- Mixing studies with D⁰→K3π bring out important information about the mixing parameters and the coherence factor (useful input for the CKM angle γ)
- First model-independent measurement of x and y with LHCb 1 fb⁻¹
 @7TeV data sample D⁰→K_Shh as a proof of principle
 - statistically dominated
 - systematics can be reduced by using more precise input information from BESIII (BESIII results on c_i and s_i are preliminary)
- LHCb has several ongoing measurements of the charm mixing parameters, with Run 2 data (factor 5 more data)
 - Run 2: dedicated TURBO triggers
- ROYAL SOCIETY
- expecting higher yields therefore improved precision

The University of Manchester

BACKUP

Types of CP violation

The symmetry under CP transformation can be violated in different ways: Present if λ_f is not equal to 1

$$\lambda_f \equiv rac{qar{A}_{ar{f}}}{pA_f} = -\eta_{CP} \left|rac{q}{p}
ight| \left|rac{ar{A}_f}{A_f}
ight| e^{i\phi}$$

$$|\bar{A}_{\bar{f}}/A_f| \neq 1$$

direct CPV
depends on the
decay mode

$$|q/p| \neq 1$$

CPV in mixing

The transition probability of particles to anti-particles compared to the reverse process differs.

CPV in the interference

 ϕ , the CP-violating relative phase between q/p and $\overline{A}_{\overline{f}}/A_{f,is}$ non-zero

The indirect CP violation is independent of the decay mode. It involves neutral particles

Charm

 Charm is unique: only bound up-type quark system where mixing and CP violation can occur

No CP violation at first order: imaginary part of V_{cd} very small

- Making precise SM predictions in the D-meson sector is difficult
 - Perturbative QCD valid at energies >> I GeV
 - Chiral perturbation theory valid between 0.1 GeV and 1 GeV

Prompt vs secondary decays

- Reconstructed prompt D⁰ decays ≈ 3x muon -tagged D⁰ decays
- More efficient triggering for secondary decays
- Small IP parameter for prompt decays; larger for muon-tagged decays
- Smaller flight distance for prompt decays; larger for the muontagged decays
- Different decay-time acceptances

Convolution of (decay time x time resolution) and acceptance

Quark diagrams for $D^0 \rightarrow K_S \pi^+ \pi^-$

- External W-emission
 - Cabibbo favoured c→s<u>u</u>d

doubly Cabibbo suppressed c→dus

• Internal W-emission (colour suppressed)

W-exchange (colour suppressed)

analysis strategy

Extended ML fit to m_D (signal and combinatorial background)

ML fit to $(t_D, \ln \chi^2_{IP})$

(background shapes from sidebands)

Extended ML fits to (m_D, δ m)

(per bin for D^{*+} and D^{*-} separately)

Simultaneous ML fits to $(t_D, \ln \chi^2_{IP})$ (background shapes from sidebands)

n(sig) and n(comb)

Shape of $\ln \chi^2$ _{IP} for prompt and secondary

n(sig) and n(bkg) per bin

X, Y

Systematic uncertainties, 1fb⁻¹ result

JHEP 04 (2016) 033

Source	$x \left(\times 10^{-2} \right)$	$y(\times 10^{-2})$
Fit bias	0.021	0.020
Decay time resolution	0.065	0.039
Turning point (TP) resolution	0.020	0.022
Invariant mass resolution	0.073	0.028
Prompt/secondary TP distributions	0.051	0.023
Efficiency over phase space	0.057	0.071
Tracking efficiency parameterisation	0.015	0.025
Kinematic boundary	0.012	0.006
Combinatorial background	0.061	0.052
Treatment of secondary D decays	0.046	0.025
Uncertainty from T_i	0.079	0.056
Uncertainties from $(m_D, \Delta m)$ fits	0.000	0.000
Uncertainties from lifetime fit	0.020	0.043
D^0 background	0.001	0.006
Variation of signal components across the phase space	0.013	0.017
Total systematic uncertainty	0.171	0.134
Statistical uncertainty	0.527	0.463

Related measurements

$D^0 \rightarrow \pi^0 \pi^+ \pi^- BaBar$

PhysRevD 93 (2016) 112014

• Time-dependent Dalitz plot analysis: unbinned logL fit to $(t, s(\pi^-\pi^0), s(\pi^+\pi^0))$

 $x = (1.5 \pm 1.2 \pm 0.6)\%$

 $y = (0.2\pm0.9\pm0.5)\%$

Preliminary K_Sπ⁺π⁻ Results

We can calculate c_i and s_i from double tags of $D^0 \rightarrow K_S \pi^+ \pi^- \text{ vs } D^0 \rightarrow (K_{S,L} \pi^+ \pi^- \text{ or CP eigenstates})$

Only c_i , s_i from $K_s \pi^+ \pi^-$ is used to calculate γ .

However adding in $D^0 \rightarrow K_L \pi^+ \pi^-$ we can calculate c'_i , s'_i and use how they relate to c_i , s_i to further constrain our results in a Global fit.

Preliminary K_Sπ⁺π⁻ Results

Result of splitting the Dalitz phase space into 8 equally spaced phase bins based on the BaBar 2008 Model.

Starting with the equally spaced bins, bins are adjusted to optimize the sensitivity to γ . A secondary adjustment smooths binned areas smaller than detector resolution.

Similar to the "optimal binning" except the expected background is taken into account before optimizing for γ sensitivity.

Source: CLEO Collaboration, Physical Review D, vol 82., pp. 112006 - 112035

Slide from Dan Ambrose, APS 2014

Preliminary K_Sπ⁺π⁻ Results

Improved errors w.r.t. CLEO-c

Slide from Dan Ambrose, APS 2014

Sep 2016 Briere / CHARM 2016 35

Flavour tagging at LHCb

 $h = \pi^{\pm} \text{ or } K^{\pm}$

Prompt charm:

D points to primary vertex

Daughters of D don't in general

The flavour of the initial state (D^0, \overline{D}^0) is tagged by the charge of the soft pion or the muon

Secondary charm:

D doesn't point to PV

If
$$B \rightarrow D^{*\pm}(\rightarrow D^0\pi^{\pm})\mu^{\mp}v$$
: doubly-tagged decays

A new idea on the horizon

- Anton Poluektov arXiv:1712.08326v1
- A model-independent approach to perform a measurement of CKM angle γ with GGSZ method is proposed that has superior statistical sensitivity than the well-established method involving binning of the D⁰→K_Shh decay phase space.
- The method uses a construction inspired by a D⁰ amplitude model, but provides an unbiased measurement even if the wrong model is used.

Mixing and indirect CPV

D⁰→K_Sπ⁺π⁻ preliminary since APS 2014

- Quantum correlations in ψ(3370) to tag
 D flavour and CP
- Obtain $c_i = cos(\Delta \delta_{D,i})$ and $s_i = sin(\Delta \delta_{D,i})$
- 4x Cleo-c statistics
- Important input for model independent measurements of charm mixing parameters
- Fundamental for the GGSZ method for γ
 (B+→D⁰K decays with D⁰→K_Shh decays)

 uncertainty due to c_i, s_i can be halved
 with the existing statistics
- More about the synergy of LHCb and BESIII physics in LHCb-PUB-2016-025

Model independent technique

- Split the phase space in 16 bins with similar strong phase differences
- Bins symmetric around m²(π-π+)
 axis
- Binned measurements provided by Cleo-c for various amplitude models

Babar 2008 optimal binning: bins with equal δ_D

