

Measurement of direct CPV in charm decays at LHCb

Federico Betti on behalf of the LHCb collaboration

10th International Workshop on the CKM Unitarity Triangle Heidelberg - 18 September 2018

Sezione di Bologna

Outline

Conclusions

• ΔA_{CP} status

• A_{CP} in $D^0 \rightarrow K_s^0 K_s^0$

Introduction on CP in charm

• Strategy to measure A_{CP}

 Will not cover CPV in charmed baryons → see talk by Carla Gobel on Thursday morning

CP Violation in Charm

- Only way to probe CP violation in up-type quark decays
- Complementary to K and B mesons
- Difficult to calculate SM predictions, but small CP asymmetry is expected (~10⁻³) → hints of NP if higher values are observed
- CPV in charm sector not observed yet

Charm at LHCb

• Large $c\bar{c}$ production cross section $\sigma(pp \rightarrow c\bar{c}X)_{\sqrt{s}=13 \text{ TeV}} = (2369 \pm 3 \pm 152 \pm 118) \,\mu b$

• About ~790M $D^0 \rightarrow K^-\pi^+$ collected by LHCb between 2011 and 2016

• LHCb detector:

 \circ Excellent IP resolution (~13 μm on the transverse plane)

 \circ Very good **momentum** resolution $(\delta p/p \sim 0.5\% - 0.8\%)$

$\sigma(pp \to D^0 X) = 2072 \pm 2 \pm 124 \,\mu b$ $\sigma(pp \to D^+X) = 834 \pm 2 \pm 78\,\mu b$ $\sigma(pp \to D_s^+ X) = 353 \pm 9 \pm 76 \,\mu b$ $\sigma(pp \to D^{*+}X) = 784 \pm 4 \pm 87 \,\mu b$

JHEP 05 (2017) 074

Direct CP Asymmetry

$$A_{CP}(f) = \frac{\Gamma(M \to f) - \Gamma(\overline{M} \to \overline{f})}{\Gamma(M \to f) + \Gamma(\overline{M} \to \overline{f})} = \frac{1 - |\overline{A}_{\overline{f}}/A_f|^2}{1 + |\overline{A}_{\overline{f}}/A_f|^2}$$

• In *D*⁰ **singly-Cabibbo-suppressed** decay into CP eigenstates *f*:

$$A_{CP}(f) = A_{CP}^{dir}(f) + A_{CP}^{mix} + A_{CP}^{int} = A_{CP}^{dir}(f) + A_{CP}^{ind}$$

• Effect of **direct** CPV can be isolated (e.g. for h^+h^-): $\Delta A_{CP} = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) = A_{CP}^{\text{dir}}(K^+K^-) - A_{CP}^{\text{dir}}(\pi^+\pi^-)$

Flavour Tagging

- Look at the **charge** of the accompanying particle
- **Prompt** charm: $D^{*\pm} \rightarrow D^0 \pi^{\pm}$ $\circ D^0$ points to PV \circ Decay time acceptance
- Semileptonic charm: $B \to D^0 \mu^{\pm} X$

 $\circ D^0$ does not point to PV \circ Access all D^0 decay times \circ Lower yield

• Possible to use **double tag** $B \to D^{*\pm} (D^0 \pi^{\pm}) \mu^{\pm} X$

Detection Asymmetry

- Asymmetry in π^+ and π^- (or μ^+ and μ^-) detection
- Different interaction of matter and antimatter with detector
- **Detector** is not perfectly symmetric
- LHCb can reverse **magnet polarity** to keep geometric-induced asymmetries under control

Experimental Strategy – Prompt Tag

If the **kinematics** of the two decay modes are equal $\Rightarrow A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) = A_{raw}(K^-K^+) - A_{raw}(\pi^-\pi^+)$

Experimental Strategy – SL Tag

If the **kinematics** of the two decay modes are equal $\Rightarrow A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) = A_{raw}(K^-K^+) - A_{raw}(\pi^-\pi^+)$

ΔA_{CP} Status

Experiment	$\Delta A_{C\!P}$
CDF	$(+62 \pm 21 \pm 10) \times 10^{-4}$ PRL 109 (2012) 111801
BaBar	$(+24 \pm 62 \pm 26) \times 10^{-4}$ PRL 100 (2008) 061803
Belle	$(-87 \pm 41 \pm 6) \times 10^{-4}$ PLB 670 (2008) 190
LHCb $(3.0 \text{ fb}^{-1}, \text{muon-tagged})$	$(+14 \pm 16 \pm 8) imes 10^{-4}$ JHEP 07 (2014) 041
LHCb (3.0 fb^{-1} , pion-tagged)	$(-10 \pm 8 \pm 3) \times 10^{-4}$ PRL 116 (2016) 191601

- Most precise measurements performed by LHCb
- Run 2 analysis ongoing
- With the full Run 2 the statistical uncertainty is expected to decrease by a factor 2.4 (~3.5 $\times 10^{-4})$

$A_{CP}(K^{+}K^{-})$ and $A_{CP}(\pi^{+}\pi^{-})$

- LHCb is able to measure also individual asymmetries
- Needs Cabibbo-favoured decays as calibration samples

A_{CP} in $D^0 \to K_S^0 K_S^0$

A_{CP} in $D^0 \rightarrow K_s^0 K_s^0$ - Motivations

- Tree-level **exchange** and **penguin** annihiliation diagrams contribute to $D^0 \rightarrow K_s^0 K_s^0$
- A_{CP}(K⁰_SK⁰_S) < 1.1% (95%C.L.) → any higher measured value would point to New
 Physics PRD 92 (2015) 054036

$A_{CP}(K_{S}^{0}K_{S}^{0})$ [%]	Collaboration	Reference
-23 ± 19	CLEO	PRD 63 (2001) 071101
$-2.9 \pm 5.2 \pm 2.2$	LHCb – Run 1	JHEP 10 (2015) 055
$-0.02 \pm 1.53 \pm 0.02 \pm 0.17$	Belle	PRL 119 (2017) 171801

A_{CP} in $D^0 \rightarrow K_S^0 K_S^0$ - Strategy

LHCb-PAPER-2018-012 arXiv:1806.01642 submitted to JHEP

- Reconstruct $D^* \rightarrow D^0 \pi$, use π to tag D^0 flavour
- Fit $\Delta m = m(D^*) m(D^0)$ to extract number of D^0 and \overline{D}^0

 $A_{raw}(K_s^0 K_s^0) = A_{CP}(K_s^0 K_s^0) + A_P(D^*) + A_D(\pi_{tag})$

• Use **calibration** channel $D^0 \to K^+K^-$

 $\Delta A_{CP} = A_{raw}(K_s^0 K_s^0) - A_{raw}(K^+ K^-) = A_{CP}(K_s^0 K_s^0) - A_{CP}(K^+ K^-)$

$$\Rightarrow A_{CP}(K_s^0 K_s^0) = \Delta A_{CP} + A_{CP}(K^+ K^-)$$

• $A_{CP}(K^+K^-) = (0.04 \pm 0.12 \pm 0.10)\%$ measured by LHCb <u>PLB 767 (2017) 177</u>

A_{CP} in $D^0 \rightarrow K_s^0 K_s^0$ - Data Sample

- 2015+2016 data \rightarrow 2.0 fb⁻¹
- Two independent samples:
 - **1. LD**: one K_s^0 is reconstructed from **long** tracks and the other from **downstream** tracks
 - **2. LL**: both K_s^0 are reconstructed from **long** tracks
- Different resolution between the two samples

LHCb-PAPER-2018-012 arXiv:1806.01642 submitted to JHEP

A_{CP} in $D^0 \rightarrow K_s^0 K_s^0$ - Data Sample

arXiv:1806.01642 submitted to JHEP

A_{CP} in $D^0 \rightarrow K_S^0 K_S^0$ - Fit

CKM 2018 - 18/09/2018

A_{CP} in $D^0 \rightarrow K_s^0 K_s^0$ - Results

LHCb-PAPER-2018-012 arXiv:1806.01642 submitted to JHEP

• Results from this analysis: $A_{CP}(LL) = (6.7 \pm 3.8 \pm 0.9)\%$ $A_{CP}(LD) = (-5.3 \pm 7.4 \pm 1.3)\%$ $\Rightarrow A_{CP}(K_s^0 K_s^0) = (4.2 \pm 3.4 \pm 1.0)\%$

- Main systematic uncertainty due to fit model
- Combining with **Run 1**:

 $A_{CP}(K_s^0 K_s^0) = (2.0 \pm 2.9 \pm 1.0)\%$

- Consistent with no-CPV hypothesis
- Compatible with previous measurements

A_{CP} in $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$

 A_{CP} in $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$

See talk by Chris Burr on Tuesday morning (WG3)

- Rare decay
- CP asymmetry predicted to be below $5 \times 10^{-3} \rightarrow$ large as O(1%) if NP is present

 $A_{raw}(h^+h^-\mu^+\mu^-) - A_{raw}(K^+K^-) = A_{CP}(h^+h^-\mu^+\mu^-) - A_{CP}(K^+K^-)$

 $\Rightarrow A_{CP}(h^+h^-\mu^+\mu^-) = A_{raw}(h^+h^-\mu^+\mu^-) - A_{raw}(K^+K^-) + A_{CP}(K^+K^-)$

• Forward-backward and triple-product asymmetries are measured as well

 A_{CP} in $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$

• Simultaneous fit to $m(h^+h^-\mu^+\mu^-)$ to samples split by π_{tag} charge, $\cos \theta_{\mu}$, $\sin 2\phi$ (sharing asymmetries)

• ~1000 signal $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$

• ~100 signal $D^{0} \rightarrow K^{+}K^{-}\mu^{+}\mu^{-}$ <u>PRL 121 (2018) 091801</u> See talk by Chris Burr on Tuesday morning (WG3)

Future prospects

Expected stat uncertainty of A_{CP}(K⁰_SK⁰_S):
 ~1% with Run 1 + Run 2
 ~0.12% including also Upgrade

• Expected stat uncertainty of ΔA_{CP} LHCB-PUB-2018-009 $\circ \sim 0.03\%$ with Run 1 + Run 2 $\circ \sim 0.01\%$ including also Upgrade

- New measurement of $A_{CP}(K_s^0K_s^0)$ compatible with previous measurements
- First measurement of $A_{CP}(h^+h^-\mu^+\mu^-)$
- Still **no CPV** in charm
- LHCb is reaching the **precision** needed to observe CPV in charm
- Stay tuned for new results with **Run 2** data

Backup slides

The LHCb detector

[Int. J. Mod. Phys. A 30, 1530022 (2015)] ECAL HCAL M4 M5 SPD/PS M3 M2 Magnet RICH2 M1 RICH1 Vertex ocato 10m15m

 Single arm spectrometer in $2 < \eta < 5$ range

- Excellent vertex resolution (13 µm in transverse plane for primary vertex)
- Excellent IP resolution $(\sim 13 \ \mu m \text{ on the transverse})$ plane)
- Very good momentum resolution ($\delta p/p \sim 0.5\%$ – 0.8%)
- Excellent **PID** capabilities
- Very good trigger efficiency (~90%)

$A_{CP}(D^0 \rightarrow K_s^0 K_s^0)$ - Systematics

Source	$\Delta \mathcal{A}^{CP}(LL)$	$\Delta \mathcal{A}^{CP}(\mathrm{LD})$
Fit procedure	5	10
$K_{\rm s}^0 \pi^+ \pi^-$ background	4	5
Secondaries	2	3
Wrong π_{tag}^{\pm} charge	—	_
Trigger selection	5	5
K^+K^- fit procedure	2	2
Residual detection asymmetry	2	2
Total	9	13