

Higgs anomalous couplings, FCNC and LFV decays

Ulascan Sarica
Johns Hopkins University

Higgs LFV decay studies

Overview of results

CMS

 \rightarrow Prior $H \rightarrow \mu \tau$ study using Run 1 data, 19.7 fb^{-1} @ 8 TeV showed a slight excess of events with the result

$$BR(H \to \mu \tau) = 0.84^{+0.39}_{-0.37}\%$$
 at 68% CL $BR(H \to \mu \tau) < 1.51\%$ at 95% CL

- → Using Run 2 data, 35.9 fb^{-1} @ 13 TeV, decay modes used to search for $H \to \mu\tau$, $e\tau$: $\mu\tau_h$, $e\tau_h$, $\mu\tau_l$ + $e\tau_l$ joint search
- \Rightarrow Results obtained are $BR(H \rightarrow \mu \tau) < 0.25\%$ at 95% CL $BR(H \rightarrow e \tau) < 0.61\%$ at 95% CL
- → JHEP 06 (2018) 001

ATLAS

- \rightarrow Using Run 1 data, 20.3 fb^{-1} @ 8 TeV
- \rightarrow Decay modes to search for $H \rightarrow \mu \tau, e \tau$: $\mu \tau_h, e \tau_h, \mu \tau_e + e \tau_\mu$ joint search
- ightharpoonup Results obtained are $BR(H
 ightharpoonup \mu au) < 1.43\%$ at 95% CL BR(H
 ightharpoonup e au) < 1.04% at 95% CL
- → JHEP 11 (2015) 211
- → EPJ C 77 (2017) 70 latest, includes combination with above.

CMS analysis: Strategy

- \rightarrow Main improvement since previous results is the inclusion of signal vs bkg. BDTs in likelihood. Tighter cuts and the use of M_{col} is used as a cross-check method.
- ightharpoonup Categorization based on associated jets: 0-jet, 1-jet, 2-jet ggH ($m_{jj} < 550$ GeV), and 2-jet VBF ($m_{jj} > 550$ GeV)

4

CMS analysis: Results

$$BR(H \to e\tau) < 0.61\%$$
 at 95% CL

CMS analysis: Interpretation

$$\Gamma(H \to \ell^{\alpha} \ell^{\beta}) = \frac{m_{H}}{8\pi} (|Y_{\ell^{\beta}\ell^{\alpha}}|^{2} + |Y_{\ell^{\alpha}\ell^{\beta}}|^{2})$$

$$\mathcal{B}(H \to \ell^{\alpha}\ell^{\beta}) = \frac{\Gamma(H \to \ell^{\alpha}\ell^{\beta})}{\Gamma(H \to \ell^{\alpha}\ell^{\beta}) + \Gamma_{SM}}$$

	BDT fit
$\sqrt{ Y_{\mu\tau} ^2+ Y_{\tau\mu} ^2}$	$< 1.43 \times 10^{-3}$
$\sqrt{ Y_{\rm e\tau} ^2 + Y_{\rm \tau e} ^2}$	$< 2.26 \times 10^{-3}$

ATLAS analysis: $\mu \tau_h$ and $e \tau_h$ strategy

ightharpoonup Events are divided into two signal regions and a W+jets control region in the $m_T^{l,E_T^{miss}}$

$$m_T^{\tau_h, E_T^{miss}}$$
 plane $(m_T^{l, E_T^{miss}} = \sqrt{2p_T^l E_T^{miss}(1 - cos\phi)})$

ightharpoonup The likelihood is constructed as a function of the Missing Mass Calculator Mass $m_{l\tau}^{MMC}$.

ATLAS analysis: μau_e and $e au_\mu$ strategy

- \rightarrow Events are divided in two signal regions: SR_{noJets} with no central ($|\eta_j| < 2.4$) jets, and $SR_{withJets}$ with ≥ 1 central jets with no b-tag.
- \rightarrow The likelihood is constructed as a function of the collinear mass m_{coll} .
- \rightarrow Data-driven method exploiting symmetry of SM background μe and $e\mu$ processes, up to corrections for mis-id leptons or trigger efficiency.

ATLAS analysis: Results

$$BR(H \to e\tau) < 1.04\%$$
 at 95% CL

$$BR(H \to \mu \tau) < 1.43\%$$
 at 95% CL

Higgs FCNC studies

Overview of results

CMS

 \rightarrow Prior study on $t \rightarrow Hq$ (q=c,u) via $t\bar{t}$ pair production using Run 1 data, 19.7 fb^{-1} @ 8 TeV showed no excess of events with the results

$$BR(t \to Hu) < 0.55\%$$
 at 95% CL $BR(t \to Hc) < 0.40\%$ at 95% CL

- \rightarrow Run 2 result using 35.9 fb^{-1} @ 13 TeV via single top and top pair production with $H \rightarrow b\bar{b}$ decay
- ightharpoonup Results obtained are $BR(t \to Hu) < 0.47\%$ at 95% CL $BR(t \to Hc) < 0.47\%$ at 95% CL
- → JHEP 06 (2018) 102

ATLAS

 \rightarrow Prior study on $t \rightarrow Hq$ (q=c,u) via $t\bar{t}$ pair production using Run 1 data, 20.3 fb^{-1} @ 8 TeV showed no excess of events with the results

$$BR(t \to Hu) < 0.45\%$$
 at 95% CL $BR(t \to Hc) < 0.46\%$ at 95% CL

- \rightarrow Run 2 result using 36.1 fb^{-1} @ 13 TeV via top pair production with $H \rightarrow \gamma\gamma$ decay
- \rightarrow Results obtained are $BR(t \rightarrow Hu) < 0.24\%$ at 95% CL $BR(t \rightarrow Hc) < 0.22\%$ at 95% CL
- \rightarrow Also using multi-lepton final states WW, ZZ and $\tau\tau$:

$$BR(t \to Hu) < 0.19\%$$
 at 95% CL $BR(t \to Hc) < 0.16\%$ at 95% CL

- → JHEP 10 (2017) 129
- → Phys. Rev. D 98 (2018) 032002

Overview of results

- \rightarrow Results obtained are $BR(t \rightarrow Hu) < 0.47\%$ at 95% CL $BR(t \rightarrow Hc) < 0.47\%$ at 95% CL
- → JHEP 06 (2018) 102

See Gagan Mohanty's talk for more details

 $\rightarrow \gamma \gamma$ results:

$$BR(t \rightarrow Hu) < 0.24\%$$
 at 95% CL $BR(t \rightarrow Hc) < 0.22\%$ at 95% CL

- \rightarrow Multi-lepton final states WW, ZZ and $\tau\tau$: $BR(t \rightarrow Hu) < 0.19\%$ at 95% CL $BR(t \rightarrow Hc) < 0.16\%$ at 95% CL
- → JHEP 10 (2017) 129
- → Phys. Rev. D 98 (2018) 032002
- → See also Markus's talk for tighter results

Anomalous couplings studies

Overview of results

CMS

- \rightarrow Different measurements done using production or decay information in Run 1, e.g. $\underline{VH}(\rightarrow b\bar{b})$
- \rightarrow Run 2 result using 80.2 fb^{-1} @ 13 TeV with Run 1 combination most recent result using dedicated <u>amplitude formalism</u>
- ightarrow Tests fraction of anomalous HVV couplings in on-shell Higgs production with decay to 4l
- \rightarrow Joint treatment with Higgs total width Γ_H constraints using the off-shell technique
- → CMS-PAS-HIG-18-002 very recent

ATLAS

- → Different measurements done using production or decay in Run 1, e.g. $\overline{VBF} H(\rightarrow \tau\tau)$
- \rightarrow Run 2 results using 36.1 fb^{-1} @ 13 TeV using $H \rightarrow \gamma\gamma$ or $H \rightarrow 4l$ decay
- → Results are obtained as part of differential cross section measurements (fiducial cross sections, simplified template cross sections STXS) and the Effective Field Theory approaches Pseudo-Observables Po, Higgs characterization frameworks or in terms of Wilson coefficients.
- \rightarrow 4*l* inclusive and differential cross section: JHEP 10 (2017) 132
- \rightarrow 4*l* couplings: <u>JHEP 03 (2018) 095</u>
- $\rightarrow \gamma \gamma$ couplings: <u>arxiv1802.04146</u>

CMS analysis: HVV couplings

$$A(HVV) \sim \left[a_{1} - e^{i\phi_{\Lambda Q}} \frac{q_{H}^{2}}{\Lambda_{Q}^{2}} - e^{i\phi_{\Lambda 1}^{VV'}} \frac{(\kappa_{1}q_{V1}^{2} + \kappa_{2}q_{V2}^{2})}{\Lambda_{1}^{2}} \right] m_{V}^{2} \epsilon_{V1}^{*} \epsilon_{V2}^{*} \stackrel{\text{OO}}{\longrightarrow} \frac{1}{\Lambda_{1}^{2}} + a_{2}f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_{3}f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

 \rightarrow Any anomalous coupling can be described with an effective on-shell cross sectional fraction and a phase defined for 2f2f' decay:

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_j |a_j|^2 \sigma_j}$$
 $\phi_{ai} = \tan^{-1}(a_i/a_1)$

- \rightarrow $f_{\Lambda Q}$ observable only from off-shell. Others can be measured from either on-shell or off-shell.
- → Formalisms used by ATLAS are equivalent with different ways of parameterizing AC couplings

CMS analysis: Off-shell technique

On-shell:
$$ightarrow rac{g_{prod}^2 g_{dec}^2}{m_H^2 \Gamma_H^2} dq_H^2 \propto \mu_{prod}$$

- ightarrow $\Gamma_{\rm H} \lesssim 1$ GeV, limited by resolution
- → Very sensitive to production and decay kinematics

- Off-shell: $\rightarrow \frac{g_{prod}^2 g_{dec}^2}{(q_H^2 m_H^2)^2} dq_H^2 \propto \mu_{prod} \cdot \Gamma_H$
- \rightarrow Resolution is not very important, $\Gamma_{\rm H} \lesssim 10$ MeV feasible
- \rightarrow AC enhance off-shell yield, change m_{AL} and other kinemat

CMS analysis: Distributions

When full kinematic information available $(m_{H^*}, m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1)$, once can extract the ME $|\mathcal{M}|^2$, where $d\sigma = |\mathcal{M}|^2 d\Pi$, and construct either of

$$D_{A \ vs \ B} = \frac{|\mathcal{M}_A|^2}{|\mathcal{M}_A|^2 + |\mathcal{M}_B|^2} \quad D_{A-B \ int.} = \frac{|\mathcal{M}_{A+B}|^2 - |\mathcal{M}_A|^2 - |\mathcal{M}_B|^2}{|\mathcal{M}_A|^2 + |\mathcal{M}_B|^2} \quad w = \frac{|\mathcal{M}_{target}|^2}{|\mathcal{M}_{sample}|^2}$$

→ Examples:

For background discrimination,

$$D_{bkg}^{kin} = \frac{P_{sig}(\{q_l\})}{P_{sig}(\{q_l\}) + P_{q\bar{q}\ bkg}(\{q_l\})}$$

For categorization,

$$D_{2jet} = \frac{P_{jj}^{VBF}(\{q_l\})}{P_{jj}^{VBF}(\{q_l\}) + P_{jj}^{HJJ}(\{q_l\})}$$

 \rightarrow The CMS 4l analysis uses MEs from <u>JHUGen/MCFM</u> package for Matrix Element Likelihood Approach (MELA).

CMS analysis: Distributions

CMS results: $f_{ai} \cos(\phi_{ai})$

CMS results: $f_{ai} \cos(\phi_{ai})$

Parameter	Observed	Expected
$f_{a3}\cos\left(\phi_{a3}\right)$	$-0.0001^{+0.0005}_{-0.0015}$ [-0.16, 0.09]	$0.0000^{+0.0019}_{-0.0019}$ [-0.082, 0.082]
$f_{a2}\cos\left(\phi_{a2}\right)$	$0.0004^{+0.0026}_{-0.0007} [-0.006, 0.025]$	$0.0000^{+0.0030}_{-0.0023} [-0.021, 0.035]$
$f_{\Lambda 1}\cos\left(\phi_{\Lambda 1}\right)$	$0.0000^{+0.0035}_{-0.0008} [-0.21, 0.09]$	$0.0000^{+0.0012}_{-0.0006}$ [-0.059, 0.032]
$f_{\Lambda 1}^{Z\gamma}\cos\left(\phi_{\Lambda 1}^{Z\gamma}\right)$	$0.000^{+0.355}_{-0.009} [-0.17, 0.61]$	$0.000^{+0.009}_{-0.010} [-0.10, 0.34]$

On-shell results

On-shell + off-shell combination

Parameter	Observed	Expected
$f_{a3}\cos\left(\phi_{a3}\right)$	$0.0000^{+0.0005}_{-0.0011}$ [-0.0067, 0.0050]	$0.0000^{+0.0014}_{-0.0014} [-0.0098, 0.0098]$
$f_{a2}\cos\left(\phi_{a2}\right)$	$0.0005^{+0.0025}_{-0.0008} [-0.0029, 0.0129]$	$0.0000^{+0.0011}_{-0.0017}$ [-0.0100, 0.0117]
$f_{\Lambda 1}\cos\left(\phi_{\Lambda 1}\right)$	$0.0001^{+0.0020}_{-0.0010} [-0.0150, 0.0501]$	$0.0000^{+0.0010}_{-0.0010} [-0.0152, 0.0158]$

CMS results: $f_{a3} \cos(\phi_{a3})$

On-shell + off-shell

On-shell result

CMS results: $f_{a2} \cos(\phi_{a2})$

On-shell result

On-shell + off-shell

0.04

CMS results: $f_{\Lambda 1} \cos(\phi_{\Lambda 1})$

CMS results: $f_{\Lambda 1}^{Z\gamma} \cos(\phi_{\Lambda 1}^{Z\gamma})$

Only on-shell

CMS results: Γ_H and f_{ai} summary

Parameter	Observed	Expected
Γ _H (MeV)	$3.2^{+2.8}_{-2.2}$ [0.08, 9.16]	$4.1^{+5.0}_{-4.0}$ [0.0, 13.7]

SM-like couplings

Different HVV couplings

Parameter	Unconstrained Parameter	Observed	Expected
Γ _H (MeV)	$f_{a3}\cos(\phi_{a3})$	$2.4_{-1.8}^{+2.7}$ [0.02, 8.38]	$4.1_{-4.1}^{+5.2}$ [0.0, 13.9]
Γ_{H} (MeV)	$f_{a2}\cos(\phi_{a2})$	$2.5^{+2.9}_{-1.8}$ [0.02, 8.76]	$4.1_{-4.1}^{+5.2}$ [0.0, 13.9]
Γ _H (MeV)	$f_{\Lambda 1}\cos\left(\phi_{\Lambda 1}\right)$	$2.4^{+2.5}_{-1.6}$ [0.06, 7.84]	$4.1^{+5.2}_{-4.1}$ [0.0, 13.9]

CMS results: Γ_H and f_{ai} joint constraints

ATLAS analyses

- \rightarrow Both 4l and $\gamma\gamma$ analyses follow differential cross section measurements.
- \rightarrow First 4l analysis mentioned places limits on POs ϵ_L , ϵ_R and total signal strength κ pairwise, where ϵ_L and ϵ_R are contact interaction left- and right-handed couplings.
- \rightarrow Second 4l analysis mentioned places limits on κ_{Agg} , κ_{Hvv} and κ_{Avv} being the coupling strengths of CP-odd Higgs to gluons, CP-even Higgs to EW bosons and CP-odd Higgs to EW bosons.
- $\rightarrow \gamma \gamma$ analysis places limits on Wilson coefficients \bar{c}_g , \tilde{c}_g , \bar{c}_{HW} and \tilde{c}_{HW} .

ATLAS analyses: Distributions

ATLAS analysis: 4l POs

ATLAS analysis: $4l \kappa$

BSM coupling	Fit	Expected	Observed	Best-fit	Best-fit	Deviation
$\kappa_{ m BSM}$	configuration	conf. inter.	conf. inter.	$\hat{\kappa}_{ ext{BSM}}$	$\hat{\kappa}_{\mathrm{SM}}$	from SM
κ_{Agg}	$(\kappa_{Hgg} = 1, \kappa_{\rm SM} = 1)$	[-0.47, 0.47]	[-0.68, 0.68]	± 0.43	-	1.8σ
κ_{HVV}	$(\kappa_{Hgg} = 1, \kappa_{SM} = 1)$	[-2.9, 3.2]	[0.8, 4.5]	2.9	-	2.3σ
κ_{HVV}	$(\kappa_{Hgg} = 1, \kappa_{\rm SM} \text{ free})$	[-3.1, 4.0]	[-0.6, 4.2]	2.2	1.2	1.7σ
κ_{AVV}	$(\kappa_{Hgg}=1,\kappa_{\rm SM}=1)$	[-3.5, 3.5]	[-5.2, 5.2]	± 2.9	-	1.4σ
κ_{AVV}	$(\kappa_{Hgg} = 1, \kappa_{\rm SM} {\rm free})$	[-4.0, 4.0]	[-4.4, 4.4]	± 1.5	1.2	0.5σ

ATLAS analysis: $4l \kappa$ joint constraints

ATLAS analysis: $\gamma\gamma$ results

Coefficient	Observed 95% CL limit	Expected 95% CL limit
\bar{c}_g	$[-0.8, 0.1] \times 10^{-4} \cup [-4.6, -3.8] \times 10^{-4}$	$[-0.4, 0.5] \times 10^{-4} \cup [-4.9, -4.1] \times 10^{-4}$
\widetilde{c}_g	$[-1.0, 0.9] \times 10^{-4}$	$[-1.4, 1.3] \times 10^{-4}$
\bar{c}_{HW}	$[-5.7, 5.1] \times 10^{-2}$	$[-5.0, 5.0] \times 10^{-2}$
\tilde{c}_{HW}	[-0.16, 0.16]	[-0.14, 0.14]

Summary

Presented Higgs decay and anomalous couplings studies

- \rightarrow LFV studies using $\mu\tau$ and $e\tau$:
 - → Run 2 results from CMS
 - → Run 1 studies from ATLAS
- → FCNC is studied using Run 2 data for both experiments:
 - \rightarrow CMS includes single-top channels, using $H \rightarrow b\bar{b}$
 - \rightarrow ATLAS uses $H \rightarrow \gamma \gamma$, WW, ZZ, $\tau \tau$ for increased sensitivity
 - → See Gagan Mohanty's talk for more details
- → Anomalous Higgs couplings from Run 2 data:
- → HVV anomalous couplings from CMS using production and decay
- → ATLAS utilizing differential cross section measurements to place constraints on different HVV, Hgg or contact interaction couplings

Backup

Higgs LFV decay studies

CMS LFV analysis: Results

Expected limits (%)

	0-jet	1-jet	2-jets	VBF	Combined
$\mu \tau_{\rm e}$	< 0.83	<1.19	<1.98	<1.62	< 0.59
$\mu \tau_{\rm h}$	< 0.43	< 0.56	< 0.94	< 0.58	< 0.29
μτ			< 0.25		

Observed limits (%)

	0-jet	1-jet	2-jets	VBF	Combined
μτε	<1.30	<1.34	<2.27	<1.79	< 0.86
$\mu \tau_{\rm h}$	< 0.51	< 0.53	< 0.56	< 0.51	< 0.27
μτ			< 0.25		

Best fit branching fractions (%)

	0-jet	1-jet	2-jets	VBF	Combined
$\mu \tau_{\rm e}$	0.61 ± 0.36	0.22 ± 0.46	0.39 ± 0.83	0.10 ± 1.37	0.35 ± 0.26
$\mu \tau_{ m h}$	0.12 ± 0.20	-0.05 ± 0.25	-0.72 ± 0.43	-0.22 ± 0.31	-0.04 ± 0.14
μτ			0.00 ± 0.12		

Expected limits (%)

_	0-jet	1-jet	2-jets	VBF	Combined
$e\tau_{\mu}$	< 0.90	<1.59	< 2.54	<1.84	< 0.64
$e\eta_h$	< 0.79	<1.13	< 1.59	< 0.74	< 0.49
eτ			< 0.37		

Observed limits (%)

			1 /		
	0-jet	1-jet	2-jets	VBF	Combined
$e\tau_{\mu}$	<1.22	<1.66	<2.25	<1.10	< 0.78
$e\tau_h$	< 0.73	< 0.81	<1.94	<1.49	< 0.72
eτ			< 0.61		

Best fit branching fractions (%)

	V '				
	0-jet	1-jet	2-jets	VBF	Combined
$e\tau_{\mu}$	0.47 ± 0.42	0.17 ± 0.79	-0.42 ± 1.01	-1.54 ± 0.44	0.18 ± 0.32
$e\tau_{\rm h}$	-0.13 ± 0.39	-0.63 ± 0.40	0.54 ± 0.53	0.70 ± 0.38	0.33 ± 0.24
eτ			0.30 ± 0.18		

ATLAS LFV analysis: Results

Channel	Category	Expected limit [%]	Observed limit [%]	Best fit Br [%]
$H o e au_{ m had}$	SR1 SR2 Combined	$2.81^{+1.06}_{-0.79}$ $2.95^{+1.16}_{-0.82}$ $2.07^{+0.82}_{-0.58}$	3.0 2.24 1.81	$0.33^{+1.48}_{-1.59}$ $-1.33^{+1.58}_{-1.80}$ $-0.47^{+1.08}_{-1.18}$
$H o e au_{ m lep}$	SR _{noJets} SR _{withJets} Combined	$1.66^{+0.72}_{-0.46}$ $3.33^{+1.60}_{-0.93}$ $1.48^{+0.60}_{-0.42}$	1.45 3.99 1.36	$-0.45^{+0.89}_{-0.97} \ 0.74^{+1.59}_{-1.62} \ -0.26^{+0.79}_{-0.82}$
H o e au	Combined	$1.21^{+0.49}_{-0.34}$	1.04	$-0.34^{+0.64}_{-0.66}$
$H o \mu au_{ m had}$	SR1 SR2 Combined	$1.60^{+0.64}_{-0.45}$ $1.75^{+0.71}_{-0.49}$ $1.24^{+0.50}_{-0.35}$	1.55 3.51 1.85	$-0.07^{+0.81}_{-0.86}$ $1.94^{+0.92}_{-0.89}$ $0.77^{+0.62}_{-0.62}$
$H \to \mu \tau_{\rm lep}$	SR _{noJets} SR _{withJets} Combined	$2.03^{+0.93}_{-0.57}$ $3.57^{+1.74}_{-1.00}$ $1.73^{+0.74}_{-0.49}$	2.38 2.85 1.79	$0.31^{+1.06}_{-0.99} \ -1.03^{+1.66}_{-1.82} \ 0.03^{+0.88}_{-0.86}$
$H \to \mu \tau$	Combined	$1.01^{+0.40}_{-0.29}$	1.43	$0.53^{+0.51}_{-0.61}$

Higgs FCNC studies

CMS analysis: Strategy

- \rightarrow Analysis considers one top with leptonic decay + H (ST) or + $t(\rightarrow Hq)$ (TT), where the Higgs boson decays to $b\bar{b}$.
- → Event categorization based on jet multiplicity and how many b-tagged jets: b2j3, b3j3, b2j4, b3j4, b4j4 (not used in Hut analysis)
- → Two BDTs are trained:
- Using $m_{b\bar b}$, $m(t^l)$, $p_T(t^l)$ in the signal hypothesis, and also $m(t^h)$, $\Delta R(t^l,t^h)$ for background $t\bar t$ hypothesis, where t^h is the reconstructed hadronic top decay with one b-tagged jet and two untagged jets. This is to ensure ~75% correct assignment of b jets
- Charge of the lepton (Hut BDTs), CSVv2 discriminant value of the b jet from the Higgs boson with lower p_T , $m_{b\bar{b}}$, and the value of BDT from above. This is to use in the likelihood analysis.
- \rightarrow Final likelihood fit is performed for Hut and Hct couplings, and the $t\bar{t}+b\bar{b}$, $t\bar{t}+c\bar{c}$ and $t\bar{t}+l\bar{t}$ (light jets) contributions.

CMS analysis: Example BDT distributions

CMS analysis: Signal strength

CMS analysis: BR constraints

ATLAS analysis: $\gamma\gamma$ strategy

- \rightarrow Analysis considers one top with leptonic or hadronic decay + t(\rightarrow Hq), where the Higgs boson decays to $\gamma\gamma$.
- → Both top decay channels are categorized into Category 1 for events satisfying top mass window requirements in both top pairs, Category 2 for those satisfying only the top mass window requirement for the Hq system.
- ightarrow In the hadronic top decay channel, smooth parameterizations of $m_{\gamma\gamma}$ are used in the final likelihood parameterization with full treatment of nuisances.
- \rightarrow Leptonic channel is statistically limited, so only two bins in $m_{\gamma\gamma}$ are used (SR vs two-sided sidebands), and the ratio of backgrounds in the SR and sidebands is varied with a free parameter.
- \rightarrow Likelihood scan is done for $t \rightarrow Hc$ and is re-interpreted for $t \rightarrow Hu$ with 8% lower acceptance (due to b-tagging).

ATLAS analysis: Multi-lepton strategy

- \rightarrow Events categorized into 2lSS (≥ 4 jets of which one or two b-tagged, two SS leptons) and 3l (≥ 2 jets of which at least one b-tagged, three leptons with sum of charges ± 1)
- \rightarrow Dominant contribution (85% 2*lSS* and 71% 3*l*) from $H \rightarrow WW$.
- → Limits placed using a BDT discriminant

Variable	$2\ell SS$	3€
$p_{\rm T}$ of higher- $p_{\rm T}$ lepton	×	
$p_{\rm T}$ of lower- $p_{\rm T}$ lepton	×	
p_{T} of lepton ℓ_0		×
p_{T} of lepton ℓ_1		×
$p_{\rm T}$ of lepton ℓ_2		×
Dilepton invariant masses (all combinations)	×	×
Trilepton invariant mass		×
Best Z candidate invariant mass		×
Maximum lepton $ \eta $	×	
Lepton flavor	×	
Number of jets	×	×
Number of <i>b</i> -tagged jets	×	×
$p_{\rm T}$ of highest- $p_{\rm T}$ jet		×
$p_{\rm T}$ of second highest- $p_{\rm T}$ jet		×
$p_{\rm T}$ of highest- $p_{\rm T}$ b-tagged jet		×
$\Delta R(\ell_0, \ell_1)$		×
$\Delta R(\ell_0,\ell_2)$		×
ΔR (higher- $p_{\rm T}$ lepton, closest jet)	×	
ΔR (lower- $p_{\rm T}$ lepton, closest jet)	×	
$\Delta R(\ell_1, \text{closest jet})$		×
Smallest $\Delta R(\ell_0, b$ -tagged jet)		×
$E_{ m T}^{ m miss}$	×	
$m_{ m eff}$	×	×

ATLAS analysis: $m_{\gamma\gamma}$ distributions

m_{γγ} [GeV]

 $m_{\gamma\gamma}$ [GeV]

ATLAS analysis: Multi-lepton distributions

ATLAS analysis: $\gamma\gamma$ results

$$\lambda_{tcH} < 0.090 \ (0.077) \ \text{at 95\% CL} \ \lambda_{tuH} < 0.094 \ (0.079) \ \text{at 95\% CL}$$

ATLAS analysis: $\gamma\gamma$ results

ATLAS analysis: Multi-lepton results

$$BR(t \rightarrow Hc) < 0.16\%$$
 at 95% CL $BR(t \rightarrow Hu) < 0.19\%$ at 95% CL

Anomalous couplings studies

CMS paragraphics

Run I AC combination

Phys. Rev. D 92 (2015) 012004 4I+ $WW \rightarrow 2l2\nu$ combination (+ $\gamma\gamma$ for spin-2 couplings)

Run I a_3 AC using associated production

Run I width from off-shell Higgs boson

Expected $\Gamma_H < 26$ MeV Observed $\Gamma_H < 13$ MeV

Combination using 4l, and WW or $ZZ \rightarrow 2l2\nu$ using on-shell + off-shell combination of events

Proposed by <u>F. Caola</u>

<u>and K. Melnikov</u>

using the large off-shell
tail pointed out by <u>N.</u>

<u>Kauer and G. Passarino</u>

Phys. Rev. D 92 (2015) 072010 CMS

Events / 8.0 GeV

 $\sigma_{vv \to H \to ZZ}^{on-shell} \sim \mu_{vvH}$ $\Rightarrow \sigma_{vv \to H \to ZZ}^{off-shell} \sim \mu_{vvH} \times \Gamma_{H}$

- Tight constraints on Γ_H with SM-like tensor structure - Significant

interference effects with background

 New probe for BSM physics

150

m_" (GeV)

CMS HVV main uncertainties

Migration uncertainties:

- → Signal 4-20%, largest in ggH in VBF 2-jet tagged category
- → 3-20% in irreducible background, similar composition

Overall yield:

- → NNLO K factor uncertainty for gg processes
- → 10% additional uncertainty in gg background
- → 2% BR

Reducible background:

→ 36-43%

Lepton momentum scale:

 \rightarrow 0.04, 0.3 and 0.1% for 4μ , 4e, $2e2\mu$

Lepton energy resolution:

→ 20% on mass measurement

Lepton ID and reco. efficiency:

→ 2.5-9%

