# Probing top quark couplings in associated top quark production

M.S.Soares on behalf of the ATLAS and CMS Collaborations CKM2018 - Heidelberg



# This talk:

Experimental status of the following SM processes - sensitive to (rare) top couplings:

top quark coupling to Z boson: ttV tZq



EFT in top physics

(1. ttV: reinterpretation)

5. tW & tt dilepton

# This talk:

Experimental status of the following SM processes - sensitive to (rare) top couplings:



For further ATLAS+CMS reports on interesting processes probing top couplings : see talks by N.Faltermann (ttH and tH) and G.Mohanty (CPV and FCNC)

## Associated production of top quark pairs and vector bosons

• ATLAS: ATL-COM-PHYS-2018-1346



• CMS: arXiv:1711.02547

# ttZ



#### Ignoring 0 or 1 lepton final states

- $t \rightarrow (q+q) b or (lepton+v) b$
- $t \rightarrow (q+q) b or (lepton+v) b$



2 to 4 leptons

• Z →lepton+lepton

# ttZ... and ttW





#### Ignoring 0 or 1 lepton final states

- $t \rightarrow (q+q) b or (lepton+v) b$
- $t \rightarrow (q+q) b or (lepton+v) b$

2 to 4 leptons

• Z →lepton+lepton

Requiring at least one top quark + W boson to decay into leptons to reduce multijet background:

- $t \rightarrow (q+q) b or (lepton+v) b$
- $t \rightarrow (lepton + v) b$
- W → lepton+∨



2 or 3 leptons

competing multi-lepton final state

- ttW may not look so interesting in terms of SM couplings ...but it is for EFT: see in 2 slides
- Instead of treating as background:
  - add 2 leptons (same sign) region; fit ttW contribution together

# ttZ and ttW

- Main backgrounds: ZZ, WZ, tt+X, t+X
- Luminosity: ~ 36 fb-1
- Signal extraction *more leptons, less jets*:
  - simultaneous fits to several control regions: N<sub>leptons</sub>, N<sub>jets</sub>, N<sub>b-jets</sub>
- Boosted Decision Trees for signal to background separation in dilepton final states
  - ATLAS: for opposite sign same flavour ttZ enriched (using e.g.  $\eta$  of the dilepton system,  $p_T/E_T$  jet sums, global event variables)
  - CMS: for same-sign dilepton (using e.g. jet, leptons, global event variables)
- Background from control regions in data: e.g. "fake leptons" (tighloose ID), ttbar (opposite sign different flavour requirement)





# ttZ and ttW



Observation: significance (obs and exp) for ttW and ttZ above 5 s.d. in both experiments

Both ATLAS and CMS measurements compatible (slightly above) SM predictions

## In terms of EFT

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_i c_i \mathcal{O}_i + \cdots$$
,  $\sigma = \sigma_{SM} + C_i \sigma_i^{(1)} + C_i^2 \sigma_i^{(2)}$ 

- From a large number of operators affecting ttV cross sections
  - constrains from other processes (e.g. tt cross section, properties...)
  - conservation laws (e.g. baryon and lepton numbers)
  - no new physics couplings to light quarks
  - ignore operators that affect backgrounds too much (except ttH)...
    - 8 operators left

## In terms of EFT

- New physics constrains:
  - considering only dim-6 operators that modify ttZ, ttW and (as important background) ttH
  - varying one coefficient at a time

## Example:









## In terms of EFT

- New physics constrains:
  - considering only dim-6 operators that modify ttZ, ttW and (as important background) ttH
  - varying one coefficient at a time

## Results:

| C | M | IS |  |
|---|---|----|--|
|   |   |    |  |

| Wilson coefficient                                  | Best fit $[\text{TeV}^{-2}]$ | 68% CL [TeV <sup>-2</sup> ]    | 95% CL [TeV <sup>-2</sup> ]     |
|-----------------------------------------------------|------------------------------|--------------------------------|---------------------------------|
| $\bar{c}_{\mathrm{uW}}/\Lambda^2$                   | 1.7                          | [-2.4, -0.5] and $[0.4, 2.4]$  | [-2.9, 2.9]                     |
| $ \bar{c}_{\rm H}/\Lambda^2 - 16.8~{\rm TeV}^{-2} $ | 15.6                         | [0, 23.0]                      | [0, 28.5]                       |
| $ \widetilde{c}_{3G}/\Lambda^2 $                    | 0.5                          | [0, 0.7]                       | [0, 0.9]                        |
| $\bar{c}_{3\mathrm{G}}/\Lambda^2$                   | -0.4                         | [-0.6, 0.1] and $[0.4, 0.7]$   | [-0.7, 1.0]                     |
| $\bar{c}_{\mathrm{uG}}/\Lambda^2$                   | 0.2                          | [0, 0.3]                       | [-1.0, -0.9] and $[-0.3, 0.4]$  |
| $ \bar{c}_{\mathrm{uB}}/\Lambda^2 $                 | 1.6                          | [0, 2.2]                       | [0, 2.7]                        |
| $\bar{c}_{\mathrm{Hu}}/\Lambda^2$                   | -9.3                         | [-10.3, -8.0] and $[0, 2.1]$   | [-11.1, -6.5] and $[-1.6, 3.0]$ |
| $\bar{c}_{2\mathrm{G}}/\Lambda^2$                   | 0.4                          | [-0.9, -0.3] and $[-0.1, 0.6]$ | [-1.1, 0.8]                     |

# Not only top quark pairs, also single top: tZq

• ATLAS: PLB 780 (2018) 557

• CMS: PLB 779 (2018) 358

## Single top associated to a Z boson

# Examples:



Z radiated off a light quark



non-resonant



triple-boson coupling



## Single top associated to a Z boson

Also covered by M. Alhroob

- Using 3 lepton final states
- Multivariate analyses for signal to background separation
- Control regions (N<sub>jets</sub>, N<sub>b-jets</sub>) to better constrain main backgrounds:
  - ttV, WZ, fake leptons
- ATLAS
  - trains a neural network against fake leptons
  - LO MC
  - narrow Z mass requirement to M(lepton lepton)
- CMS
  - uses NLO MC
  - includes non-resonant contribution tIIZ

Using ~36 fb-1 of data at 13 TeV

## Single top associated to a Z boson

#### Also covered by M. Alhroob





$$\sigma(tZq) = 600\pm170 \text{ (stat)} \pm 140 \text{ (sys) fb}$$

4.2 (5.4) s.d. observed (expected) significance

$$\sigma(tllq) = 123^{+33}_{-31}(stat)^{+29}_{-23}(sys) fb$$

3.7 (3.1) s.d. obs (exp) significance

#### **NNLO** prediction:

800 +6.1-7.4(scale) fb

#### **NNLO** prediction:

$$94.2^{+1.9}$$
-1.8(scale) ± 2.5 (PDF) fb

## Associated production of top quark pair and a photon

• ATLAS: JHEP 11 (2017) 086

• CMS: JHEP 10 (2017) 006

## tty cross section using 8 TeV data

- Based on ~20 fb-1
- Semileptonic: tt → Wb+Wb → (q+q) b + (lepton+v) b
  - at least for jets, large missing E<sub>T</sub>
- Main backgrounds:
  - tt + jet, with a jet faking (or containing) a photon
  - V + photon
  - tt or V, with a jet or an electron faking a photon

Template fits for signal to background separation

#### target for coupling:



#### signal includes also



## tty cross section using 8 TeV data

#### **ATLAS**

photon  $p_T > 15$  GeV,  $|\eta| < 2.4$ 

Template variable:  $p_T^{iso} = \Sigma_{tracks} p_T$  within 0.2 rad around  $\gamma$ 

Also differential cross section





Fiducial:  $\sigma(tty) = 139\pm7(stat.)\pm17(syst.)$  fb

[ NLO: 151±24 fb ]

#### **CMS**

photon  $p_T > 25$  GeV,  $|\eta| < 1.4$ 

Template variables:

 $M_3$  = invariant mass of the 3 jets giving the highest  $\Sigma_{jets}$   $p_T$ 

Charged hadron y isolation for fake photon determination



Fiducial:  $\sigma(tt\gamma) = 127\pm27(stat. + syst.)$  fb

Total:  $\sigma(tty) = 515\pm108$  fb

[ NLO: 592±71(scale)±30(PDF) fb ]

# Not only top quark pairs, also single: tyq

• CMS: TOP-17-016, submitted to PRL

#### Again, not only top-photon coupling:



- Now ttγ becomes the main background followed by V+γ and fakes
- Statistically & systematically challenging
  - Focus on muon channel to improve signal efficiency
  - Use BDT for signal to background separation

## Single top + γ at 13 TeV

## Also covered by M. Alhroob

• Event selection:

- One isolated muon ( $p_T>26$  GeV,  $|\eta|<2.4$ )
- At least two jets, one b-tagged
- One isolated photon ( $p_T>25$  GeV,  $|\eta|<1.44$ )
  - separated from jets and muon with  $\Delta R > 0.5$
- E<sub>T</sub> > 30 GeV
- BDT variables e.g. jets and lepton  $\,\eta$ , angles, distance separation, reconstructed top mass...

35.9 fb<sup>-1</sup> (13 TeV) Events Data CMS ∭ Stat. ⊕ syst. Zγjets 1000 **VV**γ Signal (tyj) Misidentified photon ty (s- and tW-) 800 **W**yjets 220 signal, 1220 ttγ events 600 400 200 Data/Prediction 1.5 0.5 9 BDT output

Fiducial cross section for  $\gamma$  p<sub>T</sub>>25 GeV,  $|\eta|<1.44$ ,  $\Delta$ R > 0.5:

 $\sigma(t\gamma)xB(t\rightarrow\mu vb) = 115\pm17(stat.)\pm30(syst.)$  fb

[ SM: 81±74 fb ]

## First evidence:

4.4 (3.0) s.d. obs (exp) significance

# Search for new physics in top quark production

• CMS: TOP-17-020



- So far, LHC top quark-releated analyses have two approaches
  - (SM) measurements
    - examples: those presented in this talk



# reinterpreted in terms of EFT

- Seaches for specific new physics model dependent/independent
  - examples: FCNC searches, exotic final stated including top quarks, anomalous couplings in differential distributions

- So far, LHC top quark-releated analyses have two approaches
  - (SM) measurements
    - examples: those presented in this talk



# reinterpreted in terms of EFT

- Seaches for specific new physics model dependent/independent
  - examples: FCNC searches, exotic final stated including top quarks, anomalous couplings in differential distributions

## · New approach:

- Event selection: 2 isolated leptons, opposite sign+b-jet: mostly tt, tW events, different N<sub>jet</sub>, N<sub>b-jet</sub> categories as before
- Not one single observable: analysis fully designed to access the 6-dim operators relevant for top production
- first global analysis using tW + tt dilepton final states







# Example effects:

• O<sub>G</sub>: doesn't affect tW; kinematic distributions not too sensitive: use yields to check for the effect of O<sub>G</sub> in tt production



## Example effects:

- O<sub>G</sub>: doesn't affect tW; kinematic distributions not too sensitive: use yields to check for the effect of O<sub>G</sub> in tt production
- O<sub>uG,cG</sub>: affects tt & tW; kinematic distributions discriminate FCNC x SM production: neural network NN<sub>FCNC</sub>



## Example effects:

- O<sub>G</sub>: doesn't affect tW; kinematic distributions not too sensitive: use yields to check for the effect of O<sub>G</sub> in tt production
- O<sub>uG,cG</sub>: affects tt & tW; kinematic distributions discriminate FCNC x SM production: neural network NN<sub>FCNC</sub>
- O<sub>φq,tW</sub>: affects tW kinematic distributions; neural network NN<sub>jet,b-jet</sub> to discriminate (tt + DY) from tW; discriminate SM from New Physics effects



## Example effects:

- O<sub>G</sub>: doesn't affect tW; kinematic distributions not too sensitive: use yields to check for the effect of O<sub>G</sub> in tt production
- O<sub>uG,cG</sub>: affects tt & tW; kinematic distributions discriminate FCNC x SM production: neural network NN<sub>FCNC</sub>
- O<sub>φq,tW</sub>: affects tW kinematic distributions; neural network NN<sub>jet,b-jet</sub> to discriminate (tt 'bkg' + DY) from tW; discriminate SM from New Physics effects
- OtG: as above + affects differently tt and tW cross sections: use yields!

Multivariate analysis: SM-signal / SM-background / New Physics separation!



Example likelihood:



## Some effects:

- O<sub>G</sub>: doesn't affect tW; kinematic distributions not too sensitive: use yields to check for the effect of O<sub>G</sub> in tt production
- O<sub>uG,cG</sub>: affects tt & tW; kinematic distributions discriminate FCNC x SM production: neural network NN<sub>FCNC</sub>
- O<sub>φq,tW</sub>: affects tW kinematic distributions; neural network NN<sub>jet,b-jet</sub> to discriminate (tt 'bkg' + DY) from tW; discriminate SM from New Physics effects
- OtG: as above + affects differently tt and tW cross sections: use yields!



# Summary and conclusions

# Conclusions

#### · Increased precision on ATLAS and CMS measurements

- top quark couplings accessed in rare processes, this talk:
  - top pairs and single top production in association with vector bosons
  - top pairs and single top production in association with photons
- Some processes still statistically dominated :
  - naturally improving with current data taking
  - good prospects for more detailed measurements, e.g. differential associated production cross section

#### · Tools to interpret these measurements also improving

- e.g. accurate SM predictions ,
- EFT (global) studies using multiple processes: ttW and ttZ cross sections imposing limits to 8 Wilson operators
- also tZq already analyzed, in terms of EFT, e.g. arXiv:1804.07773

#### New approach on the experimental side

- model-independent measurements: analysis designed to be more sensitive to EFT-Lagrangian terms
  - · Improved chances of finding new physics!