New physics and flavour high-p_T

Markus Cristinziani

Universität Bonn & CERN CKM 2018, Heidelberg, Sept. 17 – 21, 2018

Great to be in Heidelberg!

QM'96: my first conference

Quark Matter 96

Heidelberg, Germany, May 20-24, 1996

The main focus of the conference will be on strongly interacting matter at high energy density. Topics to be discussed will include new data from experiments with very heavy ions at Brookhaven and CERN, theoretical developments, related astrophysical aspects and future perspectives.

International Advisory Committee G. Bayn, Urbana H. Gutbrod, Nantes M. Gyulasy, Columbia O. Hansen, Copenhagen J. Harris, Berkeley K. Kajante, Helsinki L. Kluberg, Palaiseau I. Ludlam, Brockhaven B. Müller, Duke S. Nagamiya, Columbia A. Paskanzer, Barkeley L. Riccati, Torino J. Schukraft, Geneva B. Sinha, Calcutta K. Yagi, Tsukuba Organizing Committee P. Braun-Munzinger, Darmstadt H. Satz, Bielefeld H.J. Specht, Darmstadt (Chair) J. Stachel, Heidelberg R. Stock, Frankfurt H. Stöcker, Frankfurt

Mailing Address: Quark Matter 96, GSI, Postfach 11 05 52, D-64220 Darmstadt, Germany hone: +49 6159 71 2648 and 2649, Fax: +49 6159 71 2991, Internet: qm96@GSI.de, www-url: http://qm96.gsi.de/welcom

Great to be at a CKM workshop !

There has never been a more exciting time for "high- p_T flavour physics"

A flood of first observations in the last year, months or even weeks

Constraining BSM ... but no clear sign, yet

Anomalies come and go (or stay?)

CKM2005 – 3.7 σ between $b \rightarrow c\bar{c}s$ and s-penguins

Anomalies come and go (or stay?)

CKM2016 – **2.4** σ excess for LFV H $\rightarrow \tau\mu$

Anomalies come and go (or stay?)

$\mathsf{CKM}_{2018} - \mathbf{\sim} \mathbf{4\sigma} \mathsf{LFU} \text{ violation in } B \to D^{(*)}\ell\nu$

High-p_T dataset at the LHC

Closer look at Higgs boson and Yukawa sector

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i\bar{\psi}D\psi$$
$$+ |D_{\mu}\phi|^2 - V(H)$$

Precision electroweak and QCD

Higgs coupling to bosons Higgs self interaction

 $+Y_{ij}\psi_i\psi_j\phi + h.c.$

Higgs coupling to fermions CKM matrix and CP violation

Status after Run-1

Higgs couplings

- to bosons: established
- to fermions: indirect

Assuming no new physics in the loops

JHEP 08 (2016) 045

Important to study all possible decay channels

Is it all Standard Model

like?

Searches

Interpretation

Higgs boson production and decay

161**0.0**7922

UNIVERSITÄT BONN OF MIGGS BOSON COUPLINGS to fermions

Indirect probe (loop diagrams)

Higgs and top quarks – ttH

Higgs and top quarks – ttH

Combination of channels and runs

Observation of *t***tH production !**

Higgs and top quarks – tH

Single top + Higgs

- very small production cross section in SM
- but enhanced ~10x if sign(κ_t/κ_V) opposite to SM $\rightarrow \sigma_{tH} > \sigma_{t\bar{t}H}$ possible
- can be used to constrain relative sign of \varkappa_t and \varkappa_V

New Run-2 combination

- data favors sign $(\kappa_t/\kappa_v)=1$ at 1.5 σ
- assuming SM ttH yield and SM tH acceptance
- CMS: μ_{tH} < 26.5 (13.6 expected)

Higgs and beauty quarks

$H \rightarrow b\bar{b}$ in earlier searches

- LEP: *m*_H > 114.4 GeV
- Tevatron: $m_{H} = 125 \text{ GeV} @ 2.8\sigma$

LHC Run-1

combined 2.6σ (3.7σ expected)

LHC Run-2

- improved b-tagging
- ATLAS and CMS pixel detector upgrades
- deep learning algorithms

ATLAS Insertable B-Layer

CMS Pixel detector upgrades

Higgs and beauty quarks

• WH and ZH most sensitive channels

「M Cric+inHi⊐rac¯ | Top, Higgs and Flavour | CKM 2018 | 17–Sep–2018]

H→µµ

Interpretation of p_T (Higgs)

Shape & normalisation of $p_T(H)$

• can give constraints on \varkappa_t , \varkappa_b , \varkappa_c and c_g (eff. ggH coupling)

Additional handle to constrain Higgs couplings

Higgs and charm quarks

ATLAS PRL 120 (2018) 211802

First direct search of $H \rightarrow c\bar{c}$

- use of charm tagging algorithms
- two BDTs, separating c- from light and c- from b-jets
- uncertainties: tagging, jet energy, background modelling
- $\mu < 110 \ (\mu = -69 \pm 101)$, tough channel!

Radiative Higgs decays to mesons

Search for $H \rightarrow M + \gamma$

- $M = \rho \rightarrow \pi \pi, \varphi \rightarrow KK, \psi(nS) \rightarrow \mu \mu, Y(nS) \rightarrow \mu \mu$
- $H \rightarrow q\bar{q}$ and $H \rightarrow \gamma \gamma^*$ amplitudes
- gives direct access to u, d, s, c Yukawa

ATLAS

JHEP 07 (2018) 127

- first constraint on light-quark Yukawa : $\mu_{H \rightarrow \rho\gamma} < 52$
- first limit on $H \rightarrow \psi(2S)\gamma$ decays
- cancellations in $H \rightarrow Y(nS)\gamma : y_b / y_b^{SM} < O(10)$

1807.00802

1807.00802

Higgs and fermions

The very colorful table of Higgs and fermions

Channel	μ	Significance	Reference	Experiment
tŦĦ	1.26 +0.31 -0.26	5.2 (4.2)	PRL 120 (2018) 231801	CMS
	1.32 +0.28 -0.26	6.3 (5.1)	PLB 784 (2018) 173	ATLAS
tH+X	< 26	$\varkappa_t \in$ (-0.9,-0.5) or (1.0, 2.1)	CMS PAS HIG-18-009	CMS
H → bb	1.01 + 0.20 -0.19	5.4 (5.5)	1808.08238	ATLAS
	1.04 ± 0.20	5.6 (5.5)	1808.08242	CMS
$H \rightarrow Y(1,2,3S)$	(< 94, < 420, <630) x 10 ³		1807.00802	ATLAS
H → c̄c	< 110 (-69 ± 101)		PRL 120 (2018) 211802	ATLAS
H → ψ(nS)γ	< 120 J/ ψ < 1900 ψ (2S)		1807.00802	ATLAS
Η → φγ Η → ργ	< 210 <52		JHEP 07 (2018) 127	ATLAS
Η → ττ	1.09 +0.27 -0.26	5.9 (5.9)	PLB 779 (2018) 283	CMS
	1.09 +0.36 -0.30	6.4 (5.4)	ATLAS-CONF-2018-021	ATLAS
Η → μμ	< 2.92 (1.0 ± 1.0)	0.9 (1.0)	1807.06325	CMS
	< 2.1 (0.1 +1.0 -1.1)		ATLAS-CONF-2018-026	ATLAS
$H \rightarrow \mu \tau$	< 0.25%			CME
Н → ет	< 0.61%		JHEP 00 (2010) 001	CIVIS

t

b

С

uds

τ

μ

LHC after the Higgs discovery

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i\bar{\psi}D\psi$$
$$+ |D_{\mu}\phi|^2 - V(H)$$

Precision electroweak and QCD Higgs coupling to bosons Higgs self interaction

$$+Y_{ij}\psi_i\psi_j\phi + \mathrm{h.}c.$$

Higgs coupling to fermions CKM matrix and CP violation

$$V(\phi) \sim -\mu^2 \left(\phi \phi^{\dagger}\right) + \left(\phi \phi^{\dagger}\right)^2$$

$$H = -3i \frac{m_H^2}{v} + -6i\lambda$$

$$H = -6i\lambda$$

Higgs self interaction can be probed through di-Higgs production

Di-Higgs production

Sensitive to Higgs self-coupling

- $\sigma(gg \rightarrow HH) / \sigma(gg \rightarrow H) \sim 1/1500$
- and to BSM physics

Strategy

Di-Higgs production

- CMS μ_{comb} < 22 (13 exp.) and ATLAS μ_{comb} < 6.7 (10.4 exp.)
- already below ~10 x SM
- goal: reach SM sensitivity with HL-LHC (3 ab⁻¹)

Extracting constraints on trilinear Higgs coupling

• $-5.0 < \lambda_{HHH} / \lambda^{SM}_{HHH} < 12.1 @ 95\% C.L.$ Atlas-Conf-2018-043

Is it all Standard-Model

like?

Searches

Interpretation

Top-quark production

Top-quark pairs via strong interaction

At LHC (13 TeV): $\sigma_{t\bar{t}}^{NNLO} = 830 \text{ pb} \pm 4\%$

Only 1 in 10⁸ collisions produces a top-quark pair 10⁸ collisions produced a top-quark pair

Single-top quarks via weak interaction

Single top + Z, γ

Evidence for tZ

Evidence for *t* γ

Production of four top quarks

SM ttt

- sensitive to NP and top Yukawa
- $\sigma_{t\bar{t}t\bar{t}}/\sigma_{t\bar{t}} = 10^{-5}$

Results

• **2.8σ** (1.0σ exp) SS, 3*l*, 2*l*, 1*l*

1.6σ (1.0σ exp) SS, 3ℓ

V_{tb} from single top

- *t-,* Wt-, s-channel @ 7, 8, 13 TeV
- assuming $|V_{tb}| \gg |V_{td}|$, $|V_{ts}|$

CMS

- $|V_{tb}| = 0.998 \pm 0.038 \pm 0.016$
- 7+8 TeV t-channel

LHCtopWG

- $|V_{tb}| = 1.02 \pm 0.08 \pm 0.04$
- 8 TeV Wt-channel

PDG '18

- $|V_{tb}| = 1.019 \pm 0.025$
- assumes correlated error

... there is much more than $|V_{tb}|$ in these measurements

Also:

studies of light-quark tagging and Vtd from Wt asymmetry Faroughy et al. '17 Faroughy et al. '18

Is it all Standard-Model

like?

Searches

Interpretation

LFV Higgs decays

Search for LFV Higgs decay τ -channels ($\tau\mu$, τe)

- decays are forbidden in the SM
- can occur in many NP scenarios
- would allow $\tau \rightarrow \ell$ via a virtual Higgs
- arise at tree level from the flavour violating Yukawa Y_ℓ^αℓ^β, where the two leptons have different flavours

$$\Gamma(\mathrm{H} \to \ell^{\alpha} \ell^{\beta}) = \frac{m_{\mathrm{H}}}{8\pi} \left(|Y_{\ell^{\beta} \ell^{\alpha}}|^{2} + |Y_{\ell^{\alpha} \ell^{\beta}}|^{2} \right)$$

$$B(\mathbf{H} \to \ell^{\alpha} \ell^{\beta}) = \frac{\Gamma(\mathbf{H} \to \ell^{\alpha} \ell^{\beta})}{\Gamma(\mathbf{H} \to \ell^{\alpha} \ell^{\beta}) + \Gamma_{SM}}$$

Previous direct searches

- CMS: 2.4 σ excess in the $H \rightarrow \mu \tau$ channel PLB 749 (2015) 337
- ATLAS: no excess observed JHEP 11 (2015) 211 EPJC 77 (2017) 70

LFV Higgs decays

CMS update with 36 fb⁻¹ and BDT discr.

• excludes BF of best fit for 2.4σ excess

New limits

ATLAS EPJC 77 (2017) 70 CMS JHEP 06 (2018) 001

Top FCNC

Flavour changing neutral currents and top quarks

- suppressed in SM, access to BSM physics in the loops
- search for $t \rightarrow (\gamma, g, Z, H) + (u, c)$

Top FCNC

New results for this week

- $t \rightarrow H(b\bar{b})q$ or $t \rightarrow H(\tau\tau)q$
- full combination of 2015–2016 dataset for $t \rightarrow Hq$

Results

• $B(t \rightarrow Hc) < 11(8.3) \times 10^{-4}$ and $B(t \rightarrow Hu) < 12(8.3) \times 10^{-4}$

ATLAS-CONF-2018-049

Vector-like partners of 3rd generation quarks

- color-triplet spin-1/2
- couple preferentially to 3rd generation

New combination of all channels

decays of T(+2/3), B(-1/3) to W, Z, H bosons

- m_T < 1.31 TeV
- *m*_B < 1.22 TeV

Weak isospin (T, B) doublet

• m_T and m_B < 1.37 TeV excluded

36

 The second se

 $\rm m_{B}\,[GeV]$

ATLAS 1808.02343

Implications of B-anomalies (I)

$R_{D(*)}$ and $R_{K(*)}$ anomalies

challenging Lepton Flavour Universality

Rescue of leptoquarks?

- Could preferentially couple to 3rd generation leptons and quarks
- final states with t, b, τ, ν

Recent results

- LQ LQ $\rightarrow \ell \tau j j$
- single LQ $\rightarrow \ell \tau(\tau) b$

 $\frac{\lambda}{b}$

CMS JHEP 07 (2017) 121

CMS JHEP 07 (2018) 115

0.0

500

1000

Leptoquark mass (GeV)

1500

r м ⊣ ≓⊐≘⊂́nziani | Top, Higgs and Flavour | CKM 2018 | 17–Sep–2018]

Implications of B-anomalies (III)

Is it all Standard-Model

like?

Searches

Interpretation

Interpretation of top physics results

Precision measurements and explicit models

• e.g. asymmetries

UNIVERSITÄT BON

CKM 2012

CKM 2014

Interpretation of top physics results

Extracting limits on anomalous couplings

erc

UNIVERSITÄT BO

• e.g. Wtb
$$\mathfrak{L} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}\left(f_{V}^{L}P_{L} + f_{V}^{R}P_{R}\right)tW_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}\partial_{\nu}W_{\mu}^{-}}{M_{W}}\left(f_{T}^{L}P_{L} + f_{T}^{R}P_{R}\right)t + h.c.$$

1.4 <u>_</u>۲ 95% CL observed 68% CL observed 1.3 95% CL expected 68% CL expected 1.2 1.1 1 0.9 0.8 0.7 0.6^L $\overline{f_V^R}$ 0.1 0.2 0.3 0.4 0.5 0.6 **CKM 2016**

CMS preliminary, $\sqrt{s} = 7$ TeV, L = 5.0 fb⁻¹

UNIVERSITÄT **BONN Effective Field Theory interpretation**

No direct evidence for NP

- add all "possible" operators to SM Lagrangian
- respect SM symmetries (results in d > 4)

[M. Cristinziani | Top, Higgs and Flavour | CKM 2018 | 17–Sep–2018]

CKM 2018

Constraining new physics with EFT

Example

- $d\sigma/d\Delta \phi$
- constrain top chromomagnetic dipole moment
- -0.06 < C_{tG}/Λ^2 < 0.41

CMS PAS TOP-17-014

Global fits: EFTFitter

Castro et al. '16

- combination
- include correlations
- consistent treatment of backgnd

 $\sigma_t 8 \text{TeV} + 7 \text{TeV} + 13 \text{TeV} + \text{differential} + W \text{helicity}$

New first time results

observation of Yukawa coupling with third generation: t, b, τ

What's next

Future directions

HE-LHC @ 27 TeV

• FCC-hh @ 100 TeV

- Run-2 data doubles/quadruplicates
- improved couplings, FCNC/LFV test and BSM sensitivity
- only < 3% of the final LHC data analysed \rightarrow much more to come!

more options on the horizon: CEPC, CLIC, ILC, FCC-xx, ...

Backup

Higgs and tau leptons

• All τ leptonic and hadronic decay modes considered

CMS PLB 779 (2018) 283 ATLAS-CONF-2018-021

- now observed in each experiment separately A. Mohammadi
- main discriminant: $m_{\tau\tau}$, crucial to distinguish $H \rightarrow \tau\tau$ and $Z \rightarrow \tau\tau$

Higgs and muons

- $H \rightarrow \mu \mu$
 - events with two isolated OS muons, $p_T(\mu_1)$ > 25 GeV
- H. Li categories according to η_{μ} , $p_{T}(\mu)$ and BDT R. Gerenhancing VBF
 - fit to m_{µµ} distribution in each category
 - background from sidebands using analytic function

	CMS PAS HIG-17-019	ATLAS-CONF-2018-026		
	CMS (36fb ⁻¹)	ATLAS (80fb ⁻¹)		
$\mu_{\mu\mu}$	0.7 ± 1.0	$0.1^{+1.0}_{-1.1}$		
95% CL	$\mu_{\mu\mu} < 2.6 \ (2.1 \ \text{exp})$	$\mu_{\mu\mu} < 2.1 \ (2.0 \ \text{exp})$		
Getting close to SM sensitivity!				

Run-1 7 and 8 TeV

- ATLAS 2.7σ (1.6σ exp.)
- CMS 3.6σ (1.3σ exp.)

JHEP 08 (2016) 045

Run-2 13 TeV 36/fb (2015-16)

• ATLAS 4.2σ (3.8σ exp.)

PRD 97 (2018) 072003

• CMS 3.2σ (2.8σ exp.)

Run-2 13 TeV up to 80/fb (2015-17)

• ATLAS 5.8 σ (4.9 σ exp.) PLB 784 (2018) 173

PLB 784 (2018) 173

Combination Run-1 + Run-2

• ATLAS 6.3σ (5.1σ exp.)

PLB 784 (2018) 173

• CMS 5.2σ (4.2σ exp.)