

Flight distance

muon

muon

Dion

Experimental review of flavour anomalies in *b*-hadron decays

IP Ĵ

T. Blake for the LHCb collaboration

CKM 2018, Heidelberg

THE UNIVERSITY OF WARWICK

Flavour anomalies

- 1. $b \rightarrow s \ell^+ \ell^-$ processes
 - → Rate and angular distribution of exclusive $b \rightarrow s\mu^+\mu^-$ decays.
 - → Relative rates of $b \to se^+e^-$ and $b \to s\mu^+\mu^-$ decays ($R_{K^{(*)}}$)
- 2. $b \rightarrow c \tau^- \bar{\nu}_{\tau}$ decays
 - → Rate of $b \rightarrow c\tau^- \bar{\nu}_{\tau}$ decays versus decays with e/μ ($R(D^{(*)})$).

Electroweak penguin decays

• Flavour changing neutral current transitions that only occur at loop order (and beyond) in the SM.

 $^{\vee}W$

• New particles can also contribute:

enhancing/suppressing decay rates, introducing new sources of *CP* violation and/or modifying the angular distribution of the final-state particles.

Expected $d\Gamma/dq^2$ spectrum

Branching fraction measurements

• We already have precise measurements of branching fractions from the Run1 data, with at least comparable precision to SM expectations:

SM predictions have large theoretical uncertainties from hadronic form factors (3 for B→K and 7 for B→K* decays). For details see Bobeth et al [JHEP 01 (2012) 107], Bouchard et al. [PRL111 (2013) 162002], Altmannshofer & Straub [EPJC (2015) 75 382].

Branching fraction measurements

$$B^0 \rightarrow K^{*0} \mu^+ \mu^-$$
 angular distribution

Complex angular distribution, described by three angles:

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\vec{\Omega}}\Big|_{\mathrm{P}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K + F_{\mathrm{L}}$$

The observables depend on form-factors for the $B \rightarrow K^*$ transition plus the underlying short distance physics (Wilson coefficients).

Experiments can reduce the complexity by folding the angular distribution, see LHCb [PRL 111 (2013) 191801]

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular observables

- Overlaying results for $F_{\rm L}$ and $A_{\rm FB}$ from LHCb [JHEP 02 (2016) 104], CMS [PLB 753 (2016) 424] and ATLAS [ATLAS-CONF-2017-023].
- SM predictions based on Altmannshofer & Straub [EPJC 75 (2015) 382] LCSR form-factors from Bharucha, Straub & Zwicky, [JHEP 08 (2016) 98] Lattice form-factors from Horgan, Liu, Meinel & Wingate [arXiv:1501.00367]
 }
 Solution fit performed

 Performed

Form-factor "free" observables

- - One is associated with A₀ and the other A_∥ and A_⊥.
- Can then construct ratios of observables which are independent of these soft formfactors at leading order, e.g.

$$P_5' = S_5 / \sqrt{F_{\rm L} (1 - F_{\rm L})}$$

 P'₅ is one of a set of so-called form-factor free observables that can be measured Descotes-Genon et al. [JHEP 04 (2012) 104].

Global fits

• Several attempts to interpret our results through global fits to $b \rightarrow s$ data.

Data are consistent between experiments/measurements and favour a modified vector coupling ($C_{9^{NP}} \neq 0$) at 4-5 σ .

see talk by Danny van Dyk (and talk by David Straub)

$B^+ \rightarrow K^+ \mu^+ \mu^- \text{ decay}$

• Decay described by single angle θ_1 and q^2 :

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_l} = \frac{3}{4} (1 - F_\mathrm{H})(1 - \cos^2\theta_l) + \frac{F_\mathrm{H}}{2} + A_\mathrm{FB}\cos\theta_l$$

- In the SM operator basis $A_{\rm FB} = 0$ and $F_{\rm H} \approx 0$.
- Only non-zero if there are new scalar/pseudoscalar or tensor contributions.
- Data consistent with a SM-like picture.
- We also know from $\mathcal{B}(B_s \to \mu^+ \mu^-) \text{ that scalar \& pseudoscalar contributions are very small.}$

CMS [arXiv:1806.00636],

$\Lambda_b \rightarrow \Lambda \mu^+ \mu^- decay$

- First observed by the CDF collaboration in [PRL 107 (2011) 201802]
- Decay has unique phenomenology:
 - Diquark pair as a spectator rather than single quark;
 - → Λ_b can be produced polarised in pp collisions;
 - ➡ and the A baryon decays via the weak interaction.
- Based on [JHEP 06 (2015) 115], expect signal predominantly at low hadronic-recoil (15<q²<20 GeV²/c⁴).

Figure and SM prediction from: Detmold et al. [PRD 93 (2016) 074501]

Data from: LHCb [JHEP 06 (2015) 115]

T. Blake

$\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ angular distribution

- First measurement of the full set of angular observables for Λ_b→Λµ⁺µ⁻.
- Decay is described by 5 angles and a normalvector:

 $\frac{\mathrm{d}^5\Gamma}{\mathrm{d}\vec{\Omega}} = \frac{3}{32\pi^2} \sum_{i}^{34} K_i(q^2) f_i(\vec{\Omega})$

 K₁₁ — K₃₄ are consistent with having a small production polarisation (i.e. consistent with zero). Data are consistent with SM predictions from

Boër et al. [JHEP 01 (2015) 155] Detmold et al. [PRD 93 (2016) 074501]

Lepton universality tests

In the SM, ratios

$$R_{\rm K} = \frac{\int d\Gamma[B^+ \to K^+ \mu^+ \mu^-]/dq^2 \cdot dq^2}{\int d\Gamma[B^+ \to K^+ e^+ e^-]/dq^2 \cdot dq^2}$$

only differ from unity by phase space — the dominant SM processes couple equally to the different lepton flavours.

- Theoretically clean since hadronic uncertainties cancel in the ratio.
- Experimentally challenging due to differences in muon/electron reconstruction (in particular Bremsstrahlung from the electrons).
 - → Take double ratios with $B \rightarrow J/\psi K^{(*)}$ decays to cancel possible sources of systematic uncertainty.
 - Correct for migration of events in q² due to FSR/Bremsstrahlung using MC (with PHOTOS).

Lepton universality tests

• Interesting hints of non-universal lepton couplings in LHCb's run 1 dataset:

model explaining the $B^0 \rightarrow K^{*0} \mu^+ \mu^$ angular observables, see $L\mu - L\tau$ models **W. Altmannshofer et al. [PRD 89 (2014) 095033]**

Belle [PRL 103 (2009) 171801]

Flavour anomalies

- 1. $b \rightarrow s \ell^+ \ell^-$ processes
 - → Rate and angular distribution of exclusive $b \rightarrow s\mu^+\mu^-$ decays.
 - → Relative rates of $b \to se^+e^-$ and $b \to s\mu^+\mu^-$ decays $(R_{K^{(*)}})$

2. $b \rightarrow c \tau^- \bar{\nu}_{\tau}$ decays

→ Rate of $b \to c\tau^- \bar{\nu}_{\tau}$ decays versus decays with e/μ ($R(D^{(*)})$).

$b \rightarrow c \tau v decays$

- Ratios $R(D^{(*)}) = \Gamma[B \to D^{(*)}\tau\nu]/\Gamma[B \to D^{(*)}\ell\nu]$ are also theoretically clean in the SM:
 - Coupling to leptons is universal.
 - ➡ Hadronic uncertainties and |V_{cb}| cancel in the ratio.

and can be enhanced in extensions of the SM (*e.g.* with charged Higgs).

• Complicated experimentally by missing energy in the final-state from multiple missing neutrinos.

$R(D^*)$ with $\tau \rightarrow 3\pi(\pi^0)V$

- Experimental challenge is to separate signal from backgrounds.
 - Use missing mass, lepton energy, q^2 and multivariate discriminants.
 - → Can use boost approximation to determine kinematic quantities $((\beta_z \gamma)_{vis} \approx (\beta_z \gamma)_B).$
- *B*-factory experiments can exploit leptonic/hadronic tag of the other *B* in the event and centre-of-mass constraints.

Modelling of *D*^{**} and hadronic backgrounds is important

T. Blake

R(D) versus R(D*)

Combination of R(D) and $R(D^*)$ is 3.8 σ from the corresponding SM prediction.

- SM predictions:
 - → R(D) from FLAG working group [EPJC 77 (2017) 112].
 - → $R(D^*)$ from S. Fajfer et al. [PRD 85 (2012) 094025].

$R(J/\psi)$

LHCb has also measured a similar ratio using B_c decays:

$$R(J/\psi) = \frac{\Gamma[B_c^+ \to J/\psi \tau^+ \nu_{\tau}]}{\Gamma[B_c^+ \to J/\psi \mu^+ \nu_{\mu}]}$$

= 0.71 ± 0.17 (stat) ± 0.18 (syst)
[LHCb, PRL120 (2018) 121801]

- Perform a template fit to the B_c decay time, to $m_{\rm miss}^2$ and a category label $Z(q^2, E_{\mu}^*)$.
- SM predictions based on the quark-model/QCD sum rules are in the range 0.25–0.28.
- Systematic uncertainty driven by knowledge of the $B_c^+ \rightarrow J/\psi$ form-factors and the size of the simulated samples used to derive the templates.

$B \rightarrow D^* \tau v$ angular distribution

- Can also look at the angular distribution of the final-state particles.
- eg Can measure $\theta_{hel}(\tau)$ and $\theta_{hel}(D^*)$ using hadronic τ decays.
- Angular projections:

dГ

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{\mathrm{hel}}(\tau)} = \frac{1}{2} \left(1 + \alpha P_{\tau}\cos\theta_{\mathrm{hel}}(\tau)\right)$$
$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{\mathrm{hel}}(D^*)} = \frac{3}{4} \left(2F_{\mathrm{L}}\cos^2\theta_{\mathrm{hel}}(D^*) + (1 - F_{\mathrm{L}})\sin^2\theta_{\mathrm{hel}}(D^*)\right)$$

$B \rightarrow D^* \tau v$ angular distribution

 From the forward-backward asymmetry of 1-prong decays Belle measures:

 $P_{\tau}(D^*) = -0.38 \pm 0.51 \,(\text{stat})^{+0.21}_{-0.16} \,(\text{syst})$

with [PRL118 (2017) 211801].

• *Preliminary* measurement of $F_{\rm L}$ also shown for the first time at CKM 2018:

 $F_{\rm L} = 0.60 \pm 0.08 \,({\rm stat}) \pm 0.035 \,({\rm syst})$

[see talk by K. Adamczyk].

 Measured value of F_L consistent with SM predictions within 2σ e.g.
 Alok et al. [PRD 95 (2017) 115038].

Belle [PRL 118 (2017) 211801]

Summary

- Anomalies in $b \rightarrow s\ell^+\ell^-$ processes:
 - Branching fractions of $b \rightarrow s\mu^+\mu^-$ processes systematically below SM predictions (inclusive branching fraction is consistent).
 - R_K and R_{K^*} different from unity.
 - P_5' anomaly in the angular distribution of $B^0 \to K^{*0} \mu^+ \mu^-$.
- Anomalies in $b \to c\ell^- \bar{\nu}_\ell$ processes:
 - R(D) and $R(D^*)$ larger than SM predictions.
- Long-standing tension between inclusive and exclusive determinations of $|V_{ub}|$ and $|V_{cb}|$.

 $\mathcal{O}(20\% \text{ SM})$ on loop-order process

Summary

 Huge progress expected in the next five years with new data from the LHC experiments (including parked datasets) and from Belle II.

Resonant contributions

- With the large LHC datasets can also explore the shape of the dΓ/dq² spectrum in detail.
- See evidence for broad charmonium states and light quark contributions.
- Can determine relative magnitude/phases of the different contributions.

 Data could be used to exclude models proposing new GeV-scale particles as an explanation for R_K/R_{K*}. [F. Sala & D. Straub, arXiv:1704.06188]

$B^+ \rightarrow K^+ \ell^+ \ell^-$ candidates

• Even after Bremsstrahlung recovery there are significant differences between dielectron and dimuon final states:

$B_{\rm S} \rightarrow \mu^+ \mu^-$

- Recent LHCb analysis using run 1 and 2 data ($3fb^{-1} + 1.4fb^{-1}$) provided the first single experiment observation of $B_s \rightarrow \mu^+ \mu^-$ at more than 7σ . [LHCb, PRL 118 (2017) 191801]
- Measurements are all consistent with the SM expectation.
 - → Can exclude large scalar contributions.

Effective lifetime

• The untagged time dependent decay rate is

$$\Gamma[B_s(t) \to \mu^+ \mu^-] + \Gamma[\bar{B}_s(t) \to \mu^+ \mu^-] \propto e^{-t/\tau_{B_s}} \left\{ \cosh\left(\frac{\Delta\Gamma_s}{2}t\right) + A_{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s}{2}t\right) \right\}$$

- A_{ΔΓ} provides additional separation between scalar and pesudoscalar contributions.
- In the SM $A_{\Delta\Gamma} = 1$ such that the system evolves with the lifetime of the heavy B_s mass eigenstate.

$B_{\rm s} \rightarrow \mu^+ \mu^-$ effective lifetime

• The $A_{\Delta\Gamma}$ parameter modifies the effective lifetime of the decay:

$$\tau_{\rm eff} = \frac{\tau_{B_s}}{1 - y_s^2} \left(\frac{1 + 2A_{\Delta\Gamma} y_s + y_s^2}{1 + A_{\Delta\Gamma} y_s} \right) \quad {\rm where} \ \ y_s = \tau_{B_s} \frac{\Delta\Gamma}{2}$$

• LHCb have performed a first measurement of $au_{\rm eff}$, giving

 $\tau[B_s^0 \to \mu^+ \mu^-] = 2.04 \pm 0.44 \pm 0.05 \,\mathrm{ps}$

NB Not yet sensitive to $A_{\Delta\Gamma}$ (the stat. uncertainty is larger than the change in the lifetime from $\Delta\Gamma_s$). This will become more interesting during runs 3 and 4.

s.d

- LHCb performs a search for $B_{(s,d)} \rightarrow \tau^+ \tau^$ decays using $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$.
 - ► Exploit the $\tau^- \rightarrow a_1(1260)^- \nu_{\tau}$ and $a_1(1260)^- \rightarrow \rho(770)^0 \pi^-$ decays to select signal/control regions of dipion mass.
- Fit Neural network response to discriminate signal from background.
 - Ditau mass is not a good discriminator due to missing neutrino energy.
- LHCb sets limits on: $\mathcal{B}(B_s^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3} \text{ (95\% CL)}$ $\mathcal{B}(B^0 \to \tau^+ \tau^-) < 2.1 \times 10^{-3} \text{ (95\% CL)}$

First limit on $B_s \rightarrow \tau^+ \tau^-$ and worlds best limit on $B^0 \rightarrow \tau^+ \tau^-$

$\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ angular distribution

Large asymmetries on both the lepton- and hadron-side:

$$A_{\rm FB}^{\ell} = -0.39 \pm 0.04 \,(\text{stat}) \pm 0.01 \,(\text{syst}) \qquad \text{Preliminary} \\ A_{\rm FB}^{h} = -0.30 \pm 0.05 \,(\text{stat}) \pm 0.02 \,(\text{syst}) \qquad \text{Preliminary} \\ A_{\rm FB}^{\ell h} = +0.25 \pm 0.04 \,(\text{stat}) \pm 0.01 \,(\text{syst}) \qquad \text{Preliminary} \\ \text{Preliminary} \qquad \text{Preliminary} \end{cases} \begin{cases} \text{Consistent with} \\ \text{SM predictions} \\ \text{(PRD 93 (2016) 074501]} \\ (A_{\rm FB}^{\ell h} \text{ is } \sim 2\sigma \text{ from its} \\ \text{prediction}) \end{cases}$$

Hadron-side asymmetry due to the weak decay of the Λ baryon.

with

Effective theory

• Can write a Hamiltonian for an effective theory of $b \rightarrow s$ processes:

Operators

- Different processes are sensitive to different 4-fermion operators.
 - Can exploit this to over-constrain the system.

 $\mathcal{O}_{7} = (m_{b}/e) \left(\bar{s} \sigma^{\mu\nu} P_{R} b F_{\mu\nu} \right)$ $\mathcal{O}_{9} = \left(\bar{s} \gamma_{\mu} P_{L} b \right) \left(\bar{\ell} \gamma^{\mu} \ell \right)$ $\mathcal{O}_{9} = \left(\bar{s} \gamma_{\mu} P_{L} b \right) \left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell \right)$ $\mathcal{O}_{10} = \left(\bar{s} \gamma_{\mu} P_{L} b \right) \left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell \right)$ $\mathcal{O}_{S} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \ell \right)$ $\mathcal{O}_{P} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{\ell} \gamma_{5} \ell \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{s} \rho_{6} \right)$ $\mathcal{O}_{R} = \left(\bar{s} P_{R} b \right) \left(\bar{s} \rho_$

e.g.
$$B_s^0 \to \mu^+ \mu^-$$
 constrains $C_{10} - C'_{10}, C_S - C'_S, C_P - C'_P$
 $B^+ \to K^+ \mu^+ \mu^-$ constrains $C_9 + C'_9, C_{10} + C'_{10}$
 $B^0 \to K^{*0} \mu^+ \mu^-$ constrains $C_7 \pm C'_7, C_9 \pm C'_9, C_{10} \pm C'_{10}$

The primes denote right-handed counterparts of the operators whose contribution is small in the SM.

 $\rightarrow K^+\ell^+\ell^-$

• Angular distribution of $B^+ \rightarrow K^+ \ell^+ \ell^-$ is a null test of SM, but can be sensitive to new scalar/pseudoscalar/tensor contributions, e.g.

$\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ angular distribution

- If the Λ_b is produced polarised the decay is described by 5 angles and normal-vector, \hat{n} .
- Large number of observables:

$$\frac{\mathrm{d}^5\Gamma}{\mathrm{d}\vec{\Omega}} = \frac{3}{32\pi^2} \sum_i^{34} K_i(q^2) f_i(\vec{\Omega})$$

where K_{11} — K_{34} are zero if the Λ_b is unpolarised. [Blake et al. JHEP 11 (2017) 138]

- Determine observables using the *method of moments* and a set of orthogonal weighing functions.
- Correct for angular efficiency using per-candidate weights determined on simulated phasespace events.
- Analysis cross-checked using $B^0 \to J/\psi K_S$ and $\Lambda_b \to J/\psi \Lambda$ decays selected in same way as the signal.

Angular observables

- Angular distribution provides many observables that are sensitive to BSM effects.
- Constraints are orthogonal to branching fraction measurements, both in their impact in global fits and in terms of experimental uncertainties.
- eg $B \to K^{*0} \mu^+ \mu^-$ decay described by three angles and q^2 .

(a) θ_K and θ_ℓ definitions for the B^0 decay

(c) ϕ definition for the $\overline{B}{}^0$ decay

$R(D^*)$ with $\tau \rightarrow \mu V$

- Experimental challenge is to separate signal from backgrounds.
 - → Use missing mass, lepton energy, q^2 and multivariate discriminants.
 - → Can use boost approximation to determine kinematic quantities $((\beta_z \gamma)_{vis} \approx (\beta_z \gamma)_B).$
- *B*-factory experiments can exploit leptonic/hadronic tag of the other *B* in the event and centre-of-mass constraints.

Modelling of *D*^{**} and hadronic background is important

 $B \rightarrow D^* \tau v, B \rightarrow D^* H_c(\rightarrow \mu v X') X, B \rightarrow D^{**} \mu v,$ $B \rightarrow D^* \mu v,$ combinatorial, misidentified

T. Blake

Vub and Vcb

[hflav.web.cern.ch]

 Long-standing tension between inclusive and exclusive determinations of V_{ub} and V_{cb}.

