Status of global CKM fits

Marcella Bona QMUL

CK @CKM2006 in Nagoya

10th International Workshop on the CKM Unitarity Triangle Friday September 21st 2018 Heidelberg, Germany

\leq $\langle \rangle \gg \langle \rangle$ Status of CKM fits **CKM matrix and the Wolfenstein parameterisation** $1-\lambda^2/2$ $A\lambda^{3}(ρ - iη)$ λ ℓ^{-} Vus V_{ub} Vud W^{-} W^{-} W^{-} b S 11 Κ В π π $1 - \lambda^2/2$ $A\lambda^2$ *l*+ 1+ V_{cs} V_{cd} V_{cb} W^+ W⁺ W^{-} С b С D D В Κ D π $\overline{\mathsf{d}}$ $\overline{\mathsf{b}}$ $\overline{\mathsf{b}}$ Ŧ \overline{s} V_{tb} W^+ B_d^0 \overline{B}^0_d Vtd V_{ts} \overline{B}_{s}^{0} B_s^0 W W W W b S d t b b - Αλ² $A\lambda^{3}(1 - \rho - i\eta)$

CKM matrix and Unitarity Triangle

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Status of CKM fits

CKM parameter extraction

example of observables

(b ightarrow u)/(b ightarrow c)	$ar{ ho}^2+ar{\eta}^2$	$ar{\Lambda}, oldsymbol{\lambda}_1, oldsymbol{F}(1), $	Standard Model 4
ϵ_K	$ar{\eta}[(1-ar{ ho})+P]$	$oldsymbol{B_K}$ }	OPE/HQET
Δm_d	$(1-ar ho)^2+ar\eta^2$	$f_B^2 B_B$	\mathbf{m}_{t} to go
$\Delta m_d/\Delta m_s$	$(1-ar{ ho})^2+ar{\eta}^2$	ξ	from quarks to hadrons
$A_{CP}(J/\psi K_S)$	$\sin 2oldsymbol{eta}$		

Joined WG4+WG5, Thursday

Marcella Bona

Charles et al. (CKMfitter Group) Phys. Rev. D 91, 073007 (2015) arXiv:1501.05013 [hep-ph]

M. Bona *et al.* (UTfit Collaboration) JHEP 0507:028,2005 hep-ph/0501199 M. Bona *et al.* (UTfit Collaboration) JHEP 0603:080,2006 hep-ph/0509219

Other UT analyses exist, by: Laiho&Lunghi&Van de Water @http://latticeaverages.org/, Lunghi&Soni (1010.6069), etc..

Status of CKM fits

$= \langle \mathbf{X} | \mathbf{X} \rangle \\ = \langle$ Status of CKM fits **CKM matrix and the Wolfenstein parameterisation** $1 - \lambda^2/2$ $A\lambda^{3}(\rho - i\eta)$ ℓ^- Vus V_{ub} Vud W⁻ W⁻ W^{-} b S 11 В Κ π π $1 - \lambda^2/2$ $A\lambda^2$ Vcs V_{cb} V_{cd} W^+ W⁺ W^{-} b С D В D Κ D π $\overline{\mathsf{d}}$ $\overline{\mathsf{b}}$ $\overline{\mathsf{b}}$ Ŧ \overline{s} V_{tb} W^+ B_d^0 \overline{B}^0_d V_{td} V_{ts} \overline{B}_{s}^{0} B_s^0 W W W W b S d t b b 1 - Αλ² $A\lambda^{3}(1 - \rho - i\eta)$

Marcella Bona

5₿

first two generations:

mainly decoupled from the third: the global fits include the relevant inputs

V_{ud} from nuclear beta decays:

 $V_{\text{ud}} = 0.97420 \pm 0.00021$

Marcella Bona

arXiv:1411.5987 [nucl-ex] updated in CKM2016, and PDG

Status of CKM

WG1, Thursday Neutron lifetime and g_A/g_V, Saunders |Vus|/|Vud| from K_ μ 2/ π_{μ} 2, Tantalo

first two generations:

mainly decoupled from the third: the global fits include the relevant inputs

 $|V_{us}|$ from K semileptonic decays modulo the form factor at q²=0

 $|V_{us}| = 0.2248 \pm 0.0007$ from FLAV average

CKMfitter report from Vale Silva, Joint WG4+WG5, Thursday

CKM	Process	Observables			Theoretical inputs		
$ V_{ud} $	$0^+ \rightarrow 0^+ \beta$	$ V_{ud} _{\text{nucl}} = 0.97420 \pm 0 \pm 0.00021$		Nuclear matrix elements			
$ V_{us} $	$K \to \pi \ell \nu$	$ V_{us} _{\mathrm{SL}}f_+^{K\to\pi}(0)$	=	0.2165 ± 0.0004	$f_+^{K \to \pi}(0)$	=	$0.9681 \pm 0.0014 \pm 0.0022$
	$K \to e \nu$	$\mathcal{B}(K o e u)$	=	$(1.582 \pm 0.007) \cdot 10^{-5}$	f_K	=	$155.6 \pm 0.2 \pm 0.6 \text{ MeV}$
	$K \to \mu \nu$	$\mathcal{B}(K o \mu u)$	=	0.6356 ± 0.0011			
	$\tau \to K \nu$	$\mathcal{B}(au o K u)$	=	$(0.6960 \pm 0.0096) \cdot 10^{-2}$			
$\frac{ V_{us} }{ V_{ud} }$	$K ightarrow \mu u / \pi ightarrow \mu u$	$\frac{\mathcal{B}(K \to \mu \nu)}{\mathcal{B}(\pi \to \mu \nu)}$	=	1.3367 ± 0.0029	f_K/f_π	=	$1.1959 \pm 0.0007 \pm 0.0029$
1 001	$\tau \to K \nu / \tau \to \pi \nu$	$rac{\mathcal{B}(au o K u)}{\mathcal{B}(au o \pi u)}$	=	$(6.438 \pm 0.094) \cdot 10^{-2}$			
$ V_{cd} $	u N	$ V_{cd} _{\rm not\ lattice}$	=	0.230 ± 0.011			
	$D o \mu \nu$	$\mathcal{B}(D \to \mu \nu)$	=	$(3.74 \pm 0.17) \cdot 10^{-4}$	f_{D_s}/f_D	=	$1.175 \pm 0.001 \pm 0.004$
	$D o \pi \ell \nu$	$ V_{cd} f_+^{D\to\pi}(0)$	=	0.1426 ± 0.0019	$f_+^{D \to \pi}(0)$	=	$0.621 \pm 0.016 \pm 0.012$
$ V_{cs} $	$W \to c \bar{s}$	$ V_{cs} _{\rm not\ lattice}$	=	$0.94^{+0.32}_{-0.26} \pm 0.13$		1111 (1111) (1111) (1111) (1111) (1111) (1111) (1111)	
	$D_s o au u$	$\mathcal{B}(D_s \to \tau \nu)$	=	$(5.55 \pm 0.24) \cdot 10^{-2}$	f_{D_s}	=	$247.8 \pm 0.3 \pm 2.0 ~{\rm MeV}$
	$D_s o \mu u$	$\mathcal{B}(D_s o \mu u)$	=	$(5.39 \pm 0.16) \cdot 10^{-3}$			
	$D \to K \ell \nu$	$ V_{cs} f_+^{D\to K}(0)$	=	0.7226 ± 0.0034	$f_{+}^{D \to K}(0)$	=	$0.741 \pm 0.010 \pm 0.012$

PDG2018 value: 0.2243 ± 0.0005

Status of

third generation: the observables

Tree-level diagrams: $|V_{ub}|$, $|V_{cb}|$, γ Loop diagrams: Δm_d , Δm_s , ε_K CP-conserving: $|V_{xb}|$, Δm_d , Δm_s CP-violating: $\sin(2\beta)$, α , γ , ε_K

Status of

$V_{\mbox{\tiny cb}}$ and $V_{\mbox{\tiny ub}}$ from semileptonic B decays

From tree level processes: semileptonic B decays $B \rightarrow X_{u,c} I_V$ Use theory to relate partial branching fractions to V_{xb} for a given region of phase space. Can study modes exclusively or inclusively: different experimental and theoretical issues.

only inclusives: before and now

Status of CKM

only inclusives: before and now

Status of CKM

γ (ϕ_3) from B decays in DK

B to $D^{(*)}K^{(*)}$ decays: from BRs and BR ratios, no time-dependent analysis, just rates. the phase γ is measured exploiting interferences between b \rightarrow c and b \rightarrow u transitions: two amplitudes leading to the same final states some rates can be really small: $\sim 10^{-7}$

need to combine all the possible modes and analysis methods.

Status of CKM fits

18

Status of CKM fits

β (ϕ_1) from b to ccs transitions

sin2β from time-dependent CP asymmetry: interference between tree and mixing box

Marcella Bona

sin(2β) $[J/\psi K^0] = 0.690 \pm 0.018$ adding -0.01 ± 0.01 as data-driven theory uncertainty M.Ciuchini, M.Pierini, L.Silvestrini Phys. Rev. Lett. 95, 221804 (2005) **CKM** fitter sin(2β) $[c\bar{c}] = 0.699 \pm 0.017$ HFLAV

α (ϕ_2) from $\pi\pi$, $\rho\rho$, $\pi\rho$ decays with Isospin analysis

Interference between box mixing and tree diagrams results in an asymmetry that is sensitive to α in $B \rightarrow hh$ decays: $h = \pi, \rho$ Unlike for β , loop (penguin diagrams) corrections are not negligible for α Need Isospin analysis including all modes (B of all charges and flavours) to obtain the α estimate

α (ϕ_2) from $\pi\pi$, $\rho\rho$, $\pi\rho$ decays with Isospin analysis

α updated with latest $\pi\pi/\rho\rho$ BR and C/S results

angle fit from HFLAV

 $\langle \rangle \gg \langle \rangle$

Marcella Bona

Status of CKM fits

lattice QCD inputs for mixing

in general: average the Nf=2+1+1 and Nf=2+1 FLAG averages for Bk, fBs, fBs/fBd: FLAG Nf=2+1+1 (single result) and Nf=2+1 average for B_{Bs} , B_{bs}/B_{bd} : web update of FLAG Nf=2+1 average

Observa-

bles

Βκ

f_{Bs}

CKMfitter report from Vale Silva, Joint WG4+WG5. Thursday

Marcella Bona

Educated Rfit average; **black**: theoretical uncs., **red**: statistical uncs. rescaling of uncertainties and averages follow our Rfit scheme

Measure-

ment

 0.740 ± 0.029

 0.226 ± 0.005

Indirect extractions: $\hat{B}_{K} = 0.83^{+0.13}_{-0.19}(19\%), \ \frac{B_{B_{s}}}{B_{B_{s}}} = 1.143^{+0.056}_{-0.069}(5\%), \ B_{B_{s}} = 1.287^{+0.077}_{-0.072}(6\%)$

 \rightarrow Fit results consistent, but mostly not competitive w/ LQCD

updated in winter 2018

Prediction

 0.848 ± 0.072

 0.222 ± 0.006

Status of CKM

Pull

(#o)

~ 1.3

< 1

< 1

< 1

< 1

BBs/BBc

Unitarity Triangle analysis in the SM:

25

Status of

Status of CKM

26

Marcella Bona

27

UT analysis including new physics

fit simultaneously for the CKM and the NP parameters (generalized UT fit)

- add most general loop NP to all sectors
- use all available experimental info
- find out NP contributions to $\Delta F=2$ transitions
- B_d and B_s mixing amplitudes (2+2 real parameters):

$$A_{q} = C_{B_{q}} e^{2i\phi_{B_{q}}} A_{q}^{SM} e^{2i\phi_{q}^{SM}} = \left(1 + \frac{A_{q}^{NP}}{A_{q}^{SM}} e^{2i(\phi_{q}^{NP} - \phi_{q}^{SM})}\right) A_{q}^{SM} e^{2i\phi_{q}^{SM}}$$

$$\Delta m_{q/K} = C_{B_{q}/\Delta m_{K}} (\Delta m_{q/K})^{SM}$$

$$A_{CP}^{B_{d} \rightarrow J/\psi K_{s}} = \sin 2(\beta + \phi_{B_{d}})$$

$$A_{SL}^{q} = \operatorname{Im}\left(\Gamma_{12}^{q}/A_{q}\right)$$

$$E_{K} = C_{\varepsilon} \varepsilon_{K}^{SM}$$

$$A_{CP}^{B_{s} \rightarrow J/\psi \phi} \sim \sin 2(-\beta_{s} + \phi_{M})$$

$$\Delta \Gamma^{q}/\Delta m_{q} = \operatorname{Re}\left(\Gamma_{12}^{q}/A_{q}\right)$$

$$\Phi_{B_{d}}) \qquad \qquad A_{CP}^{B_{s} \to J/\psi \phi} \sim \sin 2 \left(-\beta_{s} \right) \\ \Delta \Gamma^{q} / \Delta m_{q} = \operatorname{Re} \left(\Gamma_{12}^{q} \right)$$

new-physics-specific constraints

$$A_{\rm SL}^s \equiv \frac{\Gamma(\bar{B}_s \to \ell^+ X) - \Gamma(B_s \to \ell^- X)}{\Gamma(\bar{B}_s \to \ell^+ X) + \Gamma(B_s \to \ell^- X)} = \operatorname{Im}\left(\frac{\Gamma_{12}^s}{A_s^{\rm full}}\right)$$

semileptonic asymmetries in B⁰ and B_s: sensitive to NP effects in both size and phase. Taken from the latest HFLAV. Cleo, BaBar, Belle,

D0 and LHCb

29

Status of

same-side dilepton charge asymmetry:

admixture of B_s and B_d so sensitive to NP effects in both.

$$A_{\rm SL}^{\mu\mu} \times 10^3 = -7.9 \pm 2.0$$

lifetime τ^{FS} **in flavour-specific final states:** average lifetime is a function to the width and the width difference $\tau^{FS}(B_s) = 1.527 \pm 0.011 \text{ ps}$ **HFLAV** $\phi_s = 2\beta_s \text{ vs } \Delta\Gamma_s \text{ from } B_s \rightarrow J/\psi \phi$ angular analysis as a function of proper time and b-tagging Marcella Bona

D0 arXiv:1106.6308

$$A_{\rm SL}^{\mu\mu} = \frac{f_d \chi_{d0} A_{\rm SL}^d + f_s \chi_{s0} A_{\rm SL}^s}{f_d \chi_{d0} + f_s \chi_{s0}}$$

The ratio of NP/SM amplitudes is:

Marcella Bona

< 18% @68% prob. (30% @95%) in $B_{\rm d}$ mixing

<20% @68% prob. (30% @95%) in $B_{\rm s}$ mixing

see also Lunghi & Soni, Buras et al., Ligeti et al.

32

testing the new-physics scale

At the high scale

new physics enters according to its specific features

At the low scale

use OPE to write the most general effective Hamiltonian. the operators have different chiralities than the SM NP effects are in the Wilson Coefficients C

Status of

M. Bona et al. (UTfit)

JHEP 0803:049,2008

arXiv:0707.0636

$$Q_1^{q_i q_j} = \bar{q}_{jL}^{\alpha} \gamma_{\mu} q_{iL}^{\alpha} \bar{q}_{jL}^{\beta} \gamma^{\mu} q_{iL}^{\beta} ,$$

$$Q_2^{q_i q_j} = \bar{q}_{jR}^{\alpha} q_{iL}^{\alpha} \bar{q}_{jR}^{\beta} q_{iL}^{\beta} ,$$

$$Q_3^{q_i q_j} = \bar{q}_{jR}^{\alpha} q_{iL}^{\beta} \bar{q}_{jR}^{\beta} q_{iL}^{\alpha} ,$$

$$Q_4^{q_i q_j} = \bar{q}_{jR}^{\alpha} q_{iL}^{\alpha} \bar{q}_{jL}^{\beta} q_{iR}^{\beta} ,$$

$$Q_5^{q_i q_j} = \bar{q}_{jR}^{\alpha} q_{iL}^{\beta} \bar{q}_{jL}^{\beta} q_{iR}^{\alpha} .$$

F_i: function of the NP flavour couplings

L: loop factor (in NP models with no tree-level FCNC)

 Λ : NP scale (typical mass of new particles mediating Δ F=2 processes)

testing the TeV scale

The dependence of C on Λ changes depending on the flavour structure. We can consider different flavour scenarios:

- Generic: $C(\Lambda) = \alpha / \Lambda^2$ $F_i \sim 1$, arbitrary phase • NMFV: $C(\Lambda) = \alpha \times |F_{SM}| / \Lambda^2$ $F_i \sim |F_{SM}|$, arbitrary phase • MFV: $C(\Lambda) = \alpha \times |F_{SM}| / \Lambda^2$ $F_i \sim |F_{SM}|$, $F_{i\neq 1} \sim 0$, SM phase
- α (L_i) is the coupling among NP and SM $\odot \alpha \sim 1$ for strongly coupled NP $\odot \alpha \sim \alpha_w (\alpha_s)$ in case of loop coupling through weak
 - (strong) interactions

Marcella Bona

If no NP effect is seen lower bound on NP scale Λ

 $C_i(\Lambda) =$

F is the flavour coupling and so $F_{\mbox{\tiny SM}}$ is the combination of CKM factors for the considered process

results from the Wilson coefficients

Marcella Bona

Status of

conclusions

- SM UT analysis: provide the best determination of CKM parameters, test the consistency of the SM ("*direct*" vs "*indirect*" determinations) and provide predictions (from data..) for SM observables
- Iots of new and updated inputs constantly arriving by experiments and lattice calculations: however for the moment the SM picture stays solid
- Still open discussion on semileptonic inclusive vs exclusive: is the V_{cb} puzzle solved? Inclusive V_{ub} remains the only outlier..
- UTA provides determination of NP contributions to $\Delta F=2$ amplitudes. It currently leaves space for NP at the level of 25-30%
- So the scale analysis points to high scales for the generic scenario and at the limit of LHC reach for weak coupling. Indirect searches are complementary to direct searches.

Back up slides

Status of CKM

Status of CKM fits

exclusives vs inclusives

Status of CKM

¥O¥O¥O¥O¥O¥O¥O¥O¥O¥O¥O¥O¥O¥O¥O¥O

Status of CKM fits

exclusives vs inclusives

Status of CKM fits

 $\exists >$

exclusives vs inclusives

Status of CKM

Statistical approach

- **CKMfitter**: Frequentist statistics based on a χ^2 analysis
- χ^2_{min} : goodness-of-fit under SM (or NP), estimators for V_{CKM}

Status of

- $\Delta \chi^2$ (χ^2 -distributed): **Confidence Level** (CL) intervals
- *Range* fit scheme (*R*fit) incorporates **theoretical uncertainties**
- Theo. inputs: published Lattice papers, with error budgets, different sources of syst. uncertainty are combined linearly, using FLAG reports as a guide to sort results

Status of CKM fits

CKM	Process	Observables		Theoretical inputs			
$ V_{ud} $	$0^+ \rightarrow 0^+ \beta$	$ V_{ud} _{ m nucl}$	=	$0.97420 \pm 0 \pm 0.00021$		Nuclea	ar matrix elements
$ V_{us} $	$K \to \pi \ell \nu$	$ V_{us} _{\mathrm{SL}}f_+^{K\to\pi}(0)$	=	0.2165 ± 0.0004	$f_{+}^{K \to \pi}(0)$	=	$0.9681 \pm 0.0014 \pm 0.0014$
	$K \to e \nu$	$\mathcal{B}(K o e u)$	=	$(1.582 \pm 0.007) \cdot 10^{-5}$	f_K	=	$155.6 \pm 0.2 \pm 0.6$ M
	$K \to \mu \nu$	${\cal B}(K o \mu u)$	=	0.6356 ± 0.0011			
	$\tau \to K \nu$	${\cal B}(au o K u)$	=	$(0.6960 \pm 0.0096) \cdot 10^{-2}$			
$\frac{ V_{us} }{ V_{ud} }$	$K ightarrow \mu u / \pi ightarrow \mu u$	$rac{\mathcal{B}(K o \mu u)}{\mathcal{B}(\pi o \mu u)}$	=	1.3367 ± 0.0029	f_K/f_π	=	$1.1959 \pm 0.0007 \pm 0.0$
	$\tau \to K \nu / \tau \to \pi \nu$	$\frac{\mathcal{B}(\tau \to K\nu)}{\mathcal{B}(\tau \to \pi\nu)}$	=	$(6.438 \pm 0.094) \cdot 10^{-2}$			
$ V_{cd} $	νN	$ V_{cd} _{ m not\ lattice}$	=	0.230 ± 0.011			
	$D \to \mu \nu$	$\mathcal{B}(D \to \mu \nu)$	=	$(3.74 \pm 0.17) \cdot 10^{-4}$	f_{D_s}/f_D	=	$1.175 \pm 0.001 \pm 0.0$
	$D o \pi \ell \nu$	$ V_{cd} f_+^{D\to\pi}(0)$	=	0.1426 ± 0.0019	$f_+^{D \to \pi}(0)$	=	$0.621 \pm 0.016 \pm 0.0$
$ V_{cs} $	$W \to c \bar{s}$	$ V_{cs} _{ m not\ lattice}$	=	$0.94^{+0.32}_{-0.26}\pm0.13$			
	$D_s \to \tau \nu$	$\mathcal{B}(D_s \to \tau \nu)$	=	$(5.55 \pm 0.24) \cdot 10^{-2}$	f_{D_s}	=	$247.8 \pm 0.3 \pm 2.0$ M
	$D_s \to \mu \nu$	$\mathcal{B}(D_s \to \mu \nu)$	-	$(5.39 \pm 0.16) \cdot 10^{-3}$			
	$D \to K \ell \nu$	$ V_{cs} f_+^{D\to K}(0)$	=	0.7226 ± 0.0034	$f_+^{D \to K}(0)$	=	$0.741 \pm 0.010 \pm 0.0$
$ V_{ub} $	semileptonic B	$ V_{ub} _{ m SL}$	=	$(3.98 \pm 0.08 \pm 0.22) \cdot 10^{-3}$	for	rm fact	tors, shape functions
	$B \to \tau \nu$	$\mathcal{B}(B o au u)$	=	$(1.08 \pm 0.21) \cdot 10^{-4}$	f_{B_s}/f_B	=	$1.205 \pm 0.004 \pm 0.004$
$ V_{cb} $	semileptonic B	$ V_{cb} _{ m SL}$	=	$(41.8 \pm 0.4 \pm 0.6) \cdot 10^{-3}$	form	factors	s, OPE matrix elements
	•1 • •	$\mathcal{B}(\Lambda_p \to p\mu^- \bar{\nu})_{q^2 > 15}$		$(0.047 \pm 0.081) \pm 10^{-2}$	$\zeta(\Lambda_p \to p\mu)$	$(\mu^-\bar{\nu})_{q^2}$	2 > 15 - 1.471 + 0.006 +
$ V_{ub}/V_{cb} $	semileptonic Λ_b	$\overline{\mathcal{B}(\Lambda_p \to \Lambda_c \mu^- \bar{\nu})_{q^2 > 7}}$	$\frac{1}{1} = (0.947 \pm 0.081) \cdot 10^{-2}$		$\frac{1}{\zeta(\Lambda_p \to \Lambda_c \mu^- \bar{\nu})_{q^2 > 7}} = 1.471 \pm 0.096 \pm 0.096$		
α	$B \to \pi \pi, \rho \pi, \rho \rho$	branching ratios, <i>CP</i> asymmetries			iso	spin symmetry	
β	$B \to (c\bar{c})K$	$\sin(2\beta)_{[c\bar{c}]}$	=	0.699 ± 0.017	subleading penguins neglected		
$\cos(2\beta)$	$B^0 \to D^{(*)} h^0$	$\cos(2\beta)$	=	0.91 ± 0.25			
γ	$B \to D^{(*)} K^{(*)}$	inputs for the 3 methods		GGSZ, GLW, ADS methods			
ϕ_s	$B_s \to J/\psi(KK,\pi\pi)$	$(\phi_s)_{b \to c\bar{c}s}$	=	-0.021 ± 0.031			
$V_{ta}^* V_{ta'}$	Δm_d	Δm_d	=	$0.5065 \pm 0.0019 \text{ ps}^{-1}$	$\hat{B}_{B_s}/\hat{B}_{B_s}$	=	$1.007 \pm 0.013 \pm 0.0$
. T . T	Δm_s	Δm_s	=	$17.757 \pm 0.021 \text{ ps}^{-1}$	\hat{B}_{B_s}	=	$1.327 \pm 0.016 \pm 0.0$
	$B_s \to \mu\mu$	$\mathcal{B}(B_s \to \mu\mu)$	=	$(2.8^{+0.7}_{-0.6}) \cdot 10^{-9} [\times (1 - 0.063)]$	f_{B_s}	=	$226.0 \pm 1.3 \pm 2.0$ M
$V_{td}^* V_{ts}$ and	ε_K	$ \varepsilon_K $	=	$(2.228 \pm 0.011) \cdot 10^{-3}$	\hat{B}_K	=	$0.7567 \pm 0.0021 \pm 0.0021$
$V_{cd}^*V_{cs}$					$\kappa_{arepsilon}$	=	$0.940 \pm 0.013 \pm 0.0$
black.	no change.	hlue [,] slight c	han	ger red r undate si	ince IC	HFF	² '16
brack.	no change,	Side. Signi C	nun				10
(c	olors do not	reflect the in	прас	t of the exp./theo	a.∍input	t!) :	
Luiz Vale Silv	va (Unive <u>rsity of S</u> l	ssex)	CKI	<i>W</i> fitter update			20 Sept. 2018