$\label{eq:Summary of WG2:} V_{ub},\,V_{cb} \text{ and (semi)leptonic B decays including tau}$

Chris Bouchard with Lu Cao and Patrick Owen

Tuesday

- Effect of QED corrections on R(D), Teppei Kitahara
- Inclusive b to u I nu at Belle/Belle II, Raynette van Tonder
- B to D(*) I nu at Belle/Belle II, **Killian Lieret**
- B -> D* form factors at non-zero recoil, Alejandro Vaquero Aviles-Casco
- Review of exclusive semileptonic B meson decays from lattice QCD, Christopher Monahan
- Exclusive semileptonic baryonic b decays from lattice QCD, Stefan Meinel
- Semileptonic Lb->Lc(*) decays (LHCb), Marcello Rotondo
- A unified resolution to B anomalies with lepton mixing, Rusa Mandal

Wednesday

- Review of IVubl and IVcbl measurements at the B-factories, Christoph Schwanda
- IVcbl determination from inclusive semileptonic decays, Paolo Gambino
- New ideas for calculating inclusive semileptonic decays on the lattice, Shoji Hashimoto
- B to semi-tauonic decays at Belle/Belle II, Karol Adamczyk
- B to mu nu at Belle/Belle II, Alexei Sibidanov
- B to I nu gamma at Belle, *Moritz Gelb*
- B -> 3 mu nu at LHCb, Svende Annelies Braun

Thursday

- (joint with WG1) Semileptonic B and D decays from sum rules, Alexander Khodjamirian
- (joint with WG1) Nonperturbative calculations of form factors for exclusive semileptonic Bs decays, Oliver Witzel
- (joint with WG1) New physics in b -> c l nu, **David Straub**
- (joint with WG1) Leptonic Decays of B and D Mesons from Lattice QCD, Javad Komijani
- (joint with WG3) LFU tests with semitauonic decays at LHCb, Adam Morris
- (joint with WG3) b->sll LFU measurements at LHCb, Vitalii Lisovskyi
- (joint with WG3) BSM physics and lepton flavor nonuniversality in semileptonic b decays, Olcyr Sumensari
- (joint with WG3) New directions in B-anomalies model building, Admir Greljo

Christoph Schwanda, Review of |Vub| and |Vcb| measurements at the B-factories

Summary

- |V_{cb}|
 - HFLAV 2016 results
 - exclusive (D*|v): (39.05 +/- 0.47(exp) +/- 0.58(th)) x 10⁻³
 - inclusive: (42.19 +/- 0.78) x 10⁻³
 - Evidence has been mounting in the past two years that the CLN parameterization is biasing the exclusive result
 - On two independent D*|ν data sets BGL results in |V_{cb}| being ~2σ higher than CLN
- |V_{ub}|
 - HFLAV 2016 results
 - πIv: (3.70 +/- 0.10(exp) +/- 0.12(th)) x 10⁻³
 - inclusive (BLNP): (4.44 +/- 0.15 +0.21/-0.22) x 10⁻³
 - For |V_{ub}| however, the ~3σ discrepancy remains to be understood

Belle data sets for B to D*

- hadronic tagging: arXiv:1702.01521
- untagged: arXiv:1809.032090

Vub and Vcb and semitauonic

Form factor parameterizations

Caprini, Lellouch, Neubert [Nucl.Phys. B530, 153(1998)]

coeffs related via HQET

$$B \rightarrow D^*Iv$$

$$h_{A_1}(w) = h_{A_1}(1) \left[1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right],$$

$$R_1(w) = R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2,$$

$$R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$$

$$B \rightarrow Dlv$$

$$\mathcal{G}(z) = \mathcal{G}(1)(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3)$$

Parameters: F(1), ρ^2 , R₁(1), R₂(1) G(1), ρ^2

Boyd, Grinstein, Lebed [Phys. Rev. Lett. 74, 4603 (1995)]

$$f_i(z) = \frac{1}{P_i(z)\phi_i(z)} \sum_{n=0}^{N} a_{i,n} z^n, \qquad z(w) = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$$

Parameters: coefficients ai,n

Christoph Schwanda, Review of |Vub| and |Vcb| measurements at the B-factories

Model-independent analysis of arXiv:1702.01521 data

D.Bigi, P. Gambino, S.Schacht, Phys.Lett. B769 (2017) 441

BGL Fit:	Data + lattice	Data + lattice + LCSR
χ^2/dof	27.9/32	31.4/35
Vcb ($0.0417 \begin{pmatrix} +20 \\ -21 \end{pmatrix}$	0.0404 (+16)
a_0^f	0.01223(18)	0.01224(18)
a_1^f	$-0.054 \left(^{+58}_{-43} \right)$	$-0.052 \begin{pmatrix} +27 \\ -15 \end{pmatrix}$
a_2^f	0.2 (+7	1.0 (+0)
$a_1^{\mathcal{F}_1}$	$-0.0100 \begin{pmatrix} +61 \\ -56 \end{pmatrix}$	-0.0070 (+54)
$a_2^{x_1}$	0.12(10)	$0.089 \begin{pmatrix} +96 \\ -100 \end{pmatrix}$
a_0^g	0.012 (+11)	0.0289 (+57)
a_1^g	$0.7\binom{+3}{-4}$	$0.08 \left(^{+8}_{-22} \right)$
a_2^g	0.8 (+2)	$-1.0 \begin{pmatrix} +20 \\ -0 \end{pmatrix}$

CLN Fit:	Data + lattice	Data + lattice + LCSR
χ^2/dof	34.3/36	34.8/39
Vcb (0.0382 (15)	0.0382(14)
ρ_D^2	1.17 (+13)	1.16 (14)
$R_{1}(1)$	$1.391 \begin{pmatrix} +92 \\ -88 \end{pmatrix}$	1.372 (36)
$R_{2}(1)$	$0.913 \begin{pmatrix} +73 \\ -80 \end{pmatrix}$	$0.916 \begin{pmatrix} +65 \\ -70 \end{pmatrix}$
$h_{A_1}(1)$	0.906 (13)	0.906 (13)

B.Grinstein, A.Kobach, Phys.Lett. B771 (2017) 359

$$|V_{cb}| = (37.4 \pm 1.3) \times 10^{-3}$$
 (CLN)

$$|V_{cb}| = (41.9 {}^{+2.0}_{-1.9}) \times 10^{-3}$$
 (BGL)

Raynette Van Tonder, Inclusive B -> Xu I nu at Belle II

- aim to disentangle $\sim 3.5\sigma$ tension between exclusive and inclusive Vub.
- Difficulty from large background coming from b -> clv decays.
- Need good tagging performance and reasonable B -> Xu lv MC modelling.
- Hadronic tagging performance with FEI using Belle2 phase II data is obtained.
- Global fit proposal by SIMBA, NNVub can be done to reduce error 2-3%.

Killian Lieret, B -> D(*) I nu at Belle/Belle II

- aim to disentangle $\sim 3\sigma$ tension between exclusive and inclusive Vcb. Hadronic tagging & untagged.
- CLN & BGL parameterisations used for form factor. Prospects for BelleII

cf. current PDG: $V_{\rm cb,incl.} = (42.2 \pm 0.8) \times 10^{-3}$

Karol Adamczyk, B to semi-tauonic decays at Belle/Belle II

[Phys. Rev. Lett. 118, 211801 (2017)], [Phys. Rev. D 97, 012004 (2018)]

- first measurement of tau polarisation;
- combined P_{τ} and $R(D^*)$ consists with SM within 0.6 sigma.

$$P_{\tau}(D^*) = -0.38 \pm 0.51(stat.)^{+0.21}_{-0.16}(syst.)$$

 $R(D^*) = 0.270 \pm 0.035(stat.)^{+0.028}_{-0.025}(syst.)$

Prospects @ Belle II

Belle II

 $R(D^*)$

The Belle II Physics Book, arXiv:1808.10567

▶ expected constraints on R_D vs. R_{D^*} ; R_{D^*} vs. $P_{\tau}^{D^*}$ compared to existing experimental constraints from Belle

Christopher Monahan, Review of exclusive semileptonic B meson decays from lattice QCD

- overview of B(s) semileptonic decay calculations on the lattice
- overview of lattice systematic uncertainties
- (many!) results since CKM 2018

```
Btoπ

    more groups now studying decay (3 -> 5)

    soon: 2+1+1 results at nonzero recoil

B<sub>s</sub> to K

    more groups now studying decay (2 -> 3)

 - soon: 2+1+1 results
B to D
- now: preliminary 2+1+1 results
B to D*
- more groups now studying decay (1 -> 3)

    now: published 2+1+1 result [HPQCD] and new V<sub>cp</sub>=0.00413(22)

    soon: 2+1 results at nonzero recoil

B to D

    more groups now studying decay (1 -> 3)

- now: published 2+1 result at nonzero recoil [HPQCD], inc. R(D<sub>e</sub>)
- soon: 2+1+1 results
B to D*

    more groups now studying decay (0 -> 2)

    now: published 2+1+1 result [HPQCD]
```

Christopher Monahan, Review of exclusive semileptonic B meson decays from lattice QCD

- overview of B(s) semileptonic decay calculations on the lattice
- overview of lattice systematic uncertainties
- (many!) results since CKM 2018

Outlook

Next few years will see many more lattice results

- expect new Vub from ETMC, FNAL/MILC, HPQCD, JLQCD
- expect new Vcb from FNAL/MILC, HPQCD, SWME

Heavy HISQ (and DWF) results are very promising

- allows entirely nonperturbative current renormalisation
- should facilitate sub-1% precision

Anticipating exp. results, B_s decays a real growth industry

- HPQCD, RBC/UKQCD, SWME
- but further progress really requires experimental data

Moving beyond ~0.5% precision will require

- isospin breaking effects
- QED effects

Alexander Khodjamirian, Semileptonic B and D decays from sum rules (joint with WG1)

- new results for Bs -> K [1703.04765]
- preliminary results for D -> π and D -> K

- improvements:
 - NNLO correction to twist 2
 - twist 5,6 terms
 - improved π , K distribution amplitudes & form factors (in progress)

- new approach using B meson DAs
 - valid for any B -> "light" form factor
 - need Belle-II B -> γ μ ν_{μ}
 - application to B -> $\pi\pi$ [1701.01633]

Teppei Kitahara, Effect of QED corrections on R(D)

- 3-4% correction to R(D) based on soft (≤30 MeV) photon contributions
- important to understand how QED effects handled in experiment (PHOTOS)
- working on R(D*) and Vcb

Alejandro Vaquero, B -> D* form factors at non-zero recoil

- much anticipated, preliminary (still blinded) results over a small range of momentum transfer.
- do not anticipate signficant reduction in IVcbl uncertainty, but slope at zero recoil (w=1) will weigh in on CLN vs BGL

Alejandro Vaquero, B -> D* form factors at non-zero recoil

- Pure lattice QCD prediction of $R(D^*)$
- Probably underestimating errors (prepared last week)
- Lattice very reliable up to the point we have lattice data
- ullet Sensitive to the slope in ${\mathcal F}$

Oliver Witzel,

Nonperturbative calculations of form factors for exclusive semileptonic Bs decays (joint with WG1)

Conclusion

- Second (third) entirely independent analysis about to be completed
- ▶ In the final stages to complete $B_s \to K\ell\nu$ and $B_s \to D_s\ell\nu$ form factor calculation
 - → As usual, carefully estimating all systematic uncertainties is tedious
- Our lattice calculation also includes
 - $\rightarrow B \rightarrow \pi \ell \nu$, $B \rightarrow \pi \ell^+ \ell^-$
 - $\rightarrow B \rightarrow K^* \ell^+ \ell^-$
 - $\rightarrow B \rightarrow D^{(*)} \ell \nu$
 - $\rightarrow B_s \rightarrow K^* \ell^+ \ell^-$
 - $\rightarrow B_s \rightarrow D_s^* \ell \nu$
 - $\rightarrow B_s \rightarrow \phi \ell^+ \ell^-$

- ▶ Future
 - \rightarrow Add 48³ \times 96 ensemble with physical pions

Paolo Gambino, |Vcb| determination from inclusive semileptonic decays

- reviewed inclusive approach
- continued effort to improve inclusive $b \rightarrow clv$
 - no signs of inconsistency
 - good understanding of higher power contributions

PROSPECTS for INCLUSIVE V_{cb}

- Theoretical uncertainties already dominant
- theoretical correlations between different moments?
- $O(\alpha_s/m_b^3)$ calculation under way
- O(1/mQ^{4,5}) effects need further investigation but small effect on V_{cb}
- NNNLO corrections to total width feasible, needed for 1% uncertainty?
- Electroweak (QED) corrections require attention
- New observables in view of Belle-II: FB asymmetry proposed by S.Turczyk
 could be measured already by Babar and Belle now
- Lattice QCD information on local matrix elements is the next frontier, e.g.

Shoji Hashimoto, New ideas for calculating inclusive semileptonic decays on the lattice

- lattice QCD determination of 4pt correlator <BI J J IB> at unphysical kinematics relevant to inclusive determinations of Vcb, coordination with Paolo
- exciting, exploratory study

Partial decay rate:

$$d\Gamma \sim |V_{cb}|^2 l^{\mu\nu} W_{\mu\nu}$$

$$W_{\mu\nu} = \sum_X (2\pi)^3 \delta^4(p_B-q-p_X) \frac{1}{2M_B} \langle B(p_B)|J_\mu^\dagger(0)|X\rangle \langle X|J_\nu(0)|B(p_B)\rangle$$

sum over all final states

$$T_{\mu\nu} = i \int d^4x e^{-iqx} \frac{1}{2M_B} \langle B|T\{J^{\dagger}_{\mu}(x)J_{\nu}(0)\}|B\rangle$$

Shoji Hashimoto, New ideas for calculating inclusive semileptonic decays on the lattice

- lattice QCD determination of 4pt correlator <BI J J IB> at unphysical kinematics relevant to inclusive determinations of Vcb, coordination with Paolo
- exciting, exploratory study

possible appliation to nucleon structure

Vub and Vcb and semitauonic * baryonic!

Stefan Meinel, Exclusive semileptonic baryonic b decays from lattice QCD

overview of b hadronic semileptonic decays

$$(\Lambda b = bdu, \Lambda c = cdu, \Lambda = sdu)$$

- $\Lambda b \rightarrow p \mid v (b \rightarrow u \mid v)$
- $\Lambda b \rightarrow \Lambda c \mid v (b \rightarrow c \mid v)$

- $\Lambda b \rightarrow \Lambda \parallel (b \rightarrow s \parallel)$
- New $\Lambda b \rightarrow \Lambda c^*$ (negative parity)
 - $\Lambda b \rightarrow \Lambda c^*(2595) \mid v \text{ and } \Lambda b \rightarrow \Lambda c^*(2625) \mid v \text{ at large q2}$
 - Λ b to Λ *(1520) | at large q2

Heavy-quark symmetry provides stronger constraints for $\Lambda_b \to \Lambda_c \ell \bar{\nu}$ than for $B \to D^{(+)} \ell \bar{\nu}$

 \rightarrow First determination of $\mathcal{O}(\Lambda^2/m_c^2)$ contributions to an exclusive decay

[F. Bernlochner, Z. Ligeti, D. Robinson, W. Sutcliffe, arXiv:1808.09464]

$$\frac{d^{5}\Gamma}{d\vec{\Omega}} = \frac{3}{32\pi^{2}} \sum_{i}^{34} K_{i} f_{i}(\vec{\Omega})$$

$$15 < q^{2} < 20 \,\text{GeV}^{2}$$

$$0.4$$

$$0.2$$

$$-0.4$$

$$15 < q^{2} < 20 \,\text{GeV}^{2}$$

$$10 K_{i}$$

$$K_{i}$$

$$K_{i}^{\ell} = \frac{3}{2} K_{3}, \quad A_{\text{FB}}^{h} = K_{4} + \frac{1}{2} K_{5}, \quad A_{\text{FB}}^{\ell h} = \frac{3}{4} K_{6}$$

Note: the 2015 LHCb result for A_{FB}^{ℓ} , which deviated 3.4 σ from our SM prediction, was incorrect (it was actually the CP asymmetry in A_{FB}^{ℓ}).

→ Our Wilson coefficient fits [S. Meinel and D. van Dyk, arXiv:1603,02974/PRD 2016] need to be redone.

Marcello Rotondo, Semileptonic Λb->Λc(*) decays at LHCb

- Yield of $\Lambda b \rightarrow \Lambda c \mu v$ from LHCb run 1 data 3fb⁻¹ is 2.74(2) x 10⁶ [PRD 96, 112005, 2017]
- With the clean sample, w and q2 are extracted.
- Sensitivity study of $\Lambda b \rightarrow \Lambda c^* \mu \nu$ [JHEP 06, 155, 2018]
- properties of SL decays of b baryons can be studied at LHCb with high precision
 - CKM parameters
 - LFU tests
 - lattice QCD crucial
- Expect new results by early 2019.

other B/D decays

Alexei Sibidanov, B -> µv at Belle/Belle II

[Phys. Rev. Lett. 121, 031801 (2018), arXiv:1712.04123]

- full Belle data used
- measured 2.4 sigma excess
- corresponds to a branding fraction of B -> mu v

$$\mathcal{B}(B^- o \mu^- ar{
u}_\mu) = (6.46 \pm 2.22_{
m stat} \pm 1.6_{
m syst}) imes 10^{-7}$$

ℓ	\mathcal{B}_{SM}	N _{SM} ^{Belle} (711/fb)	N _{SM} ^{Belle2} (50/ab)
au	$(8.46 \pm 0.70) \times 10^{-5}$	67419 ± 5570	$(4.74 \pm 0.39) \times 10^6$
μ	$(3.80 \pm 0.31) \times 10^{-7}$	303 ± 25	21300 ± 1760
e	$(8.90 \pm 0.74) \times 10^{-12}$	0.0071 ± 0.0006	0.5 ± 0.04

Adam Morris (joint with WG3) LFU tests with semitauonic decays at LHCb

- Hints of LFU violation in semitauonic B decays.
 - R(D) R(D*): 3.8 σ away from SM.
 - $R(J/\psi)$: 2σ above SM.
- LHCb results only use Run 1 data: Runs 2,3,4... will bring much larger statistics.
- Many systematics will reduce with more data and more MC
- Others will reduce with improved external measurements (BESIII, Belle II)
- Analyses of more modes:
 - $b \to c \tau^- \overline{\nu}_{\tau}$: $R(D^+)$, $R(D^0)$, $R(D_s^{+(*)})$, $R(\Lambda_c^{+(*)})$...
 - $b \rightarrow u \tau^- \overline{\nu}_{\tau} : \Lambda_b^0 \rightarrow p \tau^- \overline{\nu}_{\tau}, B^+ \rightarrow p \overline{p} \tau^+ \nu_{\tau} \dots$
- New observables beyond ratios of branching fractions, e.g. angular analyses to discriminate between NP models.

Javad Komijani (joint with WG1) Leptonic Decays of B and D Mesons from Lattice QCD

- FNAL Lattice/MILC calc of B and D decay constants
- most precise decay constants to date

Moritz Gelb, B to I nu gamma at Belle

using Belle2 software framework for Belle data:

- new tagging algorithm FEI (Full Event Interpretation giving about 3 times higher efficiency than old Belle algorithm)
- using the extracted B+ -> pi0 l+ v as control sample allows to get λ _B independent with V_ub, and get R_pi in addition.

Form Factors (valid for large photon energies)
$$F_{V}(E_{\gamma}) = \frac{Q_{u}m_{B}f_{B}}{2E_{\gamma}\lambda_{B}}R(E_{\gamma},\mu) + \left[\xi(E_{\gamma}) + \frac{Q_{b}m_{B}f_{B}}{2E_{\gamma}m_{b}} + \frac{Q_{u}m_{B}f_{B}}{(2E_{\gamma})^{2}}\right]$$

$$F_{A}(E_{\gamma}) = \frac{Q_{u}m_{B}f_{B}}{2E_{\gamma}\lambda_{B}}R(E_{\gamma},\mu) + \left[\xi(E_{\gamma}) - \frac{Q_{b}m_{B}f_{B}}{2E_{\gamma}m_{b}} - \frac{Q_{u}m_{B}f_{B}}{(2E_{\gamma})^{2}} + \frac{Q_{\ell}f_{B}}{E_{\gamma}}\right]$$

	λ_{B} (GeV)
QCD factorization	≈ 0.2
QCD sum rules	0.46 ± 0.11
BaBar (90% C.L.)	> 0.115
Belle (2015) (90% C.L.)	> 0.238
This work (90% C.L.)	> 0.24

Svende Annelies Braun, B -> 3 mu nu at LHCb

no signal found in 4.7 fb-1 LCHb data,

set upper limit of BF < 1.4 x 10e-8 at 95% C.L.,

poor agreement with recent theory prediction of 1.3X10e-7

largest sys. uncertainty due to decay model of single channel (PHSP used)

result prepared to be published.

Rusa Mandal, A unified resolution to B anomalies with lepton mixing

[PRL 119, 151801 (2018)] and [NPB 933 (2018) 433-45]

Effective operators

NP operators with 2nd & 3rd generation fields

$$\mathcal{H}^{NP} = A_1 \left(\bar{Q}_{2L} \gamma_{\mu} L_{3L} \right) \left(\bar{L}_{3L} \gamma^{\mu} Q_{3L} \right) + A_2 \left(\bar{Q}_{2L} \gamma_{\mu} Q_{3L} \right) \left(\bar{\tau}_R \gamma^{\mu} \tau_R \right)$$

- constraints from SM-consistent experimental results
 - Bs to μμ
 - B to K(*) νν
 - B to K μ**T**
 - Bs to TT
 - Bc to TV
- try to explain
 - R(K(*))
 - R(D(*))

Results

 $\chi^2_{\rm SM}/{\rm d.o.f} \simeq 6.6$ $\chi^2_{\rm allowed\ region}/{\rm d.o.f} \simeq 2$

David Straub (joint with WG1) New physics in b -> c I nu (nu not tau!)

[1801.01112]

- light leptons with e,mu split and unfolded distributions
 - LFUV in e vs mu
 - precision Vcb
 - importance of shape of dBr/dq2 vs integrated Br
- B to D* I nu precludes large right-handed current
- e-mu UV constrained at 1% level
- endpoints of B to D(*) I nu strongly constrains scalar (tensor) ops

$$ilde{V}_{cb}^\ell = V_{cb}(1+C_{V_L}^{\ell\ell})$$

- compatible with universality
- agreement between D and D*
- strong constraint on models violating e-μ universality

David Straub (joint with WG1) New physics in b -> c I nu (nu not tau!)

[1801.01112]

- light leptons with e,mu split and unfolded distributions
 - LFUV in e vs mu
 - precision Vcb
 - importance of shape of dBr/dq2 vs integrated Br
- B to D* I nu precludes large right-handed current
- e-mu UV constrained at 1% level
- endpoints of B to D(*) I nu strongly constrains scalar (tensor) ops
 - ▶ At $q^2 \to 0$, SM contribution to $B \to D^*\ell v$ is fully longitudinal, tensor contribution isn't

$$\frac{d\Gamma_T(B \to D^* \ell V)}{dq^2} \propto q^2 C_{V_L}^2 \left(A_1(0)^2 + V(0)^2 \right) + 16 m_R^2 C_T^2 T_1(0)^2 + O\left(\frac{m_{D^*}^2}{m_E^2}\right)$$

First bin of Γ_T is extremely sensitive to C_T (much more than total rate!)

