

Status of Vus determination from Kaon decays

Matthew Moulson

INFN, LNF, Frascati, Italy

moulson@Inf.infn.it

Emilie Passemar*

Indiana University/Jefferson Laboratory

epassema@indiana.edu

*Supported by NSF

10th International Workshop on the CKM Unitarity Triangle September 17-21, 2018 University of Heidelberg, Germany

Laboratori Nazionali di Frascati

- 1. Introduction and Motivation
- 2. V_{us} from $K_{\ell 3}$ decays
- 3. V_{us}/V_{ud} from $K_{\ell 2}/\pi_{\ell 2}$ decays
- 4. V_{us} and Unitarity of the CKM matrix
- 5. Conclusion and outlook

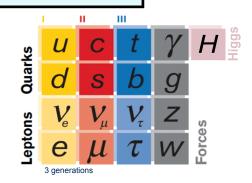
1. Introduction and Motivation

1.1 Test of the Standard Model: V_{us} and CKM unitarity

- Extraction of the Cabibbo-Kobayashi-Maskawa matrix element V_{us}
 - Fundamental parameter of the Standard Model

Description of the weak interactions:

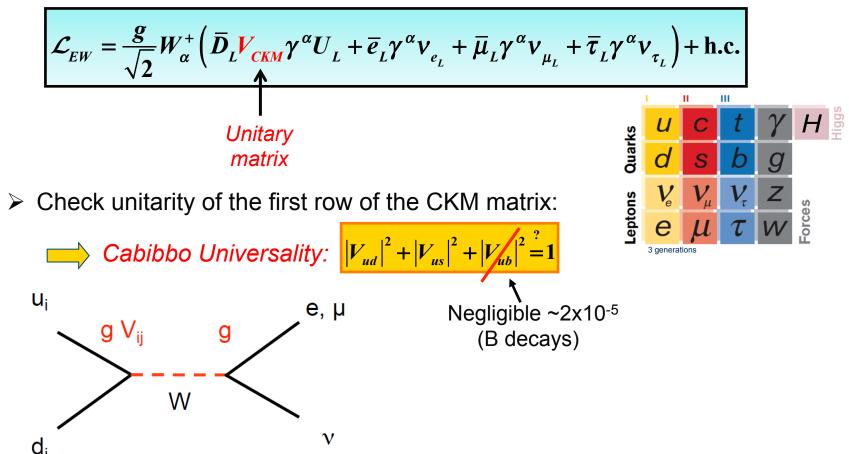
$$\mathcal{L}_{EW} = \frac{g}{\sqrt{2}} W_{\alpha}^{+} \left(\overline{D}_{L} V_{CKM} \gamma^{\alpha} U_{L} + \overline{e}_{L} \gamma^{\alpha} v_{e_{L}} + \overline{\mu}_{L} \gamma^{\alpha} v_{\mu_{L}} + \overline{\tau}_{L} \gamma^{\alpha} v_{\tau_{L}} \right) + \text{h.c.}$$



1.1 Test of the Standard Model: V_{us} and CKM unitarity

- Extraction of the Cabibbo-Kobayashi-Maskawa matrix element V_{us}
 - Fundamental parameter of the Standard Model

Description of the weak interactions:



1.1 Test of the Standard Model: V_{us} and CKM unitarity

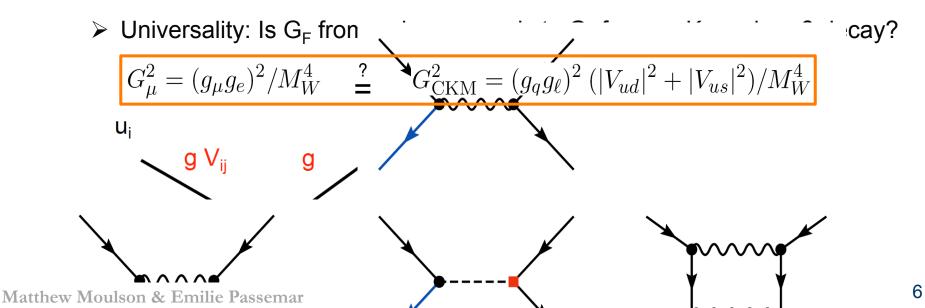
- Extraction of the Cabibbo-Kobayashi-Maskawa matrix element V_{us}
 - > Fundamental parameter of the Standard Model

 $|V_{ud}|$

Description of the $\frac{g}{\sqrt{2}}W_{\alpha}^{+}$ ($\overline{\mathbf{U}}_{L}\mathbf{V}_{\mathrm{CKM}}\gamma^{\alpha}\mathbf{D}_{L} + \overline{e}_{L}\gamma^{\alpha}\nu_{e\,L} + \overline{\mu}_{L}\gamma^{\alpha}\nu_{\mu\,L} + \overline{\tau}_{L}\gamma^{\alpha}\nu_{\tau}$ $\frac{g}{\sqrt{2}}W_{\alpha}^{+}$ ($\overline{\mathbf{U}}_{L}\mathbf{V}_{\mathrm{CKN}}$ $|V_{\alpha d}|^{2} + |V_{\alpha e}|^{2} + |V_{\alpha b}|^{2} = 1$

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

coupling



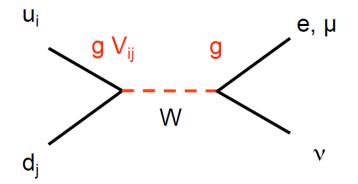
1.2 Constraining New Physics

- Extraction of the Cabibbo-Kobayashi-Maskawa matrix element V_{us}
 - Fundamental parameter of the Standard Model

Description of the weak interactions :

$$\mathcal{L}_{EW} = \frac{g}{\sqrt{2}} W_{\alpha}^{+} \left(\overline{D}_{L} V_{CKM} \gamma^{\alpha} U_{L} + \overline{e}_{L} \gamma^{\alpha} v_{eL} + \overline{\mu}_{L} \gamma^{\alpha} v_{\mu L} + \overline{\tau}_{L} \gamma^{\alpha} v_{\tau L} \right) + \text{h.c.}$$

- Look for *new physics*
 - ➢ In the Standard Model : W exchange → only V-A structure



1.2 Constraining New Physics

> BSM: sensitive to tree-level and loop effects of a large class of models

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

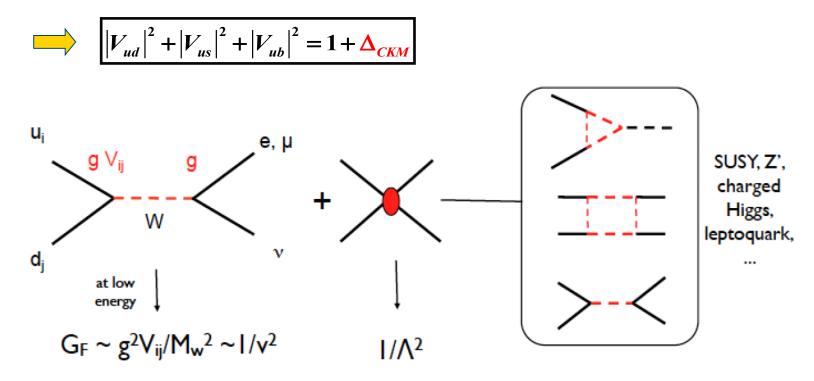
$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + \Delta_{CKM}$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{us}$$

BSM: sensitive to tree-level and loop effects of a large class of models



> Look for new physics by comparing the extraction of V_{us} from different processes: helicity suppressed $K_{\mu 2}$, helicity allowed K_{l3} , hadronic τ decays

1.3 Some history

• 2002: Old K $\rightarrow \pi |v_1|$ data give $\Delta_{CKM} = 1 - |V_{ud}|^2 - |V_{us}|^2 = 0.0035(15)$

 \Rightarrow PDG 2004: a 2.3 σ hint of *unitarity violation*?

- 2003 BNL 865 measures $BR(K^+ \rightarrow \pi^0 e^+ v) = 5.13(10)\%$ value of V_{us} consistent with unitarity
- 2004 present: Many new measurements from KTeV, ISTRA+, KLOE, NA48
 - BRs, lifetimes, form-factors
 - Much higher statistics than older measurements
 - Proper account of correlations between measurements
 - Isospin breaking, radiative corrections start to matter:
 - computed within ChPT
- 2008 beyond: Progress in the computation of hadronic elements from lattice QCD
- Value of V_{us} used in precise test of the SM

Experimental averages, fits, etc

Selection of results (experiments, corrections) Evaluation, discussion and intepretation Final report: EPJC 69 (2010) 399 This talk is an attempt at an update to 2018

Corresponding effort to synthesize results from **lattice QCD**:

Flavor Lattice **Averaging Group** (FLAG): http://itpwiki.unibe.ch/flag

Participation by all major lattice collaborations Biannual review of lattice results for π , K, B, D physics 2013 review: EPJC 74 (2014) 2890 2016 review: EPJC77 (2017) no.2, 112

2. V_{us} from $K_{\ell 3}$ decays

2.1 V_{us} from K_{l3} decays

• Master formula for $K \to \pi Iv_I$: $K = \{K^+, K^0\}$, $I=\{e, \mu\}$

$$\frac{\Gamma(K \to \pi l \nu [\gamma]) = Br(K_{13}) * \tau = C_{K}^{2} \frac{G_{F}^{2} m_{K}^{5}}{192\pi^{3}} S_{EW}^{K} |V_{us}|^{2} |f_{+}^{K^{0}\pi^{-}}(0)|^{2} I_{Kl} \left(1 + 2\Delta_{EM}^{Kl} + 2\Delta_{SU(2)}^{K\pi}\right)}{\tilde{f}_{0}(t) = \tilde{f}_{+} + \tilde{f}_{-} \frac{t}{m_{K}^{2} - m_{\pi}^{2}}}$$

Experimental inputs:

 $\Gamma(K_{13})$

- Rates with well-determined treatment of radiative decays
 - Branching ratios
 - Kaon lifetimes

 $I_{_{Kl}}(\lambda_{_{Kl}})$

Integral of form factor over phase space: λ s parametrize evolution in t=q² Inputs from theory:

 S_{EW}^{K} Universal short distance EW corrections

K(P)

t = (P - p)

 $\pi(p)$

 $f_{+}^{K^{0}\pi^{-}}(0)$ Hadronic matrix element (form factor) at zero momentum transfer (t=0)

 Δ_{EM}^{Kl} Form-factor correction for long-distance EM effects

Form-factor correction for SU(2) breaking

2.2 Modern experimental data for V_{us} from $K_{\ell 3}$

Experiment	Measurement	Year
BNL865	$BR(K^+ \to \pi^0_{\ \mathrm{D}} e^+ v) / BR(K^+ \to \pi^0_{\ \mathrm{D}} X^+)$	2003
KTeV	$ au(K_S)$ BR(K_{Le3}), BR($K_{L\mu3}$), $\lambda_+(K_{Le3})$, $\lambda_{+,0}(K_{L\mu3})$	2003 2004
ISTRA+	$\lambda_{+}(K^{-}_{e3}), \lambda_{+,0}(K^{-}_{e3})$	2004
KLOE	$\tau(K_L)$	2005
	$BR(K_{Le3}), BR(K_{L\mu3}), BR(K_{Se3}), \lambda_+(K_{Le3})$	2006
	$\lambda_{+,0}(K_{L\mu3})$	2007
	$\tau(K^{\pm}), BR(K_{Le3}), BR(K_{L\mu3})$	2008
NA48	$\tau(K_S)$	2002
	BR(K_{Le3} /2 tracks), $\lambda_+(K_{Le3})$	2004
	$\Gamma(K_{Se3}/K_{Le3}), \lambda_{+,0}(K_{L\mu3})$	2007
NA48/2	$BR(K^{+}_{e3}/\pi^{+}\pi^{0}), \ BR(K^{+}_{\mu3}/\pi^{+}\pi^{0})$	2007

Above data set used for 2010 FlaviaNet review (fits, averages, etc.)

6 input measurements:

KLOE BR $\pi^0 \pi^0 / \pi^+ \pi^-$ KLOE BR $\pi e v / \pi^+ \pi^-$ NA48 $\Gamma(K_S \rightarrow \pi e v) / \Gamma(K_L \rightarrow \pi e v), \tau_S$ KLOE'11 τ_S KTeV'11 τ_S

2 constraints:

- Σ BR = 1
- $BR(K_{e3})/BR(K_{\mu 3}) = 0.66492(137)$

From ratio of phase-space integrals from current fit to dispersive $K_{\ell 3}$ form factor parameters

Parameter	Value			
$BR(\pi^+\pi^-(\gamma))$	69.20(5)%			
$BR(\pi^0\pi^0)$	30.69(5)%			
$BR(K_{e3})$	7.05(8) × 10 ⁻⁴			
BR(<i>K</i> _{µ3})	4.69(6) × 10 ⁻⁴			
$ au_S$	89.58(4) ps			
χ² /ndf = 0.20/3 (Prob = 98%)				
ρ (BR ($\pi^+\pi^-$), BR ($\pi^0\pi^0$)) = -0.998 Little freedom in fit				
Largest effect of 2011 τ_s data:				
FlaviaNet 2010 $\tau_S = 89.59(6) \text{ ps}$	Update $\tau_s = 89.58(4) \text{ ps}$			

Updated fit to $K_{\rm L}$ rate data

21 input measurements:	Parameter	Value	S
5 KTeV ratios	$BR(K_{\rho_3})$	0.4056(9)	1.3
NA48 BR(K_{e3} /2 track)	$BR(K_{\mu3})$	0.2704(10)	1.5
4 KLOE BRs with dependence on τ_L	BR($3\pi^{0}$)	0.1952(9)	1.2
KLOE , NA48 BR $(\pi^+\pi^-/K_{\ell 3})$	$BR(\pi^+\pi^-\pi^0)$	0.1254(6)	1.3
KLOE , NA48 BR($\gamma\gamma/3\pi^0$)	$BR(\pi^+\pi^-(\gamma_{IB}))$	1.967(7) × 10 ^{−3}	1.1
BR($2\pi^0/\pi^+\pi^-$) from K_S fit, Re ε'/ε	$BR(\pi^+\pi^-\gamma)$	4.15(9) × 10 ^{−5}	1.6
KLOE τ_L from $3\pi^0$	$BR(\pi^+\pi^-\gamma_{DE})$	2.84(8) × 10 ^{−5}	1.3
Vosburgh '72 τ_L	$BR(2\pi^0)$	8.65(4) × 10 ⁻⁴	1.4
KTeV BR($\pi^+\pi^-\gamma/\pi^+\pi^-(\gamma)$)	BR(γγ)	5.47(4) × 10 ⁻⁴	1.1
E731, 2 KTeV BR($\pi^{+}\pi^{-}\gamma_{\text{DE}}/\pi^{+}\pi^{-}\gamma)$	$ au_L$	51.16(21) ns	1.1
	χ^2 /ndf = 19.8/12 (Prob = 7.0%)		~) ~

1 constraint: Σ BR = 1

Matthew Moulson & Emilie Passemar

Essentially same result as 2010 fit Current PDG ('09): **37.4/17** (0.30%)

Updates: K[±] BRs and lifetimes

KLOE-2 PLB 738 (2014)

$\mathsf{BR}(\pi^+\pi^+\pi^-) = 0.05565(31)(25)$

(0.7%)

- No good measurements of BR($\pi^+\pi^+\pi^-$) in 2010 fit
- Reconstruct 2 tracks in small fiducial volume near interaction region; evaluate missing mass for 3rd track
- Fully inclusive of radiation, but radiative corrections handled differently from other KLOE measurements
- Significant impact on value of BR($\mu\nu$) from fit Correlation between BR($\mu\nu$), BR($\pi^+\pi^+\pi^-$) = -0.75

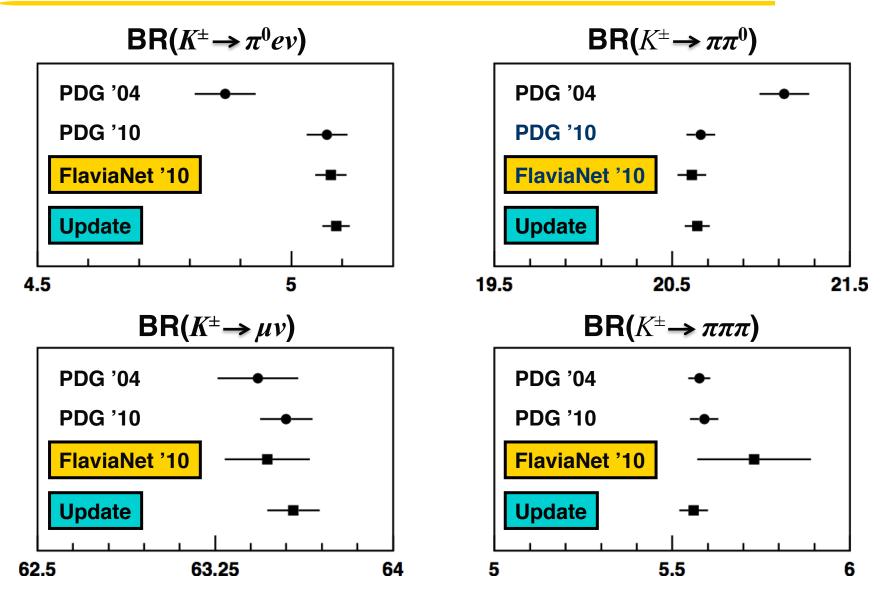
ISTRA+ PAN 77 (2014)

$\mathsf{BR}(K_{e3}^{-}/\pi^{-}\pi^{0}) = 0.2423(15)(37)$

(1.6%)

- Claimed to be fully inclusive for $K_{e3\gamma}$
 - No mention of radiative corrections
 - Many cuts, mainly topological
 - 3 different selections, at least 1 may be largely inclusive
- Included in PDG '15 fit
- Treated as preliminary here (not in K[±] BR fit)

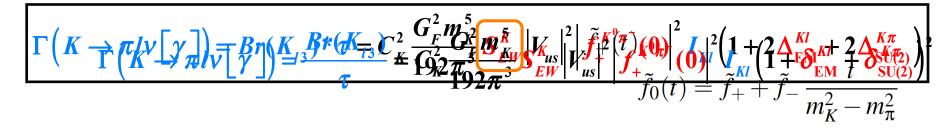
Updates: K[±] BRs and lifetimes



Matthew Moulson & Emilie Passemar

2.3 Electroweak corrections

• Master formula for $K \rightarrow \pi Iv_I$: $K = \{K^+, K^0\}, I=\{e, \mu\}$



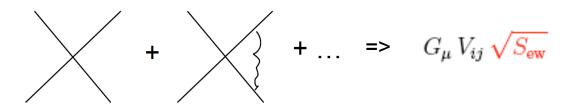
K(P)

t = (P - p)

 $\pi(p)$

• Short distance electroweak correction

$$S_{ew} = 1 + \frac{2\alpha}{\pi} \left(1 + \frac{\alpha_s}{4\pi} \right) \log \frac{m_z}{m_\rho} + O\left(\frac{\alpha \alpha_s}{\pi^2}\right) \implies S_{ew} = 1.0232(3)$$



2.4 $K\pi$ form factors

• Master formula for $K \to \pi Iv_I$: $K = \{K^+, K^0\}$, $I=\{e, \mu\}$

$$\Gamma(K \to \pi l \nu [\gamma]) = Br(K_{13}) * \tau = C_K^2 \frac{G_F^2 m_K^5}{192\pi^3} S_{EW}^K |V_{us}|^2 \left[f_+^{K^0 \pi^-}(0) \right]^2 I_{Kl} \left(1 + 2\Delta_{EM}^{Kl} + 2\Delta_{SU(2)}^{K\pi} \right)$$

• $f_{+}(0)$: vector form factor at zero momentum transfer:

Hadronic matrix element:

$$t = (P - p)^2$$

_(--)

 $V(\mathbf{D})$

$$\left\langle \pi^{-}(p)\right| \overline{s}\gamma_{\mu} \mathbf{u} \left| \mathbf{K}^{0}(\mathbf{P}) \right\rangle = \mathbf{f}_{+}^{K^{0}\pi^{-}}(\mathbf{0}) \left[\left(P + p \right)_{\mu} \overline{f}_{+}^{K^{0}\pi^{-}}(t) + \left(P - p \right)_{\mu} \overline{f}_{-}^{K^{0}\pi^{-}}(t) \right]$$

 $f_+(0)$ key hadronic quantity: In SU(3)_V limit ($n_{1d}^{\tilde{f}_+(t)}$ d=ms), CVC \Rightarrow $f_+(0) = 1$ Need to compute corrections in second order in $S_{\tilde{f}_0}(t) = \tilde{f}_+ + \tilde{f}_- \frac{t}{m_K^2 - m_\pi^2}$ see later

2.4 K π form factors

• Master formula for $K \rightarrow \pi Iv_I$: $K = \{K^+, K^0\}$, $I=\{e, \mu\}$

$$\Gamma(K \to \pi l \nu [\gamma]) = Br(K_{13}) * \tau = C_K^2 \frac{G_F^2 m_K^5}{192\pi^3} S_{EW}^K |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2 I_{Kl} (1 + 2\Delta_{EM}^{Kl} + 2\Delta_{SU(2)}^{K\pi})$$

Hadronic matrix element:

 $\left| \left\langle \pi^{-}(p) \right| \, \overline{s} \gamma_{\mu} \mathbf{u} \left| \mathbf{K}^{0}(\mathbf{P}) \right\rangle = \boldsymbol{f}_{+}^{K^{0} \pi^{-}}(\mathbf{0}) \left[\left(\boldsymbol{P} + \boldsymbol{p} \right)_{\mu} \, \overline{f}_{+}^{K^{0} \pi^{-}}(t) + \left(\boldsymbol{P} - \boldsymbol{p} \right)_{\mu} \, \overline{f}_{-}^{K^{0} \pi^{-}}(t) \right] \right|$

• Phase space integrals: $I_{K\ell} = \frac{2}{3} \int_{m_{\ell}^2}^{t_0} \frac{dt}{M_K^8} \bar{\lambda}^{3/2} \left(1 + \frac{m_{\ell}^2}{2t}\right) \left(1 - \frac{m_{\ell}^2}{2t}\right)$

$$\times \left(\bar{f}_{+}^{2}(t) + \frac{3\eta f_{\ell}^{2} (\tilde{t}_{K\pi}^{*} \pi)}{(2t + m_{\ell}^{2})\bar{\lambda}} \bar{f}_{0}^{2}(t) \right),$$

$$f_{0}^{*}(t) = \tilde{f}_{+} + \tilde{f}_{-} \frac{t}{m_{K}^{2} - m_{\ell}^{2}}$$

K(P)

 $t = (P - p)^2$

 $\pi(p)$

- In K_{e3} decays: only vector FF $\overline{f}_{+}^{K^{"}\pi^{-}}(t)$
- In $K_{\mu3}$ decays, also need the scalar FF

$$\overline{f}_0(t) = \overline{f}_+(t) + \frac{t}{m_K^2 - m_\pi^2} \overline{f}_-(t)$$

• For *V_{us}*, need integral over phase space of squared matrix element: Parameterize form factors and fit distributions in *t* (or related variables)

$K_{\ell 3}$ form factors parametrizations

• Parametrizations based on Taylor expansion:

$$\overline{f}_{+,0}(t) = 1 + \lambda_{+,0}\left(\frac{t}{m_{\pi^{\pm}}^2}\right) \quad \text{or} \quad \overline{f}_{+,0}(t) = 1 + \lambda_{+,0}\left(\frac{t}{m_{\pi^{\pm}}^2}\right) + \lambda_{+,0}^{"}\left(\frac{t}{m_{\pi^{\pm}}^2}\right)^2$$

Very simple parametrization but limited in energy range and not physically motivated: many parameters and strong correlations between them unstable fits

- Physically motivated parametrizations:
 - Pole parametrization

$$\overline{f}_{+,0}(t) = \left(\frac{M_{V,S}^2}{M_{V,S}^2 - t}\right)$$

Well motivated for the vector (K* resonance) But for the scalar M_S ?

- Dispersive parametrization

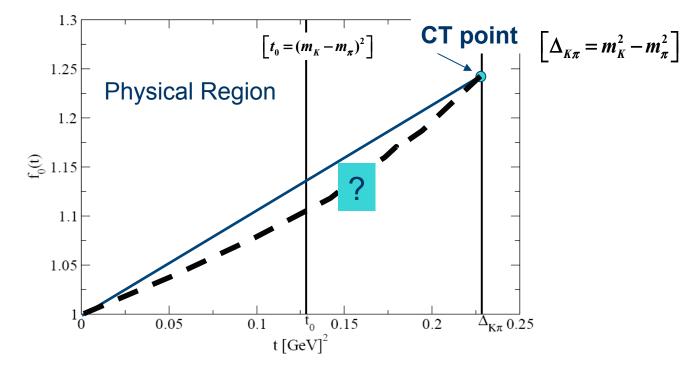
$$\overline{f}_{+}(t) = \exp\left[\frac{t}{m_{\pi}^{2}} \left(\Lambda_{+} - H(t)\right)\right] \text{ and } \overline{f}_{0}(t) = \exp\left[\frac{t}{m_{K}^{2} - m_{\pi}^{2}} \left(\ln C - G(t)\right)\right]$$

Dispersive representation for the form factors

• Take the $K\pi$ rescattering into account

Bernard, Oertel, E.P., Stern'06, '09

• Allow to determine the slope and *curvature* of the form factors: only 2 param.

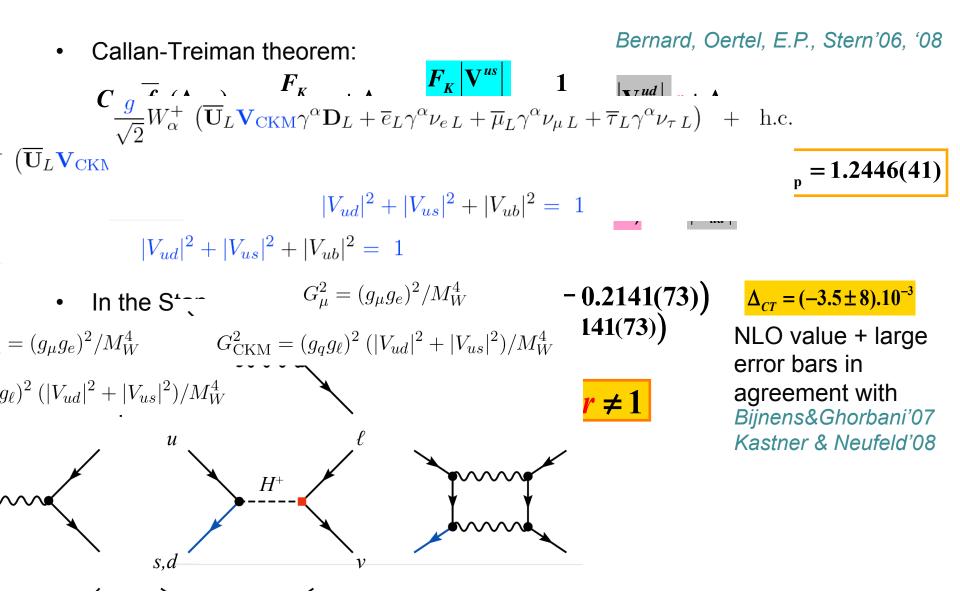


- Use the CT theorem for the scalar FF → Write a twice substracted dispersion relation for In f(t) at t=0 and at the CT point for the scalar FF
- Does it improve the agreement with data?

2.4 Dispersive representation for the form factors

- Use dispersion relations to parametrize the FFs Unitarity: $disc \left[\overline{f}_{0,+}(s) \right] \propto t_{\ell}^{I*}(s) \overline{f}_{0,+}(s)$ Bernard, Oertel, E.P., Stern'06,'09 $\overline{f}_{0}(t) = \exp\left|\frac{t}{m_{\kappa}^{2} - m_{\pi}^{2}}\left(\ln C - \frac{\Delta_{\kappa\pi}(\Delta_{\kappa\pi} - t)}{\pi}\int_{t}^{+\infty} \frac{ds}{s} \frac{\phi_{0}(s)}{(s - \Delta_{\kappa\pi})(s - t - i\varepsilon)}\right)\right|$ Omnès representation: $\overline{f}_{+}(t) = \exp\left[\frac{t}{m_{\pi}^{2}}\left(\Lambda_{+} + \frac{m_{\pi}^{2}t}{\pi}\int_{t_{th}}^{+\infty}\frac{ds}{s^{2}}\frac{\phi_{+}(s)}{(s-t+i\varepsilon)}\right)\right]$ $\phi_{+,0}(s)$: phase of the form factor - $s < s_{in}$: $\phi_{+,0}(s) = \delta_{K\pi}(s)$ $t_{th} \equiv \left(m_{\kappa} + m_{\pi}\right)^2$ $K\pi$ scattering phase - $s \ge s_{in}$: $\phi_{+,0}(s)$ unknown $\phi_{+,0}(s) = \phi_{+,0as}(s) = \pi \pm \pi \quad (\bar{f}_{+,0}(s) \to 1/s)$ Brodsky & Lepage
 - A large error turns out in a small uncertainty in the physical region

Callan-Treiman Low Energy Theorem



2.4 $K_{\ell 3}$ form factor data

- Form-factor parameter measurements in FlaviaNet 2010 fit:
 - K_L : KTeV, KLOE, NA48 (K_{e3} only)
 - K⁻: ISTRA+
- Even if not in the original publications, all experiments have:
 - Obtained results for Taylor, pole, and dispersive parameterizations
 - Supplied parameter correlation coefficients

New measurements:

NA48/2	$2.3 \times 10^6 K^{\pm}_{\mu 3}$
1808.09041	$4.4 \times 10^6 K_{e3}^{\pm}$

Updating 2012 preliminary See talk by M. Piccini

 K^+ and K^- simultaneously acquired in dedicated minimum-bias run

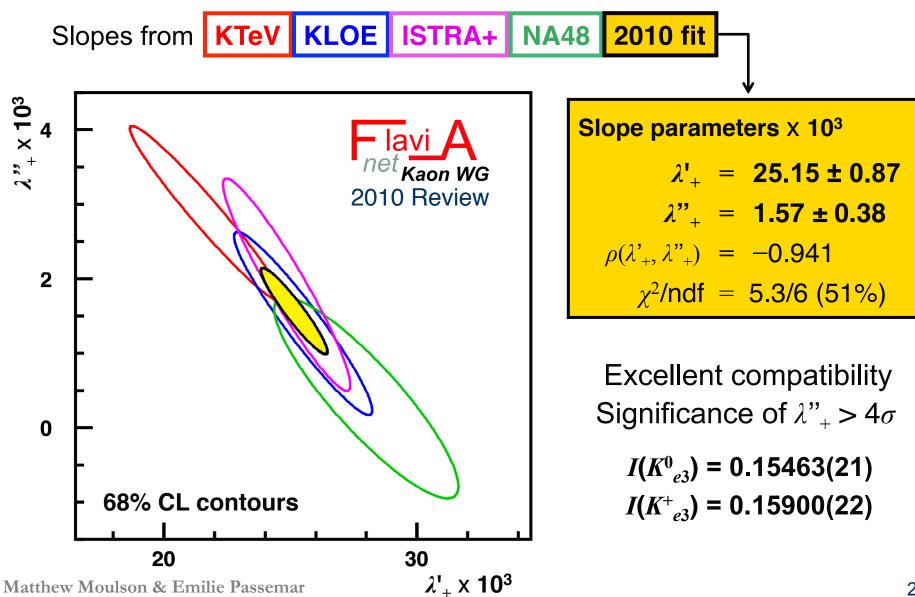
Taylor, pole, and dispersive fits with complete investigation of systematics

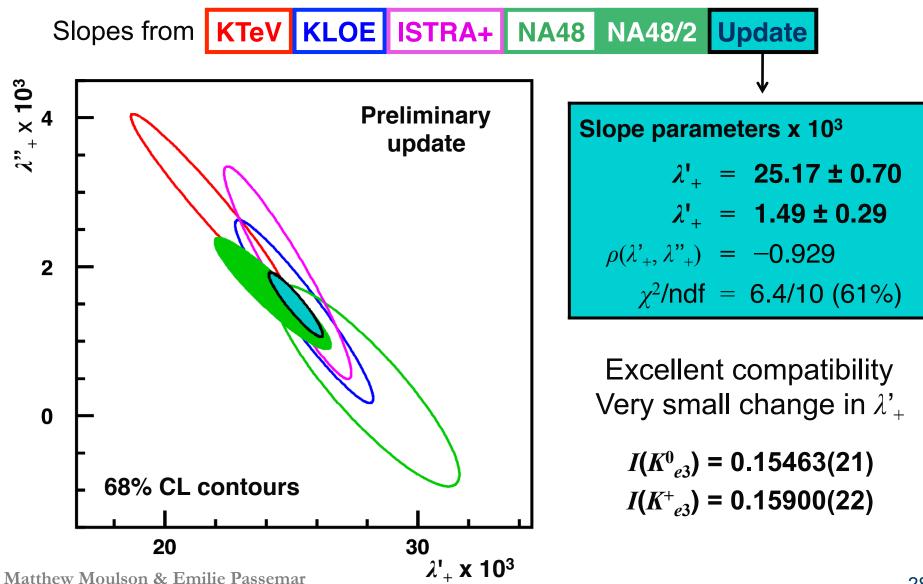
Matthew Moulson & Emilie Passemar

Described as preliminary

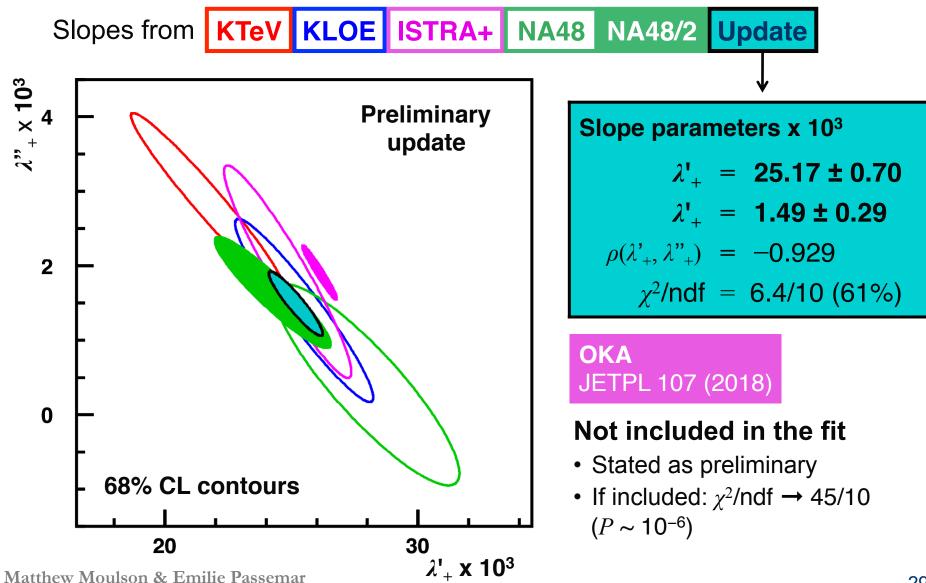
Extraordinarily high precision claimed, esp. for $\lambda_{+}', \lambda_{+}''$

Rudimentary discussion of systematics Not yet included in updated K_{e3} fit

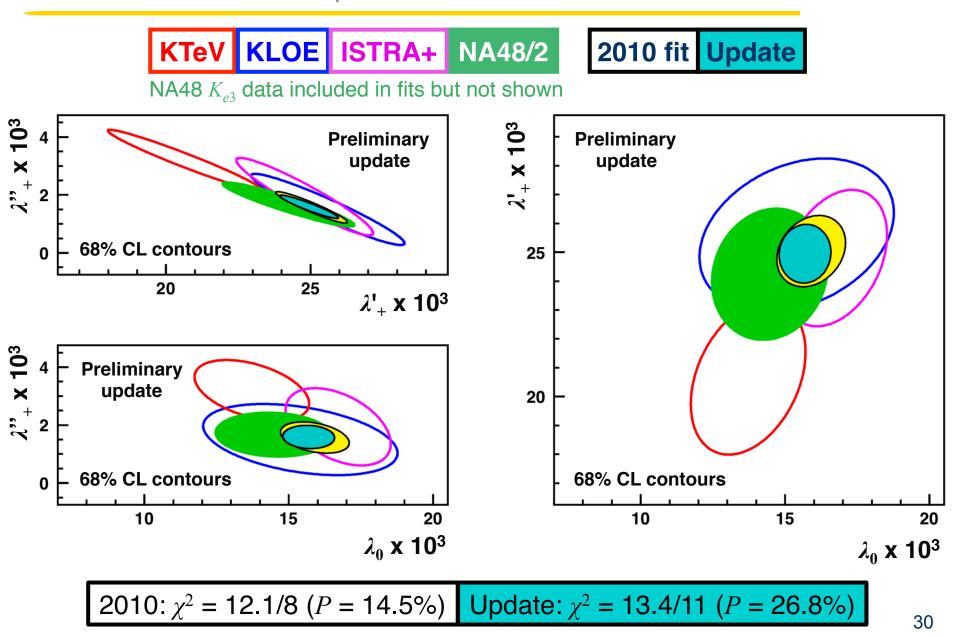




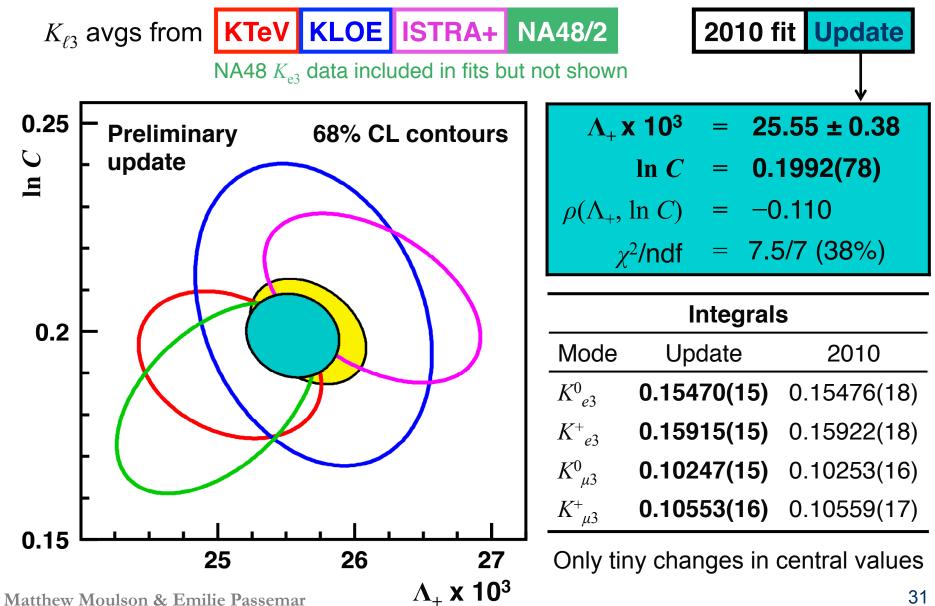
2.4 Fit to K_{e3} form-factor slopes: Update



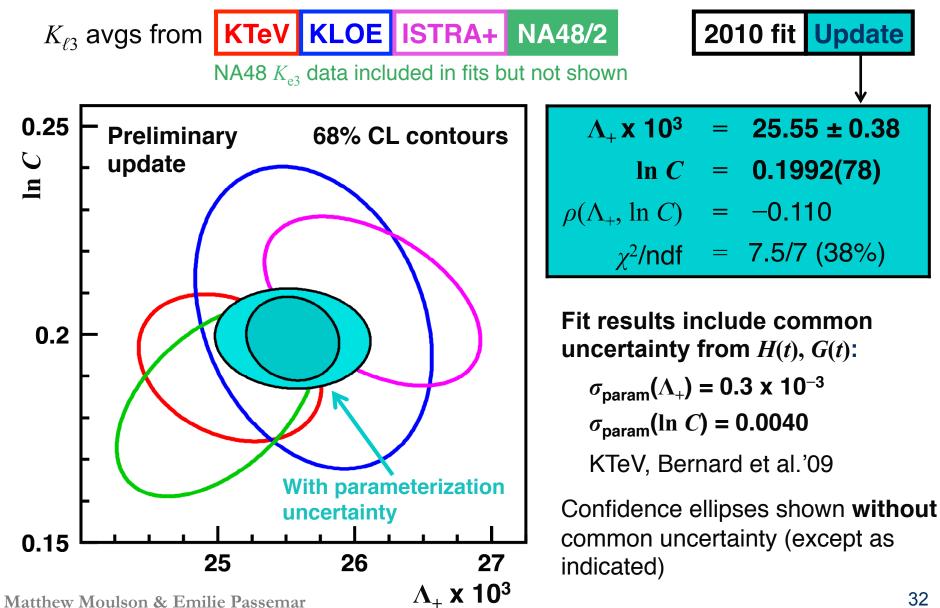
2.4 Fits to $K_{e3} + K_{\mu3}$ form-factor slopes: Update



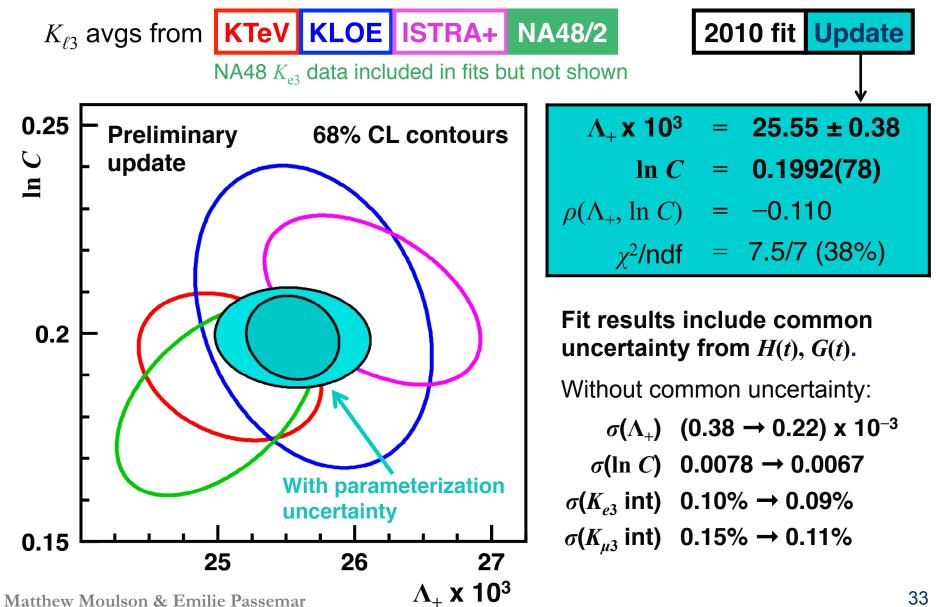
2.4 Dispersive parameters for K_{ℓ_3} form factors



2.4 Dispersive parameters for K_{ℓ_3} form factors



2.4 Dispersive parameters for K_{ℓ_3} form factors



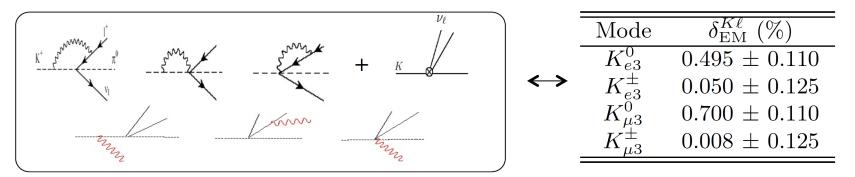
2.5 Long distance electromagnetic corrections

• Master formula for $K \to \pi Iv_I$: $K = \{K^+, K^0\}$, $I=\{e, \mu\}$

$$\Gamma(K \to \pi l \nu [\gamma]) = Br(K_{13}) * \tau = C_{K}^{2} \frac{G_{F}^{2} m_{K}^{5}}{192\pi^{3}} S_{EW}^{K} |V_{us}|^{2} |f_{+}^{K^{0}\pi^{-}}(0)|^{2} I_{Kl} \left(1 + 2\Delta_{EM}^{Kl} + 2\Delta_{SU(2)}^{K\pi}\right)$$

• Long distance EM corrections: $\delta_{\rm EM}^{KI}$

Cirigliano, Giannotti, Neufeld'08



- ChPT to O(p²e²)
- Fully inclusive prescription for real photons
- Uncertainties: LECs (100%)

2.6 Isospin breaking corrections

• Master formula for $K \to \pi Iv_I$: $K = \{K^+, K^0\}$, $I=\{e, \mu\}$

$$\Gamma(K \to \pi l \nu [\gamma]) = Br(K_{13}) * \tau = C_{K}^{2} \frac{G_{F}^{2} m_{K}^{5}}{192\pi^{3}} S_{EW}^{K} |V_{us}|^{2} |f_{+}^{K^{0}\pi^{-}}(0)|^{2} I_{Kl} \left(1 + 2\Delta_{EM}^{Kl} + 2\Delta_{SU(2)}^{K\pi}\right)$$

• Isospin breaking corrections: $\Delta_{SU(2)}^{K\pi}$

1 /

$$\Delta_{\mathrm{SU}(2)}^{K\pi} = \frac{f_{+}^{K^{+}\pi^{0}}(0)}{f_{+}^{K^{0}\pi^{-}}(0)} - 1$$

$$K^+_{---\otimes} = \frac{\pi^0}{2} + IB$$
 in one loop graphs + CT

> In ChPT at O(p⁴):
$$\Delta_{SU(2)}^{K\pi} = \frac{3}{4} \frac{1}{Q^2} \left[\frac{\overline{m}_K^2}{\overline{m}_\pi^2} + \frac{\chi_{p^4}}{2} \left(1 + \frac{m_s}{\widehat{m}} \right) \right]$$
$$Q^2 = \frac{m_s^2 - \hat{m}_u^2}{m_d^2 - m_u^2} \qquad \left[\hat{m} = \frac{m_u + m_d}{2} \right]$$

Matthew Moulson & Emilie Passemar

Gasser&Leutwyler'85

$$\Delta^{SU(2)} \equiv rac{f_+(0)^{K^+\pi^0}}{f_+(0)^{K^0\pi^-}} - 1$$

Strong isospin breaking

Quark mass differences, η - π^0 mixing in $K^+\pi^0$ channel

$$= \frac{3}{4} \frac{1}{Q^2} \begin{bmatrix} \overline{M}_K^2 \\ \overline{M}_\pi^2 \end{bmatrix} \begin{pmatrix} \chi_{p^4} \\ \overline{M}_\pi^2 \end{pmatrix} \begin{bmatrix} Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2} & \text{NLO in strong interaction} \\ O(e^2 p^2) \text{ term } \varepsilon_{\text{EM}}^{(4)} \sim 10^{-6} \end{bmatrix}$$

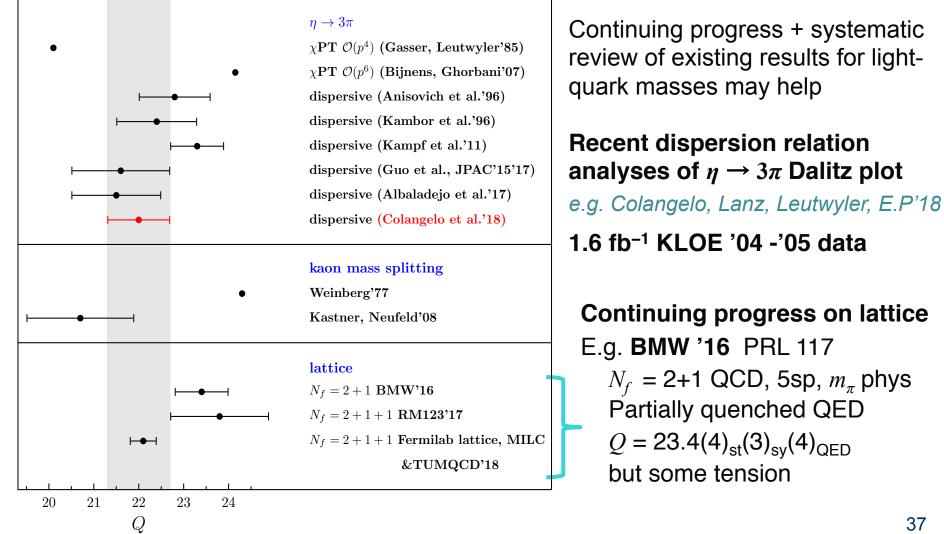
= +2.61(17)% Calculated using

- Q = 22.1(7) $M_K = 494.2(3)$ Isopsin-limit $m_s/\hat{m} = 27.43(13)(27)$ $M_{\pi} = 134.8(3)$ meson masses
- Calculation scheme of Kastner & Neufeld '08, Cirigliano et al. '02
- LECs from Bijnens & Ecker '14

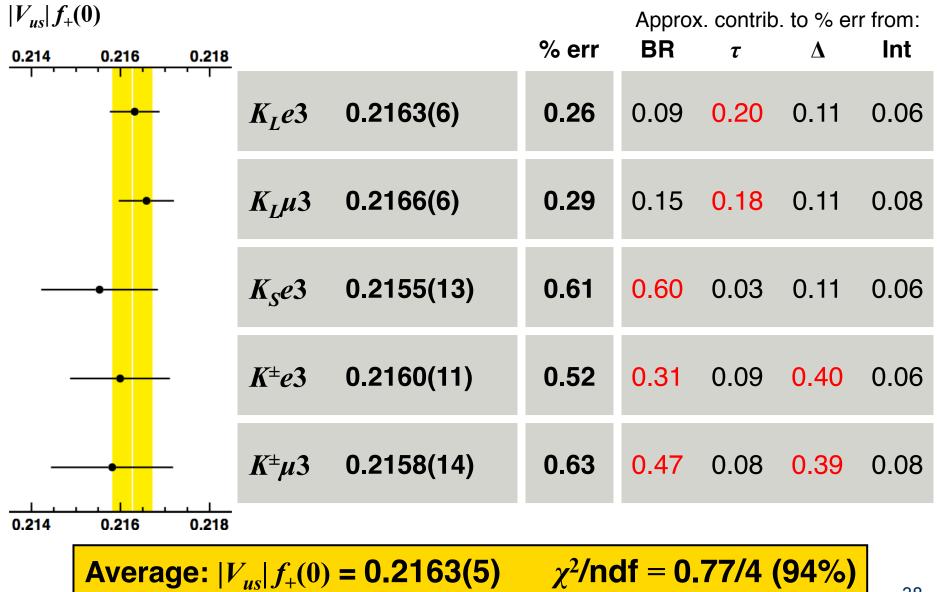
Test by evaluating V_{us} from K^{\pm} and K^{0} data with **no** corrections: Equality of V_{us} values would require $\Delta^{SU(2)} = 2.82(38)\%$

2.5 Isospin breaking corrections

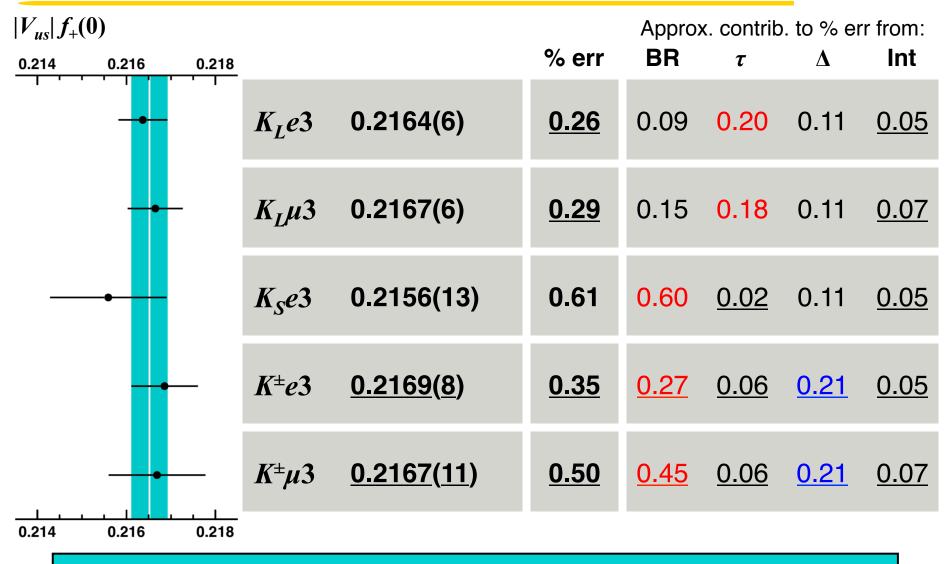
Previous to new results on Q, uncertainty on $\Delta^{SU(2)}$ leading contributor to uncertainty on $V_{\mu s}$ from K^{\pm} decays — can it be reduced?



2.6 $|V_{us}| f_{+}(0)$ from world data: 2010

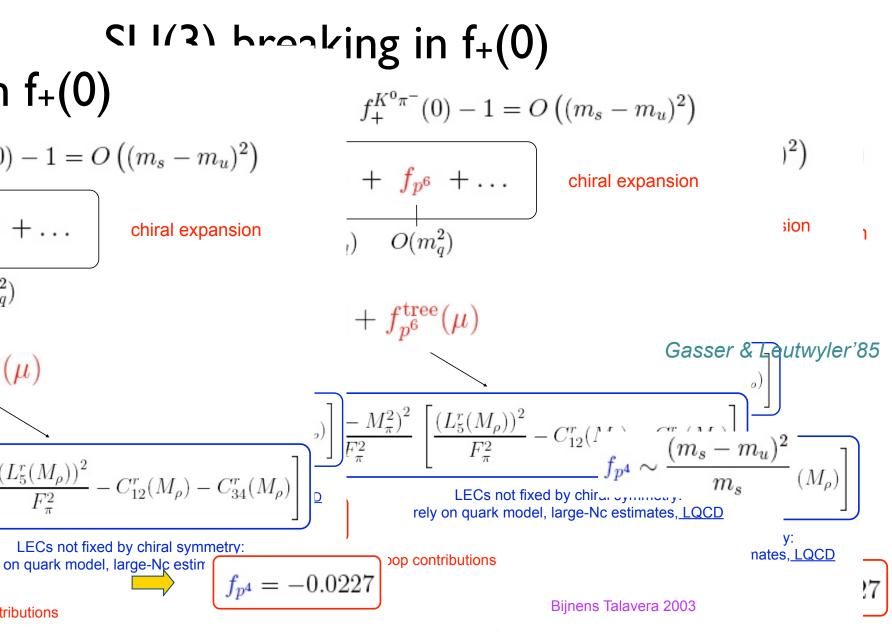


2.6 $|V_{us}| f_{+}(0)$ from world data: Update



Average: $|V_{us}| f_{+}(0) = 0.21652(41) \chi^2/ndf = 0.98/4 (91\%)$

A (A)



Matthew Moulson & Emilie Passemar

Bijnens Talavera 2003

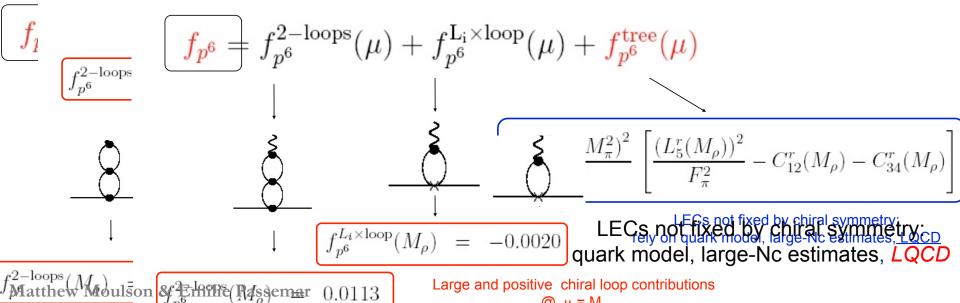
SU(3) breaking in f+(0)

• CVC + Ademollo-Gatto theorem: $f_+^{K^0\pi^-}(0) - 1 = O\left((m_s - m_u)^2\right)$

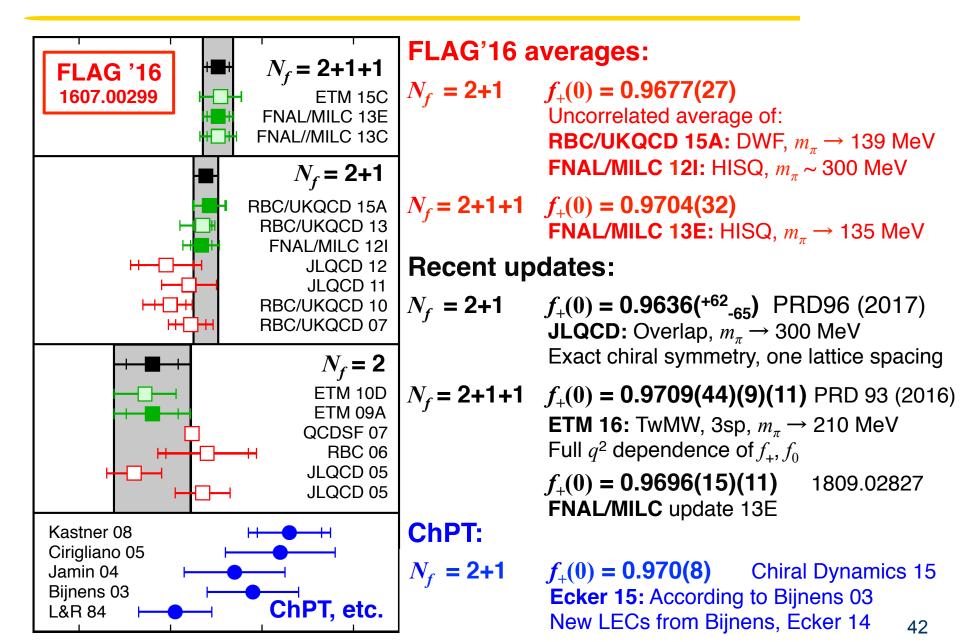
SU(3) breaking in f+(0)

$$f_{p^6}$$

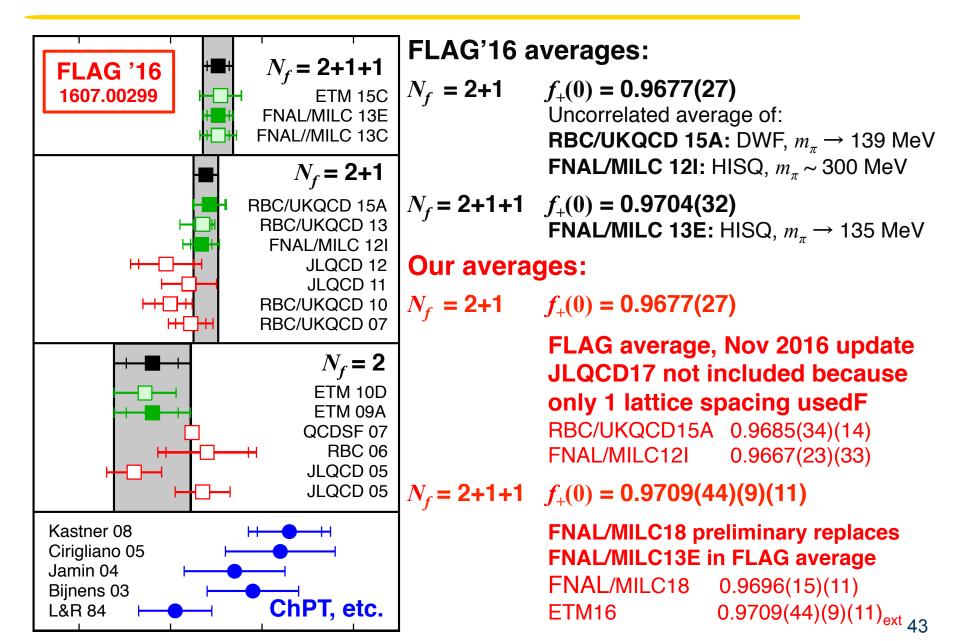
• CVC + Ademollo-Gatto theorem: $f_{+}^{K^{0}\pi^{-}}(0) - 1 = O\left((m_{s} - m_{u})^{2}\right)$ $f_{+}^{K^{0}\pi^{-}}(0) = 1 + f_{p^{4}} + f_{p^{6}} + \dots$ chiral expansion $f_{+}^{K^{0}\pi^{-}}(0) = 1 + f_{p^{4}} + f_{p^{6}} + \dots$ Chiral expansion $g_{O(m_{q})} = O(m_{q^{2}})$



2.7 Determination of $f_+(0)$

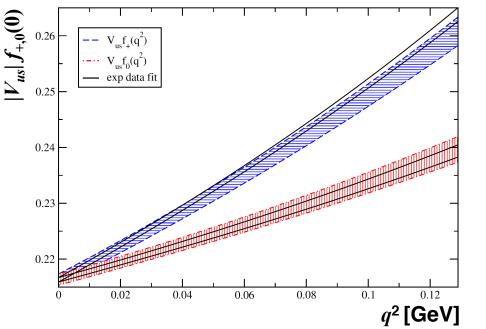


2.7 Determination of $f_+(0)$



q^2 dependence of $K\pi$ form factors

ЕТМ PRD 93 (2016) $N_f = 2+1+1$ Twisted-mass Wilson fermions 3 lattice spacings, smallest $m_{\pi} \rightarrow 210 \text{ MeV}$ Results for full q^2 dependence of f_+, f_0

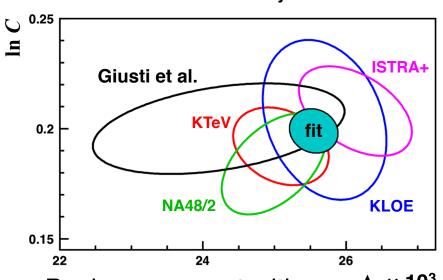


Fit synthetic data points with dispersive parameterization

 $\Lambda_{+} = 24.22(1.16) \times 10^{-3} \quad \rho(\Lambda_{+}, f_{+}(0)) = -0.228$ $\ln C = 0.1998(138)$

 $\rho(\ln C, f_{+}(0)) = -0.719$ $\rho(\Lambda_+, \ln C) = +0.376$

 $f_{+}(0) = 0.9709(44)_{st}(9)_{sy}(11)_{ext}$



- $\Lambda_+ imes 10^3$ Basic agreement with experimental results
- Confirms basic correctness of lattice calculations for $f_{+}(0)$
- In the near future FF parameters will be obtained on lattice? 44

2.8
$$|V_{us}|(K_{\ell 3})$$
 and $|V_{ud}|(0^+ \rightarrow 0^+)$: Update

Hardy & Towner, CIPANP '18 $|V_{ud}| = 0.97420(21)$

World data set very robust

14 transitions with compatible measurements at 0.1% precision or better

From FlaviaNet 2010 $K_{\ell 3}$ analysis $|V_{us}| f_{+}(0) = 0.2163(5)$ $|V_{us}| = 0.2254(13)$ with $f_{+}(0) = 0.959(5)$ with $|V_{ud}| = 0.97425(22)$ $\Delta_{CKM} = +0.0000(8)$

Update with $|V_{us}| f_{+}(0) = 0.21652(41)$ and $|V_{ud}| = 0.97420(21)$

$N_f = 2+1$ $f_+(0) = 0.9677(27)$	$V_{us} = 0.22375(43)_{exp}(62)_{lat}$ $\Delta_{CKM} = -0.00085(19)_{exp}(28)_{lat}(41)_{ud}$	= – 1.6 <i>o</i>
$N_f = 2+1+1$ $f_+(0) = 0.9698(17)$	$V_{us} = 0.22326(43)_{exp}(39)_{lat}$ $\Delta_{CKM} = -0.00107(19)_{exp}(17)_{lat}(41)_{ud}$	= -2.2 σ

1.5-2 σ inconsistency with unitarity first seen with 2014-era lattice results Relative to 2014 slightly better agreement between $N_f = 2+1$ and $N_f = 2+1+1$

Matthew Moulson & Emilie Passemar

 $V_{ud} \text{ from } 0^+ \rightarrow 0^+$

$$\frac{1}{t} = \frac{G_{\mu}^2 |V_{ud}|^2 m_e^5}{\pi^3 \log 2} f(Q) \ (1 + \frac{RC}{}) - \frac{f t}{t} \ (1 + \frac{RC}{}) = \frac{2984.48(5) \ s}{|V_{ud}|^2}$$

$$(1 + RC) = (1 - \delta_C) (1 + \delta_R) (1 + \Delta_C)$$

$$\langle f | \tau_+ | i \rangle = \sqrt{2} \left(1 - \delta_C / 2 \right)$$

Coulomb distortion
of wave-functions

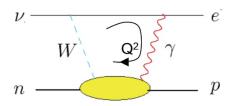
 $\delta_C \sim 0.5\%$

Towner-Hardy Ormand-Brown Nucleus-dependent rad. corr. (Z, E^{max} ,nuclear structure)

$$\delta_R \sim 1.5\%$$

Sirlin-Zucchini '86 Jaus-Rasche '87 Nucleus-independent short distance rad. corr.

$$\Delta_R \sim 2.4\%$$

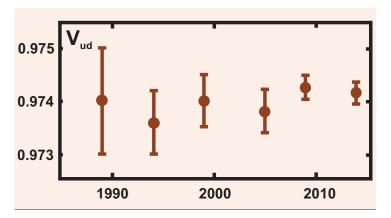


 V_{ud} from $0^+ \rightarrow 0^+$

In 2010 :

- Survey of 150 measurements of 13 different $0^+ \rightarrow 0^+ \beta$ decays
- 27 new *ft* measurements including Penning-trap measurements for QEC
- Some old measurements dropped
- Improved EW radiative corrections
 Marciano & Sirlin'06
- New SU(2)-breaking corrections
 Towner & Hardy'08

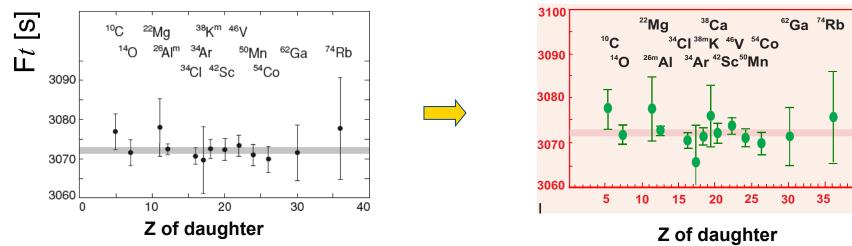
Evolution of V_{ud} over years



Towner@CIPANP'18

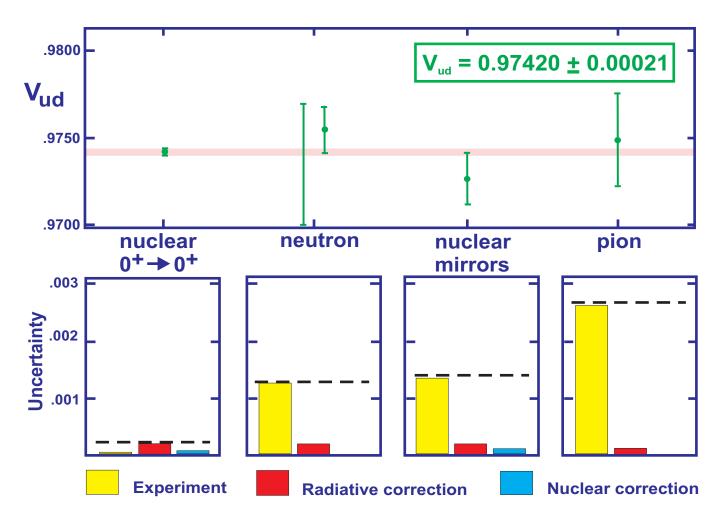
47

Since then 24 new measurements, critical review of IB correction and test of CVC



Current Status of V_{ud} determination

Towner@CIPANP'18



2.8 $|V_{us}|(K_{\ell 3})$ and $|V_{ud}|(0^+ \rightarrow 0^+)$: Update

Seng, Gorchtein, Patel & Ramsey-Musolf arXiv:1807.10197

|*V_{ud}*| = **0.97366(15)**

-1.5 σ shift in V_{ud}

New calculation γW -box contribution to universal radiative correction using dispersion relations and DIS structure functions

- Contribution possibly already in part included in structure-dependent radiative corrections
- Needs verification!

Update with $|V_{us}| f_{+}(0) = 0.21652(41)$ and $|V_{ud}| = 0.97366(15)$

Choice	e of $f_+(0)$	V _{us}	$\Delta_{\rm CKM} = V_{ud}^2 +$	$V_{us}^{2} - 1$
$N_f = 2+1$	0.9677(27)	0.2238(8)	-0.0019(5)	= -4.2 σ
$N_f = 2 + 1 + 1$	0.9698(17)	0.2233(6)	-0.0021(4)	= -5.4 <i>σ</i>

If correct, 4-5 σ unitarity violation in first row! Calculation is attracting interest and requires better understanding

Matthew Moulson & Emilie Passemar

3. V_{us}/V_{ud} from $K_{\ell 2}/\pi_{\ell 2}$ decays

3.1 Master formula for V_{us}/V_{ud} from $K_{\ell 2}/\pi_{\ell 2}$ decays

• From K_{12}/π_{12} :

$$\frac{|V_{us}|}{|V_{ud}|}\frac{f_K}{f_{\pi}} = \left(\frac{\Gamma_{K_{\mu 2(\gamma)}} m_{\pi^{\pm}}}{\Gamma_{\pi_{\mu 2(\gamma)}} m_{K^{\pm}}}\right)^{1/2} \frac{1 - m_{\mu}^2 / m_{\pi^{\pm}}^2}{1 - m_{\mu}^2 / m_{K^{\pm}}^2} \left(1 - \frac{1}{2}\delta_{\rm EM} - \frac{1}{2}\delta_{SU(2)}\right)$$

Inputs from theory:

Cirigliano, Neufeld '11

 $\delta_{\rm EM} = -0.0069(17)$

Long-distance EM corrections

 $\delta_{SU(2)} = -0.0043(5)(11)$

Strong isospin breaking $f_K / f_{\pi} \rightarrow f_{K\pm} / f_{\pi\pm}$

Lattice: f_K / f_{π}

Cancellation of lattice-scale uncertainties from ratio NB: Most lattice results already corrected for SU(2)-breaking: $f_{K\pm}/f_{\pi\pm}$

Matthew Moulson & Emilie Passemar

Inputs from experiment:

Updated K^{\pm} BR fit: BR($K^{\pm}_{\mu^{2}(\gamma)}$) = 0.6358(11) $\tau_{K^{\pm}}$ = 12.384(15) ns

PDG:

BR($\pi^{\pm}_{\ \mu 2(\gamma)}$) = 0.9999 $au_{\pi\pm}$ = 26.033(5) ns

$$|V_{us}/V_{ud}| \times f_{K\pm}/f_{\pi\pm} = 0.27599(37)$$

No SU(2)-breaking correction

3.2 Electromagnetic corrections

Giusti et al. PRL 120 (2018)

First lattice calculation of EM corrections to P_{l2} decays

- Ensembles from ETM
- $N_f = 2+1+1$ Twisted-mass Wilson fermions

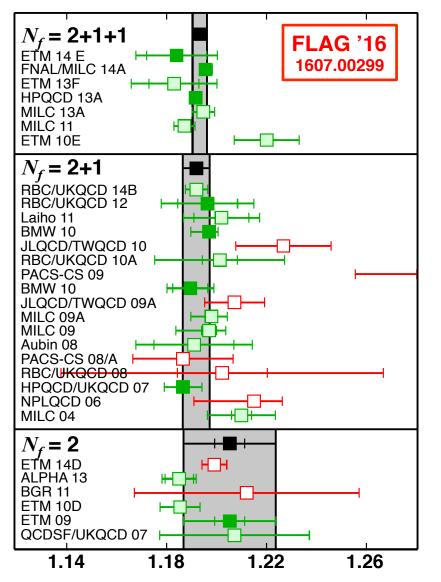
 $\delta_{SU(2)} + \delta_{EM} = -0.0122(16)$

• Uncertainty from quenched QED included (0.0006)

Compare to ChPT result from Cirigliano, Neufeld '11:

 $\delta_{SU(2)} + \delta_{\rm EM} = -0.0112(21)$

3.3 Lattice results for f_K/f_{π}



FLAG '16 averages:

 $N_f = f_{K\pm}/f_{\pi\pm} = 1.192(5)$ 2+1 Unchanged from FLAG '13 average

 $N_f = f_{K\pm}/f_{\pi\pm} = 1.1933(29)$

2+1+1 ETM 14E: TwM, 3sp, m_{π} = 210-450 MeV FNAL/MILC 14A: HISQ, 4sp, m_{π} phys Updates MILC 13A HPQCD 13A: HISQ, 3sp, m_{π} phys, Same ensembles as FNAL/MILC 14A

Recent updates:

$$N_f = f_K / f_\pi = 1.1945(45)$$

2+1 RBC/UKQCD '14: DWF, m_{π} = 139 MeV f_{K} and f_{π} separately (isospin limit) Recently published

 $f_{K\pm}/f_{\pi\pm} =$ **1.1978(28)**

BMW '16: Clover, 5sp, $m_{\pi} \rightarrow$ 139 MeV

Our updates of FLAG averages for results without SU(2)-breaking

 $N_f = 2+1+1$ $f_K/f_{\pi} = 1.1960(40)$ HPQCD13A1.1948(15)(18)FNAL/MILC14A* $1.1983(^{+28}_{-21})$ ETM14E1.188(15)Correlated uncertainty

 $N_f = 2+1$

HPQCD/UKQCD071.198(7)RBC/UKQCD14B1.1945(45)BMW161.182(10)(26)

* Corrected using Cirigliano, Neufeld '11 with updated values:

 $\frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = \frac{f_K}{f_{\pi}} \sqrt{1 + \delta_{SU(2)}} \qquad \delta_{SU(2)} \approx \frac{3}{4R} \left[-\frac{4}{3} (f_K/f_{\pi} - 1) + \frac{2}{3(4\pi)^2 f_0^2} \left(M_K^2 - M_{\pi}^2 - M_{\pi}^2 \ln \frac{M_K^2}{M_{\pi}^2} \right) \right]$ $R = 34.4(2.1) \quad \text{Colangelo et al. '18} \qquad M_K = 494.2(3) \quad \text{FLAG '17}$

 $f_{K}/f_{\pi} = 1.1927(38)$

Matthew Moulson & Emilie Passemar

 $V_{us} = 0$

 $\Delta_{\rm CKM}$ =

 $\frac{|V_{us}|}{|V_{ud}|} \frac{f_K}{f_{\pi}}$

 $\frac{\Gamma(K \rightarrow \mu\gamma [\varUpsilon])}{\Gamma(\pi \rightarrow \mu\nu [\gamma])} = \frac{92}{m_{\pi^{\pm}}} \frac{(48)}{(1 - m_{\mu}^2/m_{\pi^{\pm}}^2)}$

 au_{\pm}

 $B(K_{\mu 2})$

 $f_{K+}/f_{\pi+} = 1.1960(40)$

 $N_f = 2 + 1 + 1$

 f_K/f_{π}

$|V_{us}/V_{ud}| \times f_{K\pm}/f_{\pi\pm} = 0.27599(37) \text{ and } |V_{ud}| = 0.97420(21)$ $\delta_{SU(2)} + \delta_{EM} = -(V_{us}|(K_{\ell 2}) \text{ and } |V_{ud}|(0^+ \to 0^+))$

$$|V_{us}/V_{ud}| \times f_{K\pm}/f_{\pi\pm} = 0.27599(37)$$
 and $|V_{ud}|$

Choice	of $f_{K\pm}/f_{\pi\pm}$	V _{us} /V _{ud}	Δ _{CKM} =
<i>N_f</i> = 2+1	1.192(5)	0.2315(10)	-0.00
$N_f = 2 + 1 + 1$	1.1933(29)	0.2313(6)	-0.00

 $K_{\ell 2}$ results give rather better agree unitarity via V_{ud} than $K_{\ell 3}$ results

Exercise:

• Assume $|V_{ud}|$, $|V_{us}/V_{ud}| \times f_{K\pm}/f_{\pi\pm}$, and $f_{K\pm}/f_{\pi\pm}$

 $|V_{us}/V_{ud}| \times f_{K\pm}/f_{\pi\pm} = 0.27599(37) \text{ and } |V_{ud}| = 0.97420(21)$ $\delta_{SU(2)} + \delta_{EM} = -0.0122(16) \text{ from Giusti et al. '18}$

$$N_{f} = 2+1 \qquad V_{us} = 0.22604(29)_{exp}(72)_{lat}(05)_{ud}$$

$$f_{K\pm}/f_{\pi\pm} = 1.1927(38) \qquad \Delta_{CKM} = +0.00018(13)_{exp}(33)_{lat}(43)_{ud} = +0.3\sigma$$

$$N_{f} = 2+1+1 \qquad V_{us} = 0.22542(29)_{exp}(75)_{lat}(05)_{ud}$$

$$f_{K\pm}/f_{\pi\pm} = 1.1960(40) \qquad \Delta_{CKM} = -0.00011(13)_{exp}(34)_{lat}(43)_{ud} = -0.2\sigma$$

$K_{\ell 2}$ results give better agreement with unitarity via V_{ud} than $K_{\ell 3}$ results (-2 σ)

Exercise:

- Assume $|V_{ud}|$, $|V_{us}/V_{ud}| \times f_{K\pm}/f_{\pi\pm}$, and $f_{K\pm}/f_{\pi\pm}$ all correct
- In $K_{\ell 3}$ does the discrepancy arise from data or from lattice results for $f_+(0)$?

4. V_{us} and Unitarity of the CKM matrix

4.1 Looking for New Physics with K₁₂ and K₁₃

• Callan-Treiman theorem:

$$C = \overline{f}_{0}(\Delta_{K\pi}) = \frac{F_{K}}{F_{\pi}f_{+}(0)} + \Delta_{CT} = \underbrace{F_{K} | \mathbf{V}^{us} | \mathbf{1}}_{F_{\pi} | \mathbf{V}^{ud} | f_{+}(0) | \mathbf{V}^{us} | \mathbf{V}^{ud} | \mathbf{r} + \Delta_{CT}}_{Very \text{ precisely known}} = \mathbf{B}_{exp} = 1.2446(41)$$

- In the Standard Model : r = 1 $(\ln C_{SM} = 0.2141(73))$
- In presence of new physics, $\overline{n} \in \mathbb{C}_{r}^{1}$ ($\ln C_{\text{HM}} = 0.2 r \neq 1$)

NLO value + large error bars in agreement with

 $\Delta_{CT} = (-3.5 \pm 8).10^{-3}$

Experiment K _{e3} +K _{µ3}	In C r ≠ 3
NA48'07 (K _{µ3} alone)	0.144(14)
KLOE'08	0.204(25)
KTeV'10	0.192(12)
NA48/2, previous talk	0.184(15)

Matthew Moulson & Emilie Passemar

4.1 Form factors & the Callan-Treiman relation

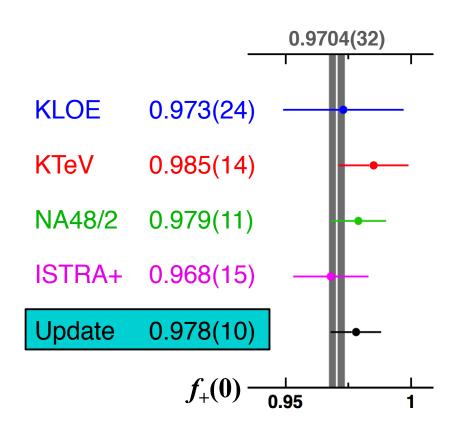
Callan-Treiman relation:

$$\tilde{f}_0(t_{\rm CT}) = \frac{f_K}{f_\pi} \frac{1}{f_+(0)} + \Delta_{\rm CT}$$

Use ChPT & form-factor data to test $N_f = 2+1+1$ lattice consistency:

- Use lattice reference value $f_K/f_{\pi} = 1.1933(29)$
- Obtain *f*₊(0) corresponding to each result for ln *C*
- Compare to lattice reference value $f_{+}(0) = 0.9704(32)$
- Basic consistency (0.7 σ) between lattice values for f_K/f_{π} and $f_+(0)$ and measurements of ln *C*
- Uses no experimental information on decay widths

 $t_{\text{CT}} = m_K^2 - m_\pi^2$ $\Delta_{\text{CT}} = (-3.5 \pm 0.8) \times 10^{-3} \sim O(m_u, m_d)$ Gasser, Leutwyler '85 Dispersive representation: $f_0(t_{\text{CT}}) \equiv C$



Matthew Moulson & Emilie Passemar

4.2 V_{us} and CKM unitarity: All data, $N_f=2+1$

 $N_f = 2+1$: Fit to results for $|V_{ud}|$, $|V_{us}|$, $|V_{us}|/|V_{ud}|$ $f_{+}(0) = 0.9677(27), f_{\kappa}/f_{\pi} = 1.1927(38)$ V us V ud V_{us} 68%CL ellipse Without scaling S = 2.00.226 🕶 fit with fit → unitarity 0.224 V_{us} unitarity 0.222 $V_{ud} \rightarrow$ 0.975 V_{ud} 0.965 0.97

 $|V_{us}| = 0.2238(8)$ $|V_{us}|/|V_{ud}| = 0.2320(8)$

 $|V_{ud}| = 0.97420(21)$

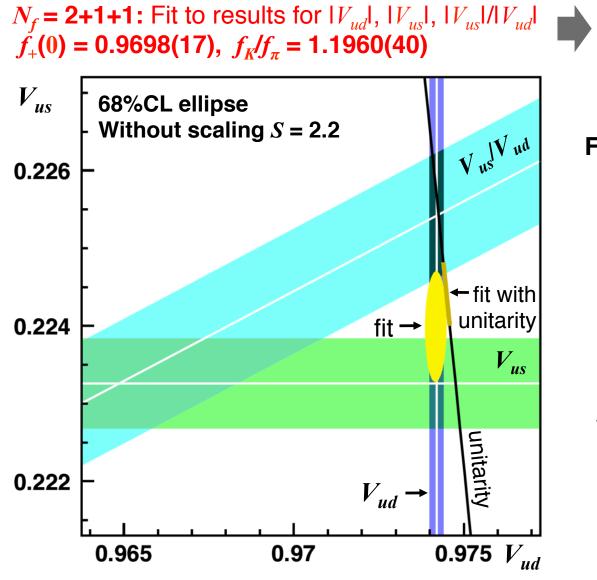
Fit results, no constraint

$$V_{ud} = 0.97418(21)$$

 $V_{us} = 0.2249(5)$
 $\chi^2/ndf = 4.5/1 (3.5\%)$
 $\Delta_{CKM} = -0.0004(5)$
 -0.8σ

With scale factor S = 2.1 $V_{ud} = 0.97418(45)$ $V_{us} = 0.2249(12)$

4.2 V_{us} and CKM unitarity: All data, $N_f = 2+1+1$



 $|V_{ud}| = 0.97420(21)$ $|V_{us}| = 0.2233(6)$ $|V_{us}|/|V_{ud}| = 0.2314(8)$

Fit results, no constraint

$$V_{ud} = 0.97418(21)$$

 $V_{us} = 0.2240(5)$
 $\chi^2/ndf = 4.7/1 (3.1\%)$
 $\Delta_{CKM} = -0.0008(5)$
 -1.7σ

With scale factor S = 2.2 $V_{ud} = 0.97418(46)$ $V_{us} = 0.2240(10)$

5. Conclusion and outlook

5.1 Preliminary conclusions

Experimental results

$$\begin{split} |V_{us}| \, f_+(0) &= 0.21654(41) \\ |V_{us}/V_{ud}| \, \times f_{K\pm}/f_{\pi\pm} &= 0.27599(37) \end{split}$$

With $N_f = 2+1+1$ lattice inputs

 $V_{ud} = 0.97418(21) \pm 0.02\%$ $V_{us} = 0.2246(5) \pm 0.22\%$ $\Delta_{CKM} = -0.0005(5) = -1.1\sigma$

Good agreement with unitarity for K_{ℓ^2}

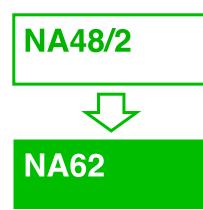
Previous excellent consistency for $K_{\ell 3}$ no longer observed

- Change occurred after 2014-era more precise evaluations of $f_+(0)$
- Experimental results for K_{ℓ_3} have changed little since 2010

Are residual systematics in the data and/or calculations becoming important as stated uncertainties shrink?

- Evaluation of |V_{us}| f₊(0) from K_{l3} data set based on some creaky BR fits, but errors are scaled and consistency between modes is good (K_L, K_S, K[±])
- Lots of redundancy in $K_{\ell 3}$ data set. Adding or eliminating individual measurements doesn't change $|V_{us}| f_+(0)$ much.

5.2 Prospects for new measurements



Can measure BRs and form-factor parameters for K^+ NA48/2 (2003-2004) recently measured $K_{\ell 3}$ form factors NA62-RK (2007) has O(10M) $K_{\ell 3}$ decays NA62 has O(few M) K_{e3} from minimum bias runs (2015-16) Relative to NA48/2, NA62 has

- Better particle identification π/μ
- Better systematics for *t* reconstruction:
 - full beam tracking, better σ_p in spectrometer

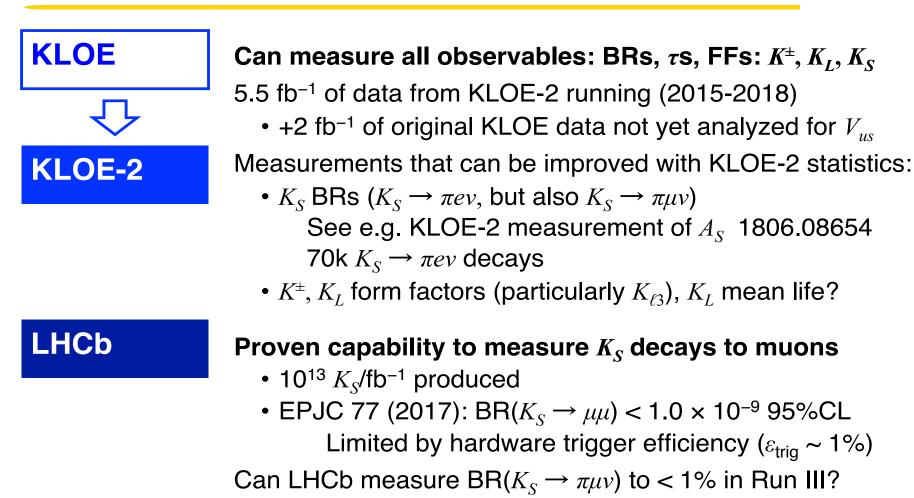
Fixed target experiment at U-70 (Protvino), like ISTRA+

• New beamline with RF-separated K^+ beam

Can measure BRs and form-factor parameters

- Need more analysis of systematics for K_{e3} form factors Runs from 2010-2013: ~17M K_{e3}^+ events
 - Additional runs in 2016-2018; more planned in future

5.2 Prospects for new measurements



Would require dedicated software HLT line

 $K_S \rightarrow \pi \mu v$ never yet measured – a new channel for V_{us}

• τ_S known to 0.04% (vs 0.41% for τ_L , 0.12% for τ_{\pm})

5.2 Prospects for new measurements

Primary focus is BR($K_{e2}/K_{\mu 2}$) to 0.25%

- + Invisible heavy neutrino searches
- + *T* violation in $K_{\mu3}$ (as E06)

Upgraded KEK-246 setup, moved to J-PARC

- Stopped *K*⁺ in active target
- Toroidal spectrometer surrounding target
- *e*/μ particle ID by time of flight, Cerenkov counters, lead-glass calorimetry

KEK-246 measured BR($K_{\mu3}/K_{e3}$) and K_{e3} FF, so TREK could potentially measure at least some BRs and FFs of interest for V_{us}

5.3 Progress on V_{us} from kaons: Final notes

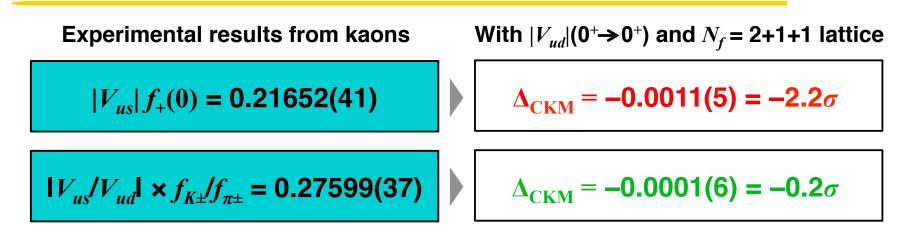
- $K_{\ell 3}$ FFs do not directly contribute significantly to uncertainty on V_{us}
 - However, uncertainties on high-statistics BR ratio measurements may be so low that FFs become a major systematic

- e.g. BR($K_{\mu3}/\pi\pi^0$), BR($K_{\mu3}/K_{e3}$)

- Uncertainties from parameterization of $K\pi$ phase shift data now limit precision for $K_{\ell 3}$ FFs and phase space integrals
 - Better parameterization will require old data to be re-fit!
 - Imperative for future averages that experiments publish full FF data so that it can be re-fit as parameterizations improve
 - Direct lattice calculation of $K_{\ell 3}$ FFs may help
- For *K*[±], normalization BRs have significant uncertainties
 - Effect of any precise new BR($K_{e3}/\pi\pi^0$) results will limited by uncertainty on BR($\pi\pi^0$)
 - Very important to measure absolute BRs or ratios involving BRs of other modes, e.g. $\pi\pi^{0}/\mu\nu$, $\pi\pi\pi/\pi\pi^{0}$, $\pi\pi\pi/\mu\nu$

Matthew Moulson & Emilie Passemar

5.4 Summary and conclusions



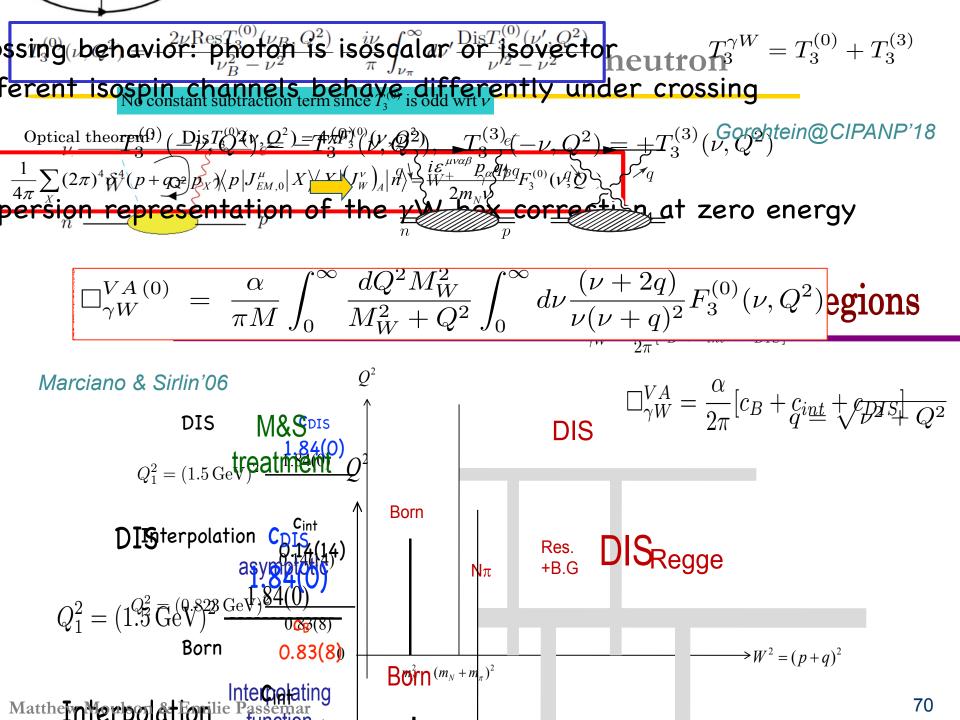
- 2σ inconsistency between $K_{\ell 3}$ and $K_{\ell 2}$ results for V_{us}
- K_{ℓ^2} result shows good agreement with unitarity and Vud
- K_{l3} result 2σ smaller than expected from unitarity and Vud
 - Change occurred after 2014-era more precise evaluations of $f_+(0)$
 - Experimental result for $|V_{us}| f_{+}(0)$ has changed little since 2010

Continuing to see impressive progress on the lattice

• Not only $f_{+}(0)$ and $f_{K\pm}/f_{\pi\pm}$, but also full *t*-dependence of FFs, EM corrections, etc.

Good prospects for new round of measurements to reduce uncertainty on $|V_{us}| f_{+}(0)$ from current 0.18% to ~0.12% within next few years: NA62, OKA, KLOE-2, LHCb, TREK...

6. Back-up



$$\begin{aligned} sing(behavior: Photom 1s) is is stand and the product of the second stand stand$$

$$\Box_{\gamma W}^{n} = \frac{2\pi}{2\pi} 3.03(5) = 3.51(6) \times 10^{-3}$$

Matthew Moulson & Emilie Passemar
$$\Box_{\gamma W}^{\text{New}} = \frac{\alpha}{2\pi} 3.03(5) = 3.51(6) \times 10^{-3}$$

71

2.6 $K_{\ell 3}$ data and lepton universality

• For each state of kaon charge, evaluate:

$$r_{\mu e} = \frac{(R_{\mu e})_{\text{obs}}}{(R_{\mu e})_{\text{SM}}} = \frac{\Gamma_{\mu 3}}{\Gamma_{e 3}} \cdot \frac{I_{e 3} (1 + \delta_{e 3})}{I_{\mu 3} (1 + \delta_{\mu 3})} = \frac{[|V_{us}| f_{+}(0)]_{\mu 3, \text{ obs}}^{2}}{[|V_{us}| f_{+}(0)]_{e 3, \text{ obs}}^{2}} = \frac{g_{\mu}^{2}}{g_{e}^{2}}$$

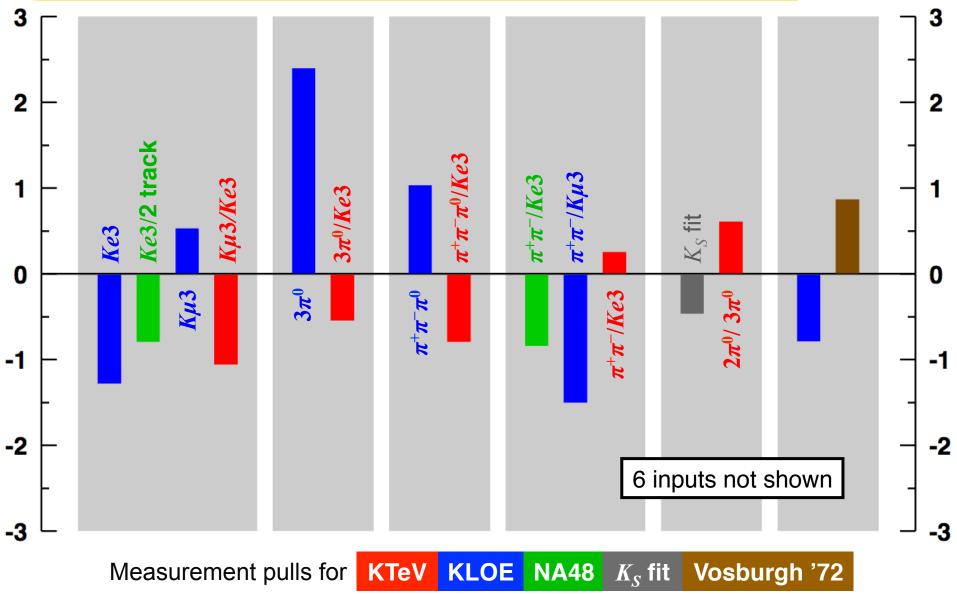
$$\boxed{\text{Modes} \quad 2004 \text{ BRs}^{*,\dagger} \quad \text{Current}^{\dagger}}_{K_{L}} \quad 1.054(14) \quad 1.003(5)$$

$$K^{\pm} \quad 1.014(12) \quad 0.999(9) \quad \leftarrow \text{Was } 0.998(9) \\ \text{for } 2010 \quad 1.002(5) \quad \text{for } 2010 \quad \text{for } 2010$$

*Assuming current values for form-factor parameters and Δ^{EM} † K_S not included

- Compare to other precise tests:
 - $\pi \rightarrow \ell v$ ($r_{\mu e}$) = 1.0020(19) PDG '16 with PIENU '15 result
 - $\tau \rightarrow \ell v v$ $(r_{\mu e}) = 1.0038(28)$ HFLAV May '17 web update

Comparison: K_L fit result vs. input data



Matthew Moulson & Emilie Passemar

17 input measurements:3 old τ values in PDG	Parameter	Value	S		
KLOE τ	BR(µv)	63.58(11)%	1.1		
KLOE BR μv , $\pi \pi^0$	$BR(\pi\pi^0)$	20.64(7)%	1.1		
KLOE BR K_{e3} , $K_{\mu3}$ with dependence on τ	BR(<i>πππ</i>)	5.56(4)%	1.0		
NA48/2 BR $K_{e3}/\pi\pi^0$, $K_{u3}/\pi\pi^0$	BR(<i>K</i> _{e3})	5.088(27)%	1.2		
E865 BR K_{e3}/K Dal	$BR(K_{\mu3})$	3.366(30)%	1.9		
3 old BR $\pi\pi^0/\mu v$	$BR(\pi\pi^0\pi^0)$	1.764(25)%	1.0		
KEK-246 $K_{\mu3}/K_{e3}$	$ au_{\pm}$	12.384(15) ns	1.2		
KLOE BR πππ, ππ⁰π⁰ (Bisi '65 BR ππ ⁰ π ⁰ /πππ removed)	~ ~	5.5/11 (Prob = 0.78 PDG '16: 53/28 (0.26%)	5/11 (Prob = 0.78%) G '16: 53/28 (0.26%)		

With **ISTRA+** '14 **BR**($K_{e3}^{-}/\pi^{-}\pi^{0}$)

Negligible changes in other

• $BR(K_{e3}) = 5.083(27)\%$

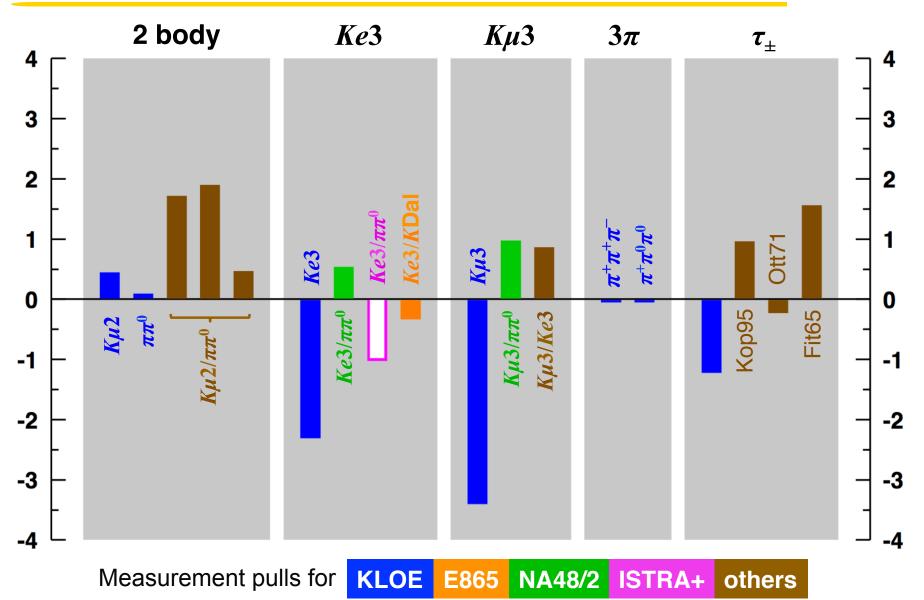
parameters, fit quality

1 constraint: Σ BR = 1

Much more selective than PDG fit PDG '16: 35 inputs, 8 parameters

Matthew Moulson & Emilie Passemar

Comparison: K^{\pm} fit result vs. input data



Matthew Moulson & Emilie Passemar

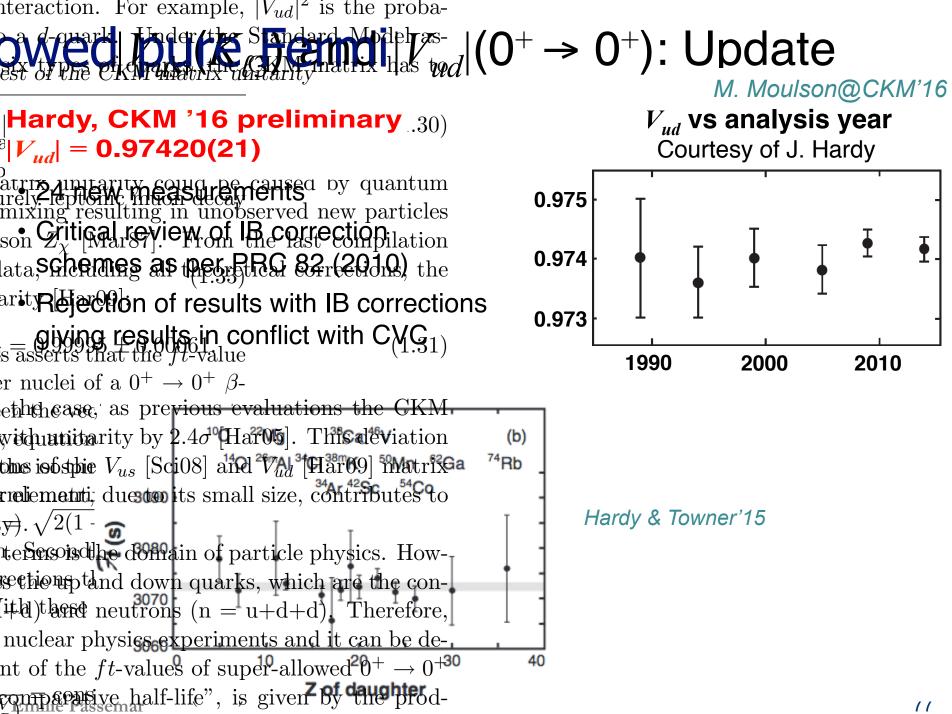
$$|V_{us}|(K_{\ell,3}) \text{ and } |V_{ud}|(0^+ \rightarrow 0^+)\text{: 2010}$$

$$Mousca@CKM2014$$

$$|V_{us}|f_{+}(0) = 0.2163(5) \qquad f_{+}(0) = 0.959(5) \qquad |V_{us}| = 0.2254(13)$$
Hardy & Towner '10

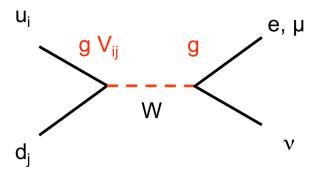
$$|V_{ud}| = 0.97425(22)$$
Survey of 150 measurements of 13
different 0^+ \rightarrow 0^+ β decays
27 new *ft* measurements including
Penning-trap measurements for Q_{EC}
Some old measurements dropped
Improved EW radiative corrections
[Marciano & Sirlin '06]
New *SU*(2)-breaking corrections
[Towner & Hardy '08]

Exact compatibility with unitarity



• From kaon, pion, baryon and nuclear decays

V _{ud}	$ \begin{array}{c} 0^+ \rightarrow 0^+ \\ \pi^{\pm} \rightarrow \pi^0 e \nu_e \end{array} $	$n \rightarrow pe\overline{v}_e$	$\pi \rightarrow I_{v_I}$		
V _{us}	$\kappa \rightarrow \pi l v_l$	$\Lambda \rightarrow pe\overline{v}_e$	K → Iv _i		



• From kaon, pion, baryon and nuclear decays

$$\begin{array}{c|c} V_{ud} & \begin{matrix} \mathbf{0}^{+} \rightarrow \mathbf{0}^{+} \\ \pi^{\pm} \rightarrow \pi^{0} e v_{e} \end{matrix} & \mathbf{n} \rightarrow \mathbf{p} e \overline{v}_{e} \end{matrix} & \begin{matrix} \pi \rightarrow \mathbf{l} v_{\mathbf{l}} \end{matrix} & \begin{matrix} u_{i} \\ \hline \mathbf{v}_{us} \end{matrix} & \begin{matrix} \mathbf{W} \rightarrow \pi^{0} e v_{e} \end{matrix} & \begin{matrix} \mathbf{N} \rightarrow \mathbf{p} e \overline{v}_{e} \end{matrix} & \begin{matrix} \mathbf{K} \rightarrow \mathbf{l} v_{\mathbf{l}} \end{matrix} & \begin{matrix} u_{i} \\ \hline \mathbf{W} \rightarrow \mathbf{l} v_{\mathbf{l}} \end{matrix} & \begin{matrix} \mathbf{W} \rightarrow \mathbf{V} e \overline{v}_{e} \end{matrix} & \begin{matrix} \mathbf{K} \rightarrow \mathbf{l} v_{\mathbf{l}} \end{matrix} & \begin{matrix} \mathbf{W} \rightarrow \mathbf{V} e \overline{v}_{e} \end{matrix} & \begin{matrix} \mathbf{W} \rightarrow \mathbf{W} e \overline{v}_{e} \end{matrix} & \begin{matrix} \mathbf{W} \rightarrow \mathbf{W}$$

- These are the golden modes to extract V_{ud} and V_{us}
 - > Only the *vector current* contributes $\langle A(p_A) | \bar{q}^i \gamma_{\mu} q^j | B(p_B) \rangle$
 - Normalization known in SU(2) [SU(3)] symmetry limit
 - Corrections start at 2nd order in SU(2) [SU(3)] breaking

Ademollo & Gato, Berhands & Sirlin

- Currently the most precise determination of V_{ud} and V_{us}

 \longrightarrow V_{ud} (0.02 %) and V_{us} (0.5 %)

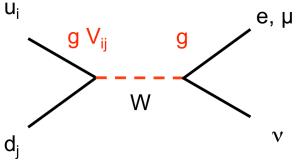
• From kaon, pion, baryon and nuclear decays

$$\begin{array}{c|c} V_{ud} & \begin{matrix} \mathbf{0}^{+} \rightarrow \mathbf{0}^{+} \\ \pi^{\pm} \rightarrow \pi^{0} e v_{e} \end{matrix} & \begin{matrix} \mathbf{n} \rightarrow \mathbf{p} e \overline{v}_{e} \end{matrix} & \begin{matrix} \pi \rightarrow \mathbf{l} v_{I} \end{matrix} & \begin{matrix} u_{i} \\ \hline \mathbf{v}_{us} \end{matrix} & \begin{matrix} \mathbf{K} \rightarrow \pi \mathbf{l} v_{I} \end{matrix} & \begin{matrix} \mathbf{\Lambda} \rightarrow \mathbf{p} e \overline{v}_{e} \end{matrix} & \begin{matrix} \mathbf{K} \rightarrow \mathbf{l} v_{I} \end{matrix} & \begin{matrix} u_{i} \\ \hline \mathbf{v}_{ij} \end{matrix} & \begin{matrix} \mathbf{g} \\ \mathbf{v}_{ij} \end{matrix} & \begin{matrix} \mathbf{g} \\ \mathbf{v} \end{matrix} & \begin{matrix} \mathbf{v} \\ \mathbf{v} \end{matrix} & \begin{matrix} \mathbf{v} \end{matrix} &$$

- Both V and A currents contribute: need experimental input on <A> (e.g. β-asymmetry)
- Free of nuclear structure uncertainties
- Probe different combinations of BSM operators

• From kaon, pion, baryon and nuclear decays

V _{ud}	$0^+ \rightarrow 0^+$ $\pi^{\pm} \rightarrow \pi^0 e \nu_e$	$n \rightarrow pe\overline{v}_e$	$\pi \rightarrow Iv_{I}$	
V _{us}	$\kappa \rightarrow \pi l_{v_l}$	$\Lambda \rightarrow pe\overline{v}_e$	$K \rightarrow Iv_{I}$	



- K_{12}/π_{12}
 - > Only the *axial current* contributes
 - > Need to know the decay constants F_{K} , F_{π} Lattice QCD
 - Probe different BSM operators than from the vector case
- Input on $F_{K}/F_{\pi} \implies V_{us}/V_{ud}$ very precisely

 V_{ud} $\begin{array}{c} 0^+ \rightarrow 0^+ \\ \pi^\pm \rightarrow \pi^0 e v_e \end{array}$ $n \rightarrow p e \overline{v}_e$ $\pi \rightarrow l v_l$ V_{us} $K \rightarrow \pi l v_l$ $\Lambda \rightarrow p e \overline{v}_e$ $K \rightarrow l v_l$

From kaon, pion, baryon and nuclear decays

- u_i g V_{ij} g d_j W v v τ g g V_{ij} u_i v u_i d_j
- From τ decays (crossed channel) + test of LU

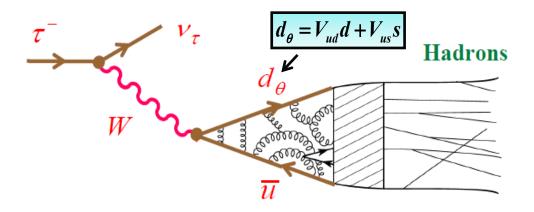
V _{ud}	$\tau \rightarrow \pi \pi v_{\tau}$	$\tau \rightarrow \pi v_{\tau}$	$\tau \rightarrow h_{NS} v_{\tau}$
V _{us}	$\tau \rightarrow K \pi v_{\tau}$	$\tau ightarrow { m Kv}_{ au}$	$\tau \rightarrow h_s v_{\tau}$ (inclusive)

•

• From τ decays (crossed channel)

V_{ud}	$\tau \rightarrow \pi \pi v_{\tau}$	$\tau \rightarrow \pi v_{\tau}$	$ au ightarrow h_{NS} v_{ au}$
V _{us}	$\tau \rightarrow K \pi v_{\tau}$	$\tau ightarrow { m Kv}_{ au}$	$\tau \rightarrow h_s v_{\tau}$ (inclusive)

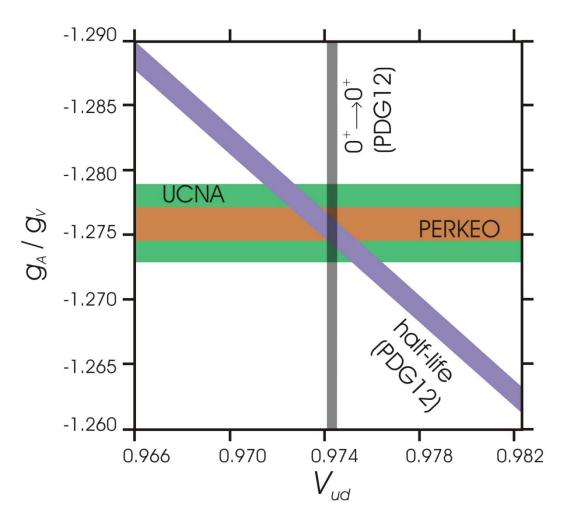
- Use OPE to calculate inclusive BRs
- Information from exclusive modes too



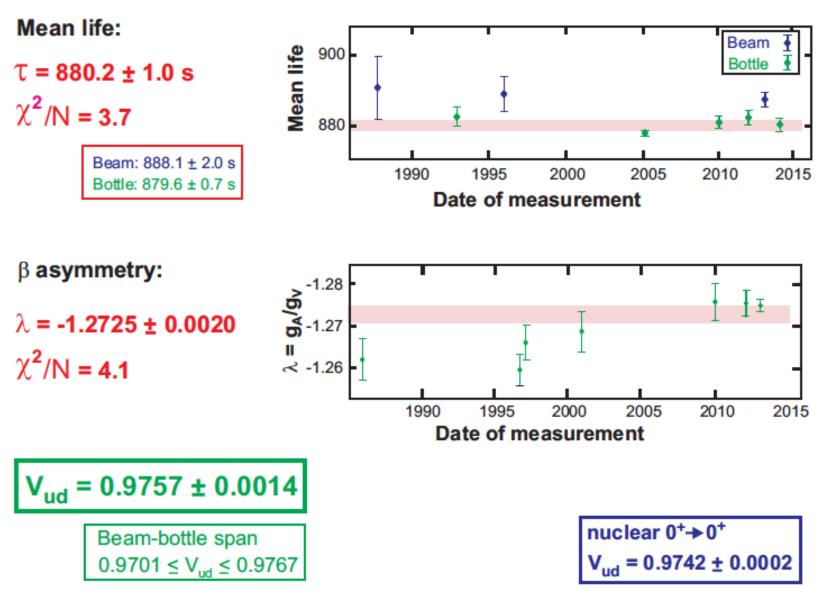
Extraction of Vud

• See also V_{ud} extraction from neutron decay

Mendenhall et al.'13



Extraction of V_{ud}



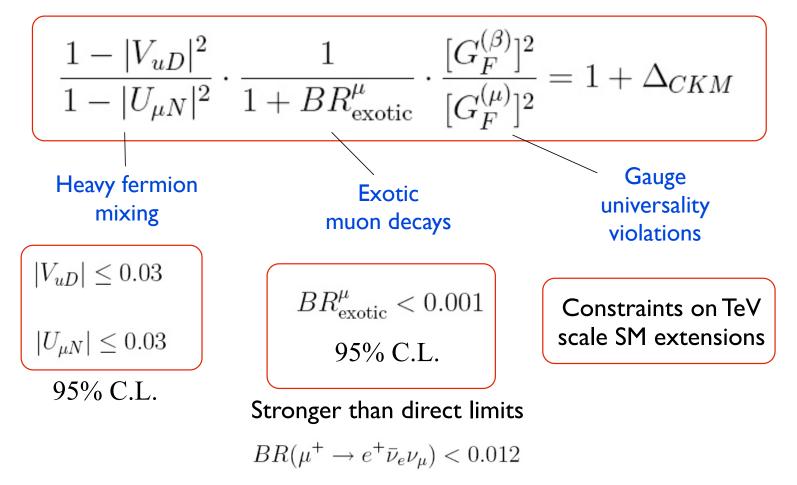
Emilie Passemar

4. Implication of Cabibbo universality tests for new physics

4.1 Looking for New Physics using Δ_{CKM}

• Δ_{CKM} a constraining quantity:

$$\Delta_{CKM} = 1 - \left(\left| V_{ud} \right|^2 + \left| V_{us} \right|^2 \right)$$



4.1 Looking for New Physics using Δ_{CKM}

• Effective Theory approach:

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

• Δ_{CKM} a constraining quantity:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \Delta_{CKM}$$

4.1 Looking for New Physics using $\Delta_{\rm CKM}$

	Operator	Observable	$K^+ \rightarrow \pi^+ \nu \bar{\nu}$	$K_L o \pi^0 \nu \bar{ u}$	$K_L o \pi^0 \ell^+ \ell^-$	$K_L o \ell^+ \ell^-$	$K^+ \longrightarrow \ell^+ \nu$	$P_T(K^+ \to \pi^0 \mu^+ \nu)$	$\Delta_{ m CKM}$	ϵ'/ϵ	ϵ_K	from: SJ, talk at NA62 Handbook workshop 2009 in MSSM?
$O_{lq}^{(1)}$	$(\bar{D}_L\gamma^{\mu}S_L)(\bar{L}_L\gamma_{\mu}L_L)$		\checkmark	\checkmark	\checkmark	hs	_	_	—	—		\checkmark
$O_{lq}^{(3)}$	$(\bar{D}_L \gamma^\mu \sigma^i S_L) (\bar{L}_L \gamma_\mu \sigma^i L_L)$		\checkmark	\checkmark	\checkmark	hs	hs	\checkmark	\checkmark	-	—	\checkmark
O_{qe}	$(\bar{D}_L \gamma^\mu S_L) (\bar{l}_R \gamma_\mu l_R)$		—		\checkmark	hs	_	_	—	—	—	small
O_{ld}	$(\bar{d}_R \gamma^\mu s_R) (\bar{L}_L \gamma_\mu L_L)$		\checkmark	\checkmark	\checkmark	hs	_	_	—	—	—	small
O_{ed}	$(ar{d}_R\gamma^\mu s_R)(ar{l}_R\gamma_\mu l_R)$		—	—	\checkmark	hs	_	_	—	—	—	small
O_{lq}^{\dagger}	$(\bar{u}_R S_L) \cdot (\bar{l}_R L_L)$		_	_	_	_	\checkmark	\checkmark	\checkmark	-	—	tiny
$(O_{lq}^t)^\dagger$	$(\bar{u}_R \sigma_{\mu\nu} S_L) \cdot (\bar{l}_R \sigma^{\mu\nu} L_L)$		—	—		_	_	?	?	-	—	tiny
O_{qde}	$(ar{d}_R S_L)(ar{L}_L l_R)$		—	—	\checkmark	\checkmark	_	_	—	—	—	tiny
$\begin{array}{c} O_{qde}^{\dagger} \\ O_{\varphi q}^{(1)} \end{array}$	$(ar{D}_L s_R)(ar{l}_R L_L)$		—	—	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	—	—	$\text{large } \tan\beta$
$O_{\varphi q}^{(1)}$	$(\bar{D}_L \gamma^\mu S_L) (H^\dagger D_\mu H)$		\checkmark	\checkmark	\checkmark	hs		_	—	\checkmark	(\checkmark)	\checkmark
$O^{(3)}_{\varphi q}$	$(\bar{D}_L \gamma^\mu \sigma^i S_L) (H^\dagger D_\mu \sigma^i H)$		\checkmark	\checkmark	\checkmark	hs	hs	\checkmark	\checkmark	\checkmark	(\checkmark)	\checkmark
$O_{arphi d}$	$(\bar{d}_R \gamma^\mu s_R) (H^\dagger D_\mu H)$		\checkmark	\checkmark	\checkmark	hs	_	_	_	\checkmark	(\checkmark)	large $\tan\beta$ (non-MFV)

Emilie Passemar

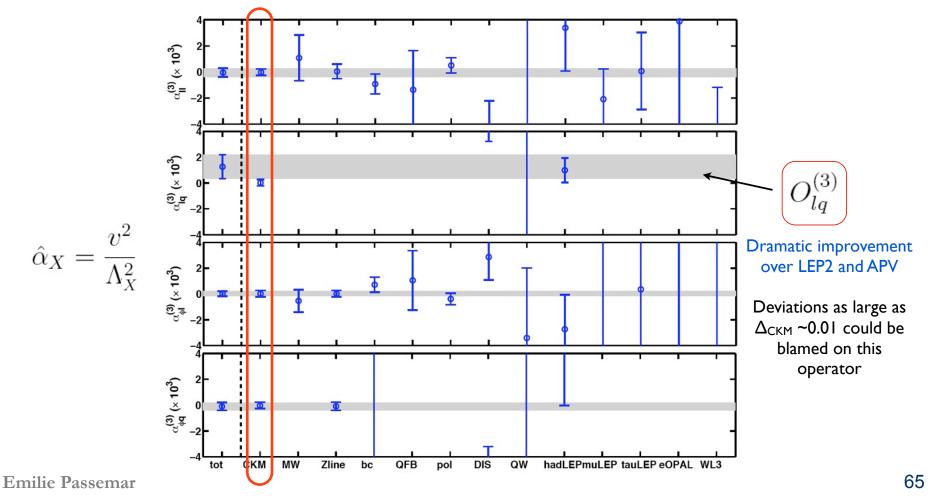
4.1 Looking for New Physics using Δ_{CKM}

• $\Delta_{\rm CKM}$ is sensitive to 4 fermion operators:

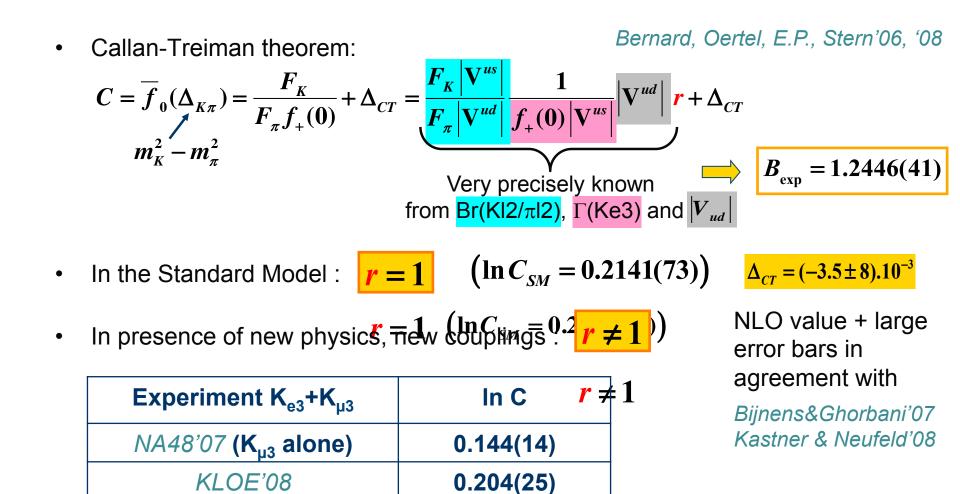
Cirigliano, Gonzalez-Alonso & Jenkins'09

2) What is the strength of Δ_{CKM} constraint? Same level or better than

Z-pole observables (effective scale $\Lambda > 11 \text{ TeV} @ 90\% \text{ CL}$)



4.2 Looking for New Physics with K₁₂ and K₁₃



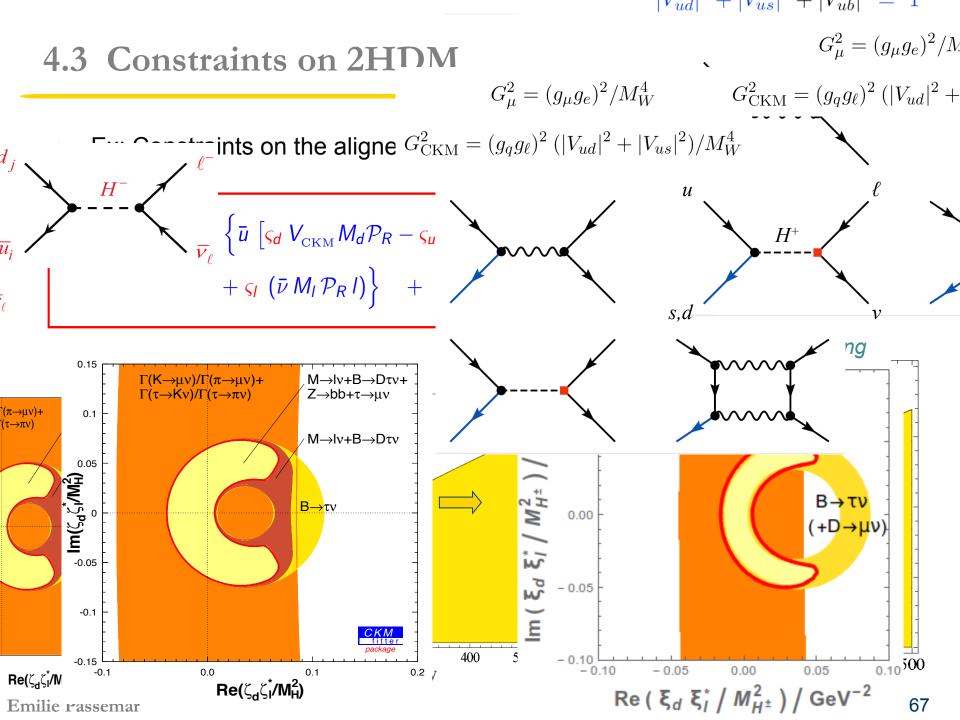
0.192(12)

?

Emilie Passemar

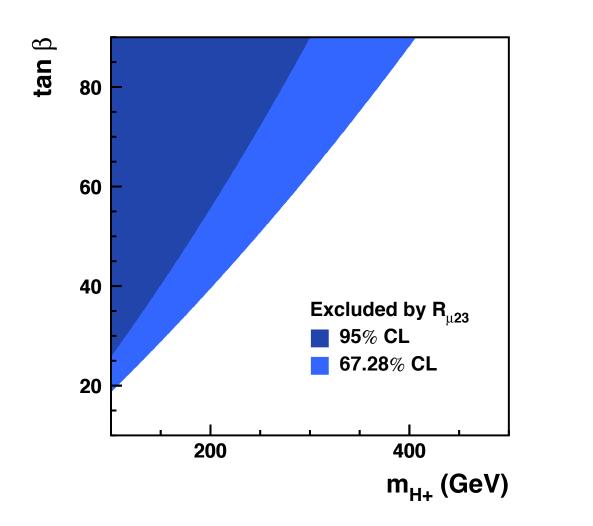
KTeV'10

NA48 (preliminary)



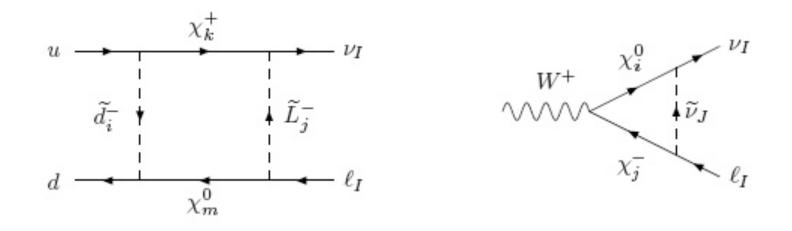
4.3 Constraints on charged Higgs

Antonelli et al.'10



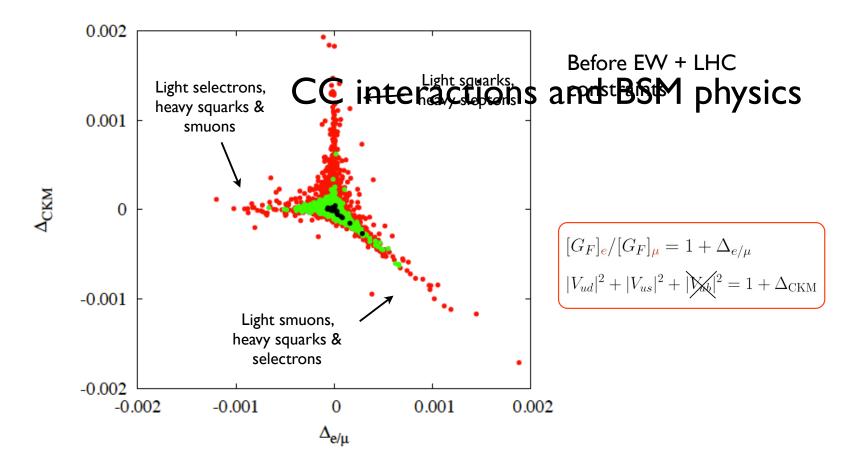
4.4 Universality and SUSY

- MSSM: box and vertex corrections induce non-universal corrections to the V-A CC operators
- S,P,T operators suppressed by insertions of Yukawa couplings



Barbieri et al '85, Hagiwara-Matsumoto-Yamada '95 Ramsey-Musolf Kurylov '01 Bauman, Erler, Ramsey-Musolf '12

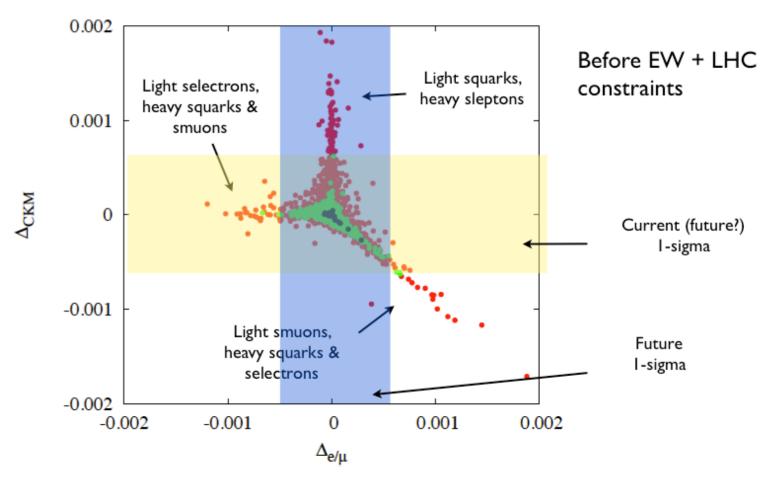
4.4 Universality and SUSMen, Erler, Ramsey-Musolf '12



- Interesting correlation between Cabibbo universality and lepton universality: information on sfermion spectrum
- Essentially squark-slepton and selectron-smuon universality

Emilie Passemar

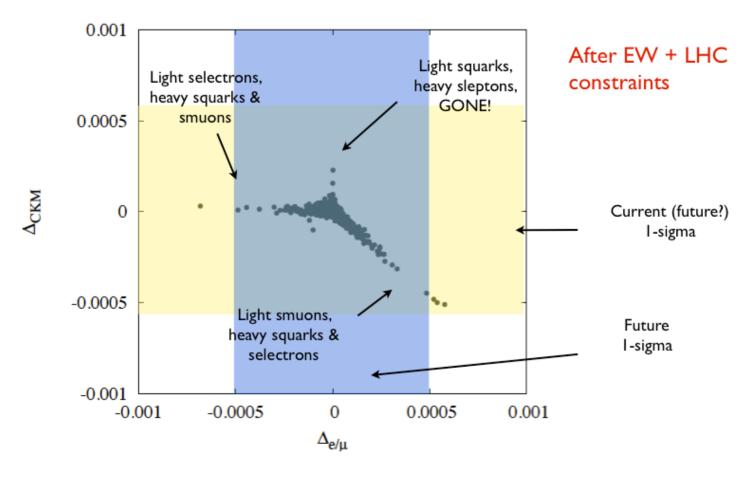
4.4 Universality and SUSY



- Interesting correlation between Cabibbo universality and lepton universality: information on sfermion spectrum
- Essentially squark-slepton and selectron-smuon universality

Emilie Passemar

4.4 Universality and SUSY



- Effects in the MSSM are small.
- Probing MSSM parameter space requires improved precision