Modelling and implementation of the " 6 D " beam-beam interaction

G. Iadarola, R. De Maria, Y. Papaphilippou

Keywords: beam-beam,6D, synchro beam mapping

Abstract

These slides illustrate the numerical modelling of a beam-beam interaction using the "Synchro Beam Mapping" approach. The employed description of the strong beam allows correctly accounting for the hour-glass effect as well as for linear coupling at the interaction point. The implementation of the method within the SixTrack code is reviewed and tested.

Modelling and implementation of the " 6 D " beam-beam interaction

G. Iadarola, R. De Maria, Y. Papaphilippou

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

Introduction

Goal: review of the 6D beam-beam lens implemented in SixTrack
Tried to answer two main questions:

- What is the code supposed to do?
\rightarrow Mathematical derivation behind the implemented numerical model
- Is the code doing what it is supposed to do?
\rightarrow Verify the implementation of the above numerical model

Introduction

The code simulates a beam-beam interaction using the "Synchro Beam Mapping" technique in the presence of:

- Crossing angle (ϕ)
- Arbitrary crossing plane (α)
- Optics at the IP described by a general 4D correlation matrix (Σ-matrix) \rightarrow hour glass effect, elliptic beams, alphas, and linear coupling at the IP are included in the modeling
This makes the mathematical derivation quite heavy
Implementation in Sixtrack in largely based on:
- [1] A symplectic beam-beam interaction with energy change, by K. Hirata, H. W. Moshammer, F. Ruggiero, 1992
- [2] Don't be afraid of beam-beam interactions with a large crossing angle, by K. Hirata, 1993
- [3] 6D Beam-Beam Kick including Coupled Motion, by L.H.A. Leunissen, F. Schmidt, G. Ripken, 2001
... but important parts (e.g. inverse boost, "optics de-coupling" including longitudinal derivatives) are not reported in the papers nor anywhere else, to our best knowledge...
- Invested some time in understanding and re-constructing the mathematical treatment trying to use as little as possible the source code as a reference
\rightarrow Independent reconstruction of the equations to verify the implementation in Sixtrack and to be used as a basis for a modern implementation (GPU compatible, for example)
\rightarrow Parts not available in literature (mainly inverse Lorentz boost, and a large fraction of the coupling treatment) had to be re-derived
- Prepared a document including the full set of equation to enable a possible reimplementation (and avoid that somebody has to redo the same exercise in ten years :-)

CERN-ACC-NOTE-XXX

6D beam-beam interaction step-by-step

G. Iadarola, R. De Maria, Y. Papaphilippou

Keywords: beam-beam, 6D, synchro beam mapping

Summary

This document describes in detail the numerical method used in different simulation codes for the simulation of beam-beam interactions using the "Synchro Beam Mapping" approach to correctly model the coupling introduced by beam-beam between the longitudinal and the transverse plane. The goal is to provide in a compact, complete and self-consistent manner the set of equations needed for the implementation in a numerical code. The effect of a "crossing angle" in an arbitrary "crossing plane" with respect to the assigned reference frame is taken into account with a suitable coordinate transformation. The employed description of the strong beam allows correctly accounting for the hour-glass effect as well as for linear coupling ad the interaction point.

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators
- We want to simulate a beam-beam interaction taking into account the finite longitudinal size of the two beams
- We are in the framework on the weak-strong treatment: we have a particle (of the weak-beam) that we are tracking. It interacts with a strong beam that is "rigid", i.e. unaffected by the weak beam

We will use the "synchro-beam mapping" approach introduced by Hirata, Moshammer and Ruggiero [1]. To do so, the following conditions need do be satisfied:

- We work in ultra-relativistic approximation $\mathrm{v}=\mathrm{c}$ for both beams
- The strong beam is travelling backwards $s_{\text {strong }}(t)=\sigma_{\text {strong }}+c t$
- $\mathbf{P x}=\mathbf{P y}=0$ for the strong beam:
\rightarrow The transverse electric field can be calculated solving a 2D Poisson problem
- The angles of the test particle are small so that we can assume that it travels at the speed of light along s : $s(t)=\sigma-c t$
- In the presence of a crossing angle a reference frame satisfying all the conditions above cannot be found by simple rotation in the lab frame, but this can be obtaining by applying also a Lorentz boost in the crossing plane as shown by Hirata in [2]

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

A dance of reference systems

A dance of reference systems

Crossing plane

reference frame

- In the crossing plane the interaction looks like this...
- To apply the Hirata, Moshammer, Ruggiero treatment we practically need to suppress the angle for the two beams (impossible by simple rotation)

A dance of reference systems

Crossing plane

Barycentric reference frame

- In the crossing plane the interaction looks like this...
- To apply the Hirata, Moshammer, Ruggiero treatment we practically need to suppress the angle for the two beams (impossible by simple rotation)

號

A dance of reference systems

In the boosted frame the interaction
looks like this

"Boost transformation" in formulas

This transformation is applied for positions:

$$
\left(\begin{array}{c}
\sigma^{*} \\
x^{*} \\
s^{*} \\
y^{*}
\end{array}\right)=A^{-1} R_{\mathrm{CP}}{ }^{-1} L_{\mathrm{boost}} R_{\mathrm{CA}} R_{\mathrm{CP}} A\left(\begin{array}{c}
\sigma \\
x \\
s \\
y
\end{array}\right)
$$

- A is the matrix transforming the accelerator coordinates (Courant-Snyder) to Cartesian coordinates:

$$
\left(\begin{array}{c}
c t \\
X \\
Z \\
Y
\end{array}\right)=A\left(\begin{array}{l}
\sigma \\
x \\
s \\
y
\end{array}\right)=\left(\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\sigma \\
x \\
s \\
y
\end{array}\right)
$$

- $R_{C P}$ is the rotation matrix bringing the crossing plane in the $\mathrm{X}-\mathrm{Z}$ plane:
- $R_{C A}$ is the rotation matrix moving to the barycentric frame:

$$
R_{\mathrm{CA}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \phi & \sin \phi & 0 \\
0 & -\sin \phi & \cos \phi & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad R_{\mathrm{CP}}=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & \cos \alpha & 0 & \sin \alpha \\
0 & 0 & 1 & 0 \\
0 & -\sin \alpha & 0 & \cos \alpha
\end{array}\right)
$$

- $\mathrm{L}_{\text {boost }}$ is the Lorentz boost in the direction of the rotated X -axis:

$$
L_{\mathrm{boost}}=\left(\begin{array}{cccc}
1 / \cos \phi & -\tan \phi & 0 & 0 \\
-\tan \phi & 1 / \cos \phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

This transformation is applied for momenta:

$$
\left(\begin{array}{c}
\delta^{*} \\
p_{x}^{*} \\
h^{*} \\
p_{y}^{*}
\end{array}\right)=B^{-1} R_{\mathrm{CP}}^{-1} L_{\mathrm{boost}} R_{\mathrm{CA}} R_{\mathrm{CP}} B\left(\begin{array}{c}
\delta \\
p_{x} \\
h \\
p_{y}
\end{array}\right)
$$

- B is the matrix transforming the accelerator coordinates (Courant-Snyder) to Cartesian coordinates:

$$
\left(\begin{array}{c}
E / c-p_{0} \\
P_{x} \\
P_{z}-p_{0} \\
P_{y}
\end{array}\right)=p_{0}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\delta \\
p_{x} \\
h \\
p_{y}
\end{array}\right)
$$

- $R_{C P}$ is the rotation matrix bringing the crossing plane in the $\mathrm{X}-\mathrm{Z}$ plane:
- $R_{C A}$ is the rotation matrix moving to the barycentric frame:
- $\mathrm{L}_{\text {boost }}$ is the Lorentz boost in the direction of the rotated X -axis:

$$
R_{\mathrm{CA}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \phi & \sin \phi & 0 \\
0 & -\sin \phi & \cos \phi & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad R_{\mathrm{CP}}=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & \cos \alpha & 0 & \sin \alpha \\
0 & 0 & 1 & 0 \\
0 & -\sin \alpha & 0 & \cos \alpha
\end{array}\right)
$$

$$
L_{\text {boost }}=\left(\begin{array}{cccc}
1 / \cos \phi & -\tan \phi & 0 & 0 \\
-\tan \phi & 1 / \cos \phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

"Boost transformation" in formulas

Not all particles with s=0 are fixed points of the transformation:
\rightarrow A drift back to $\mathbf{s}=\mathbf{0}$ needs to be performed as we are tracking w.r.t. s and not w.r.t. time

We compute the angles:

$$
\begin{aligned}
p_{z}^{*} & =\sqrt{\left(1+\delta^{*}\right)^{2}-p_{x}^{* 2}-p_{y}^{* 2}} \\
h_{x}^{*} & =\frac{\partial h^{*}}{\partial p_{x}^{*}}=\frac{p_{x}^{*}}{p_{z}^{*}} \\
h_{y}^{*} & =\frac{\partial h^{*}}{\partial p_{y}^{*}}=\frac{p_{y}^{*}}{p_{z}^{*}} \\
h_{\sigma}^{*} & =\frac{\partial h^{*}}{\partial \delta}=1-\frac{\delta^{*}+1}{p_{z}^{*}}
\end{aligned}
$$

$$
\begin{array}{ll}
& x^{*}\left(s^{*}=0\right)=x^{*}(s)-h_{x}^{*} s \\
y^{*}\left(s^{*}=0\right)=y^{*}(s)-h_{y}^{*} s \\
& \delta^{*}\left(s^{*}=0\right)=\delta^{*}(s)-h_{\delta}^{*} s
\end{array}
$$

The entire procedure needs to be reverted after the interaction, see note.

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

Crossing plane

The synchro-beam method: transverse "generalized kicks"

We proceed as follows:

1. We drift the slice and the weak particle from the IP to the CP

$$
\begin{array}{ll}
\bar{x}^{*}=x^{*}+p_{x}^{*} S-x_{\mathrm{sl}}^{*} & \text { w.r.t. the } \\
\bar{y}^{*}=y^{*}+p_{y}^{*} S-y_{\mathrm{sl}}^{*} \quad \text { slice centroid }
\end{array}
$$

(a particle having an angle will probe the strong-beam electric field at a different transverse coordinates)
$z=0$
Transverse kicks need to be computed based on the shape of the strong beam...
2. We apply the kick a the $\not \subset \mathrm{P}$:
$p_{x, \text { new }}^{*}=p_{x}^{*}+\bar{F}_{x}^{*}{ }_{x}^{*}$,
$p_{y, n e w}^{*}=p_{y}^{*}+\stackrel{F}{\mid}_{y_{1}}^{*}$
3. We drift the particles pack from the $\mathbf{C P}$ to the IP using the new angles:
$x_{\text {new }}^{*}=x^{*}-S_{1}^{r} F_{x}^{*}$
$y_{\text {new }}^{*}=y^{*}-S_{1}^{\prime} F_{1}^{*}$

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

Optics of the strong beam: Σ matrix

- The shape of the strong beam is described by 4D correlation matrix (Σ-matrix)

The phase space distribution can be written as:

Points having same phase space density lie on hyperelliptic manifolds defined by the equation:

$$
\eta^{\mathrm{T}} \Sigma^{-1} \eta=\mathrm{const}
$$

Σ contains all the information about the beam shape and divergence (including linear coupling) and can be transported from the IP to the CP (assuming that we are in a drift):

$$
\begin{aligned}
& \Sigma_{11}^{*}=\Sigma_{11}^{* 0}+2 \Sigma_{12}^{* 0} S+\Sigma_{22}^{* 0} S^{2} \\
& \Sigma_{33}^{*}=\Sigma_{33}^{* 0}+2 \Sigma_{34}^{* 0} S+\Sigma_{44}^{* 0} S^{2} \\
& \Sigma_{13}^{*}=\Sigma_{13}^{* 0}+\left(\Sigma_{14}^{* 0}+\Sigma_{23}^{* 0}\right) S+\Sigma_{24}^{* 0} S^{2} \\
& \Sigma_{12}^{*}=\Sigma_{12}^{* 0}+\Sigma_{22}^{* 0} S \\
& \Sigma_{14}^{*}=\Sigma_{14}^{* 0}+\Sigma_{24}^{* 0} S \\
& \Sigma_{22}^{*}=\Sigma_{22}^{* 0} \\
& \Sigma_{23}^{*}=\Sigma_{23}^{* 0}+\Sigma_{24}^{* 0} S \\
& \Sigma_{24}^{*}=\Sigma_{24}^{* 0} \\
& \Sigma_{34}^{*}=\Sigma_{34}^{* 0}+\Sigma_{44}^{* 0} S \\
& \Sigma_{44}^{*}=\Sigma_{44}^{* 0}
\end{aligned}
$$

Convention:

$$
1 \rightarrow x, 2 \rightarrow p_{x}, 3 \rightarrow y, 4 \rightarrow p_{y}
$$

In general, linear coupling of the strong beam can be present:
\rightarrow The coupling angle and the beam sizes in the decoupled frame can be obtained by diagonalization of the Σ-matrix
\rightarrow Coupling angle depends on the s-coordinate

In general, linear coupling of the strong beam can be present:
\rightarrow The coupling angle and the beam sizes in the decoupled frame can be obtained by diagonalization of the Σ-matrix
\rightarrow Coupling angle depends on the s-coordinate

In general, linear coupling of the strong beam can be present:
\rightarrow The coupling angle and the beam sizes in the decoupled frame can be obtained by diagonalization of the Σ-matrix
\rightarrow Coupling angle depends on the s-coordinate

In general, linear coupling of the strong beam can be present:
\rightarrow The coupling angle and the beam sizes in the decoupled frame can be obtained by diagonalization of the Σ-matrix
\rightarrow Coupling angle depends on the s-coordinate

In general, linear coupling of the strong beam can be present:
\rightarrow The coupling angle and the beam sizes in the decoupled frame can be obtained by diagonalization of the Σ-matrix
\rightarrow Coupling angle depends on the s-coordinate

In general, linear coupling of the strong beam can be present:
\rightarrow The coupling angle and the beam sizes in the decoupled frame can be obtained by diagonalization of the Σ-matrix
\rightarrow Coupling angle depends on the s-coordinate

In general, linear coupling of the strong beam can be present:
\rightarrow The coupling angle and the beam sizes in the decoupled frame can be obtained by diagonalization of the Σ-matrix
\rightarrow Coupling angle depends on the s-coordinate

In general, linear coupling of the strong beam can be present:
\rightarrow The coupling angle and the beam sizes in the decoupled frame can be obtained by diagonalization of the Σ-matrix
\rightarrow Coupling angle depends on the s-coordinate

Worked on simplifying the notation in this part:

$$
\begin{aligned}
R(S) & =\Sigma_{11}^{*}-\Sigma_{33}^{*} \\
W(S) & =\Sigma_{11}^{*}+\Sigma_{33}^{*} \\
T(S) & =R^{2}+4 \Sigma_{13}^{*} 2
\end{aligned}
$$

Semi-axes in the $\quad \hat{\Sigma}_{11}^{*}=\frac{1}{2}(W+\operatorname{sgn}(R) \sqrt{T})$
decoupled frame:

$$
\hat{\Sigma}_{33}^{*}=\frac{1}{2}(W-\operatorname{sgn}(R) \sqrt{T})
$$

In general, linear coupling of the strong beam can be present:
\rightarrow The coupling angle and the beam sizes in the decoupled frame can be obtained by diagonalization of the Σ-matrix
\rightarrow Coupling angle depends on the s-coordinate

Worked on simplifying the notation in this part:

$$
\begin{aligned}
R(S) & =\Sigma_{11}^{*}-\Sigma_{33}^{*} \\
W(S) & =\Sigma_{11}^{*}+\Sigma_{33}^{*} \quad \cos 2 \theta=\operatorname{sgn}(R) \frac{R}{\sqrt{T}} \\
T(S) & =R^{2}+4 \Sigma_{13}^{* 2}
\end{aligned}
$$

$$
\cos \theta=\sqrt{\frac{1}{2}(1+\cos 2 \theta)}
$$

$$
\sin \theta=\operatorname{sgn}(R) \operatorname{sgn}\left(\Sigma_{13}^{*}\right) \sqrt{\frac{1}{2}(1-\cos 2 \theta)}
$$

Linear coupling of the strong beam

Once the coupling angle and the beam sizes in the decoupled plain are known, we proceed as follows:

1. We calculate the particle coordinates in the decoupled frame at the CP: $\quad \hat{\bar{y}}^{*}=-\bar{x}^{*} \sin \theta+\bar{y}^{*} \cos \theta$
2. We calculate the kick from $\hat{F}_{x}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{\bar{x}}^{*}}\left(\hat{x}^{*}, \hat{y}^{*}, \hat{\Sigma}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right)$ the slide in the decoupled reference frame:

$$
\hat{F}_{y}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{y}^{*}}\left(\hat{x}^{*}, \hat{y}^{*}, \hat{\Sigma}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right)
$$

where

$$
\hat{U}^{*} \text { is the electric potential }
$$

$$
K_{s l}=\frac{N_{s l} q_{s l} q_{0}}{P_{0} c}
$$

For Gaussian (uncoupled) beams, closed forms exist to evaluate these quantities.

For a bi-Gaussian beam (elliptic) [2]:

$$
\begin{aligned}
& \hat{f}_{x}^{*}=-\frac{\partial \hat{U}^{*}}{\partial \hat{x}^{*}}=\frac{1}{2 \epsilon_{0} \sqrt{2 \pi\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}} \operatorname{Im}\left[w\left(\frac{\hat{x}^{*}+i \hat{\bar{y}}^{*}}{\sqrt{2\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}}\right)-\exp \left(-\frac{\left(\hat{\bar{x}}^{*}\right)^{2}}{2 \hat{\Sigma}_{11}^{*}}-\frac{\left(\hat{y}^{*}\right)^{2}}{2 \hat{\Sigma}_{33}^{*}}\right) w\left(\frac{\hat{x}^{*} \sqrt{\frac{\hat{\Sigma}_{33}^{*}}{\hat{\Sigma}_{11}^{*}}+i \hat{\bar{y}}^{*} \sqrt{\frac{\hat{\Sigma}_{11}^{*}}{\hat{\Sigma}_{33}^{*}}}} \sqrt{2\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}}{}\right)\right] \\
& \hat{f}_{y}^{*}=-\frac{\partial \hat{U}^{*}}{\partial \hat{x}^{*}}=\frac{1}{2 \epsilon_{0} \sqrt{2 \pi\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}} \operatorname{Re}\left[w\left(\frac{\hat{x}^{*}+i \hat{\hat{y}}^{*}}{\sqrt{2\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}}\right)-\exp \left(-\frac{\left(\hat{x}^{*}\right)^{2}}{2 \hat{\Sigma}_{11}^{*}}-\frac{\left(\hat{y}^{*}\right)^{2}}{2 \hat{\Sigma}_{33}^{*}}\right) w\left(\frac{\hat{\hat{x}}^{*} \sqrt{\frac{\hat{\Sigma}_{33}^{*}}{\hat{\Sigma}_{11}^{*}}+i \hat{\bar{y}}^{*} \sqrt{\frac{\Sigma_{11}^{*}}{\hat{E}_{33}^{*}}}} \sqrt{2\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}}{}\right)\right]
\end{aligned}
$$

Linear coupling of the strong beam

Once the coupling angle and the beam sizes in the decoupled plain are known, we proceed as follows:

1. We calculate the particle coordinates in the decoupled frame at the CP: $\hat{\bar{y}}^{*}=-\bar{x}^{*} \sin \theta+\bar{y}^{*} \cos \theta$
2. We calculate the kick from $\hat{F}_{x}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{x}^{*}}\left(\hat{x}^{*}, \hat{y}^{*}, \hat{⿺}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right)$ the slide in the decoupled reference frame:

$$
\hat{F}_{y}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{y}^{*}}\left(\hat{x}^{*}, \hat{y}^{*}, \hat{\Sigma}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right)
$$

where

$$
\hat{U}^{*} \text { is the electric potential }
$$

$$
K_{s l}=\frac{N_{s l} q_{s l} q_{0}}{P_{0} c}
$$

For Gaussian (uncoupled) beams, closed forms exist to evaluate these quantities.
3. We rotate the kicks to de coupled reference frame

$$
\begin{aligned}
& F_{x}^{*}=\hat{F}_{x}^{*} \cos \theta-\hat{F}_{y}^{*} \sin \theta \\
& F_{y}^{*}=\hat{F}_{x}^{*} \sin \theta+\hat{F}_{y}^{*} \cos \theta
\end{aligned}
$$

4. We apply the kicks to the transverse momenta and drift back to the IP (as

$$
\begin{array}{ll}
p_{x, \text { new }}^{*}=p_{x}^{*}+F_{x}^{*} & x_{\text {new }}^{*}=x^{*}-S F_{x}^{*} \\
p_{y, \text { new }}^{*}=p_{y}^{*}+F_{y}^{*} & y_{\text {new }}^{*}=y^{*}-S F_{y}^{*}
\end{array}
$$

explained before)

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

Energy change: effect of the angle

The longitudinal kick has two components:
Crossing plane

Energy change: grad-phi effect

The longitudinal kick has two components:

$$
p_{z, \text { new }}^{*}=p_{z}^{*}+F_{z}^{*}+\frac{1}{2}\left[F_{x}^{*}\left(p_{x}^{*}+\frac{1}{2} F_{x}^{*}\right)+F_{y}^{*}\left(p_{y}^{*}+\frac{1}{2} F_{y}^{*}\right)\right]
$$

Another component of the longitudinal kick arises from the fact that the transverse shape of the strong beam is changing along z (hour-glass effect, "rotating" coupling angle)
\rightarrow The electric potential depends on z
\rightarrow The gradient of the electric potential (i.e. the electric field) has a z component
\rightarrow There is a z-kick, i.e. again a change in the particle energy

We need to evaluate the derivative w.r.t. \mathbf{z} (or σ, or small-s) of the electric potential As we have written down most of the involved quantities as a function of the coordinate of the CP (capital-S) we just notice that:

$$
S=\frac{\sigma^{*}-\sigma_{\mathrm{sl}}^{*}}{2} \square \frac{\partial}{\partial z}=\frac{1}{2} \frac{\partial}{\partial S} \square F_{z}^{*}=\frac{1}{2} \frac{\partial}{\partial S}\left[\hat{U}^{*}\left(\hat{x}^{*}(\theta(S)), \hat{\hat{y}}^{*}(\theta(S)), \hat{\Sigma}_{11}^{*}(S), \hat{\Sigma}_{33}^{*}(S)\right)\right]
$$

(in sixtrack jargon
z is called σ)

Energy change: grad-phi effect

$$
F_{z}^{*}=\frac{1}{2} \frac{\partial}{\partial S}\left[\hat{U}^{*}\left(\hat{x}^{*}(\theta(S)), \hat{\hat{y}}^{*}(\theta(S)), \hat{\Sigma}_{11}^{*}(S), \hat{\Sigma}_{33}^{*}(S)\right)\right]
$$

Derivative rule for nested functions:

$$
F_{z}^{*}=\frac{1}{2}\left(\hat{F}_{x}^{*} \frac{\partial}{\partial S}\left[\hat{\hat{x}}^{*}(\theta(S))\right]+\hat{F}_{y}^{*} \frac{\partial}{\partial S}\left[\hat{\hat{y}}^{*}(\theta(S))\right]+\hat{G}_{x}^{*} \frac{\partial}{\partial S}\left[\hat{\Sigma}_{11}^{*}(S)\right]+\hat{G}_{y}^{*} \frac{\partial}{\partial S}\left[\hat{\Sigma}_{33}^{*}(S)\right]\right)
$$

We need to evaluate these eight terms...
where:

$$
\begin{array}{ll}
\hat{F}_{x}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{x}^{*}}\left(\hat{x}^{*}, \hat{\bar{y}}^{*}, \hat{\Sigma}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right) & \hat{G}_{x}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{11}^{*}}\left(\hat{x}^{*}, \hat{y}^{*}, \hat{\Sigma}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right) \\
\hat{F}_{y}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{\hat{y}}^{*}}\left(\hat{x}^{*}, \hat{\bar{y}}^{*}, \hat{\Sigma}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right) & \hat{G}_{y}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{33}^{*}}\left(\hat{x}^{*}, \hat{y}^{*}, \hat{\Sigma}_{33}^{*}, \hat{\Sigma}_{33}^{*}\right)
\end{array}
$$

Energy change: grad-phi effect

$$
F_{z}^{*}=\frac{1}{2}\left(\hat{F}_{x}^{*} \frac{\partial}{\partial S}\left[\hat{\tilde{x}}^{*}(\theta(S))\right]+\hat{F}_{y}^{*} \frac{\partial}{\partial S}\left[\hat{\hat{y}}^{*}(\theta(S))\right]+\hat{G}_{x}^{*} \frac{\partial}{\partial S}\left[\hat{\Sigma}_{11}^{*}(S)\right]+\hat{G}_{y}^{*} \frac{\partial}{\partial S}\left[\hat{\Sigma}_{33}^{*}(S)\right]\right)
$$

$$
\hat{F}_{x}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{x}^{*}}\left(\hat{x}^{*}, \hat{y}^{*}, \hat{\Sigma}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right) \quad \hat{G}_{x}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{11}^{*}}\left(\hat{x}^{*}, \hat{y}^{*}, \hat{\Sigma}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right)
$$

$$
\hat{F}_{y}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{y}^{*}}\left(\hat{x}^{*}, \hat{y}^{*}, \hat{\Sigma}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right) \quad \hat{G}_{y}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{33}^{*}}\left(\hat{x}^{*}, \hat{y}^{*}, \hat{\Sigma}_{33}^{*}, \hat{\Sigma}_{33}^{*}\right)
$$

For a bi-Gaussian beam (elliptic) [2]:

Bassetti-Erskine

where w is the Faddeeva function.

$$
\begin{aligned}
& \hat{f}_{x}^{*}=-\frac{\partial \hat{U}^{*}}{\partial \hat{x}^{*}}=\frac{1}{2 \epsilon_{0} \sqrt{2 \pi\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}} \operatorname{Im}\left[w\left(\frac{\hat{x}^{*}+i \hat{y}^{*}}{\sqrt{2\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}}\right)-\exp \left(-\frac{\left(\hat{x}^{*}\right)^{2}}{2 \hat{\Sigma}_{11}^{*}}-\frac{\left(\hat{y}^{*}\right)^{2}}{2 \hat{\Sigma}_{33}^{*}}\right) w\left(\frac{\hat{x}^{*} \sqrt{\frac{\hat{\Sigma}_{33}^{*}}{\hat{\Sigma}_{11}^{*}}+i \hat{y}^{*} \sqrt{\frac{\hat{\Sigma}_{11}^{*}}{\hat{\Sigma}_{33}^{*}}}} \sqrt{2\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}}{\sqrt{2}}\right]\right. \\
& \hat{f}_{y}^{*}=-\frac{\partial \hat{U}^{*}}{\partial \hat{x}^{*}}=\frac{1}{2 \epsilon_{0} \sqrt{2 \pi\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}} \operatorname{Re}\left[w\left(\frac{\hat{x}^{*}+i \hat{\bar{y}}^{*}}{\sqrt{2\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}}\right)-\exp \left(-\frac{\left(\hat{x}^{*}\right)^{2}}{2 \hat{\Sigma}_{11}^{*}}-\frac{\left(\hat{y}^{*}\right)^{2}}{2 \hat{\Sigma}_{33}^{*}}\right) w\left(\frac{\hat{x}^{*} \sqrt{\frac{\hat{\Sigma}_{33}^{*}}{\hat{\Sigma}_{11}^{*}}+i \hat{y}^{*}} \sqrt{\frac{\hat{\Sigma}_{31}^{*}}{\hat{\Sigma}_{33}^{*}}}}{\sqrt{2\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}}\right)\right] \\
& \hat{\delta}_{x}^{*}=-\frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{11}^{*}}=-\frac{1}{2\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}\left\{\hat{x}^{*} \hat{E}_{x}^{*}+\hat{y}^{*} \hat{E}_{y}^{*}+\frac{1}{2 \pi \epsilon_{0}}\left[\sqrt{\frac{\hat{\Sigma}_{33}^{*}}{\hat{\Sigma}_{11}^{*}}} \exp \left(-\frac{\left(\hat{x}^{*}\right)^{2}}{2 \hat{\Sigma}_{11}^{*}}-\frac{\left(\hat{\hat{y}}^{*}\right)^{2}}{2 \hat{\Sigma}_{33}^{*}}\right)-1\right]\right\} \\
& \hat{\delta}_{y}^{*}=-\frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{33}^{*}}=\frac{1}{2\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}\left\{\hat{\hat{x}}^{*} \hat{E}_{x}^{*}+\hat{\hat{y}}^{*} \hat{E}_{y}^{*}+\frac{1}{2 \pi \epsilon_{0}}\left[\sqrt{\frac{\hat{\Sigma}_{11}^{*}}{\hat{\Sigma}_{33}^{*}}} \exp \left(-\frac{\left(\hat{x}^{*}\right)^{2}}{2 \hat{\Sigma}_{11}^{*}}-\frac{\left(\hat{\hat{y}}^{*}\right)^{2}}{2 \hat{\Sigma}_{33}^{*}}\right)-1\right]\right\}
\end{aligned}
$$

Energy change: grad-phi effect

$$
F_{z}^{*}=\frac{1}{2}\left(\hat{F}_{x}^{*} \frac{\partial}{\partial S}\left[\hat{\tilde{x}}^{*}(\theta(S))\right]+\hat{F}_{y}^{*} \frac{\partial}{\partial S}\left[\hat{\hat{y}}^{*}(\theta(S))\right]+\hat{G}_{x}^{*} \frac{\partial}{\partial S}\left[\hat{\Sigma}_{11}^{*}(S)\right]+\hat{G}_{y}^{*} \frac{\partial}{\partial S}\left[\hat{\Sigma}_{33}^{*}(S)\right]\right)
$$

$\hat{F}_{x}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{x}^{*}}\left(\hat{x}^{*}, \hat{y}^{*}, \hat{L}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right) \quad \hat{G}_{x}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{11}^{*}}\left(\hat{x}^{*}, \hat{y}^{*}, \hat{\Sigma}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right) \quad$ For these four terms a closed forms
$\hat{F}_{y}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{y}^{*}}\left(\hat{x}^{*}, \hat{\bar{y}}^{*}, \hat{\Sigma}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right) \quad \hat{G}_{y}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{33}^{*}}\left(\hat{x}^{*}, \hat{y}^{*}, \hat{\Sigma}_{33}^{*}, \hat{\Sigma}_{33}^{*}\right)$

For a round beam, i.e. $\hat{\Sigma}_{11}^{*}=\hat{\Sigma}_{33}^{*}=\hat{\Sigma}^{*}$:

$$
\begin{aligned}
& \hat{f}_{x}^{*}=-\frac{\partial \hat{U}^{*}}{\partial \hat{\bar{x}}^{*}}=\frac{1}{2 \pi \epsilon_{0}}\left[1-\exp \left(-\frac{\left(\hat{\bar{x}}^{*}\right)^{2}+\left(\hat{\hat{y}}^{*}\right)^{2}}{2 \hat{\Sigma}^{*}}\right)\right] \frac{x}{\left(\hat{\bar{x}}^{*}\right)^{2}+\left(\hat{\bar{y}}^{*}\right)^{2}} \\
& \hat{f}_{y}^{*}=-\frac{\partial \hat{U}^{*}}{\partial \hat{\bar{x}}^{*}}=\frac{1}{2 \pi \epsilon_{0}}\left[1-\exp \left(-\frac{\left(\hat{\bar{x}}^{*}\right)^{2}+\left(\hat{\hat{y}}^{*}\right)^{2}}{2 \hat{\Sigma}^{*}}\right)\right] \frac{y}{\left(\hat{\bar{x}}^{*}\right)^{2}+\left(\hat{\bar{y}}^{*}\right)^{2}} \\
& \hat{g}_{x}^{*}=-\frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{11}^{*}}=\frac{1}{2\left[\left(\hat{\bar{x}}^{*}\right)^{2}+\left(\hat{\bar{y}}^{*}\right)^{2}\right]}\left[\hat{\bar{y}}^{*} \hat{E}_{y}^{*}-\hat{\bar{x}}^{*} \hat{E}_{x}^{*}+\frac{1}{2 \pi \epsilon_{0}} \frac{\left(\hat{\bar{x}}^{*}\right)^{2}}{\hat{\Sigma}^{*}} \exp \left(-\frac{\left(\hat{x}^{*}\right)^{2}+\left(\hat{\bar{y}}^{*}\right)^{2}}{2 \hat{\Sigma}^{*}}\right)\right] \\
& \hat{g}_{y}^{*}=-\frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{33}^{*}}=\frac{1}{2\left[\left(\hat{\bar{x}}^{*}\right)^{2}+\left(\hat{\hat{y}}^{*}\right)^{2}\right]}\left[\hat{x}^{*} \hat{E}_{x}^{*}-\hat{\hat{y}}^{*} \hat{E}_{y}^{*}+\frac{1}{2 \pi \epsilon_{0}} \frac{\left(\hat{\hat{y}}^{*}\right)^{2}}{\hat{\Sigma}^{*}} \exp \left(-\frac{\left(\hat{\bar{x}}^{*}\right)^{2}+\left(\hat{\bar{y}}^{*}\right)^{2}}{2 \hat{\Sigma}^{*}}\right)\right]
\end{aligned}
$$

Energy change: grad-phi effect

$$
F_{z}^{*}=\frac{1}{2}\left(\hat{F}_{x}^{*} \frac{\partial}{\partial S}\left[\hat{x}^{*}(\theta(S))\right]+\hat{F}_{y}^{*} \frac{\partial}{\partial S}\left[\hat{y}^{*}(\theta(S))\right]+\hat{G}_{x}^{*} \frac{\partial}{\partial S}\left[\hat{\Sigma}_{11}^{*}(S)\right]+\hat{G}_{y}^{*} \frac{\partial}{\partial S}\left[\hat{\Sigma}_{33}^{*}(S)\right]\right)
$$

$\hat{x}^{*}=\bar{x}^{*} \cos \theta+\bar{y}^{*} \sin \theta$
$\frac{\partial}{\partial S}\left[\hat{x}^{*}(\theta(S))\right]=\bar{x}^{*} \frac{\partial}{\partial S}[\cos \theta]+\bar{y}^{*} \frac{\partial}{\partial S}[\sin \theta]$
$\hat{\bar{y}}^{*}=-\bar{x}^{*} \sin \theta+\bar{y}^{*} \cos \theta$

$$
\frac{\partial}{\partial S}\left[\hat{\bar{y}}^{*}(\theta(S))\right]=-\bar{x}^{*} \frac{\partial}{\partial S}[\sin \theta]+\bar{y}^{*} \frac{\partial}{\partial S}[\cos \theta]
$$

With some some $\frac{\partial}{\partial S} \cos \theta=\frac{1}{4 \cos \theta} \frac{\partial}{\partial S} \cos 2 \theta$
goniometric trick $\frac{\partial}{\partial S} \sin \theta=-\frac{1}{4 \sin \theta} \frac{\partial}{\partial S} \cos 2 \theta$

$$
\begin{aligned}
& \text { We just need } \\
& \text { to evaluate }
\end{aligned} \quad \frac{\partial}{\partial S} \cos 2 \theta
$$

Before we had written: $\begin{gathered}\cos 2 \theta=\operatorname{sgn}(R) \frac{R}{\sqrt{T}} \\ R(S)=\Sigma_{11}^{*}-\Sigma_{33}^{*}\end{gathered} \square \frac{\partial}{\partial S}[\cos 2 \theta]=\operatorname{sgn}(R)\left(\frac{\partial R}{\partial S} \frac{1}{\sqrt{T}}-\frac{R}{2(\sqrt{T})^{3}} \frac{\partial T}{\partial S}\right)$
with

$$
\begin{aligned}
W(S) & =\Sigma_{11}^{*}+\Sigma_{33}^{*} \\
T(S) & =R^{2}+4 \Sigma_{13}^{*}{ }^{2}
\end{aligned}
$$

where we need to evaluate the derivatives of R, T and W...

Energy change: grad-phi effect

$$
F_{z}^{*}=\frac{1}{2}\left(\hat{F}_{x}^{*} \frac{\partial}{\partial S}\left[\hat{x}^{*}(\theta(S))\right]+\hat{F}_{y}^{*} \frac{\partial}{\partial S}\left[\hat{y}^{*}(\theta(S))\right]+\hat{G}_{x}^{*} \frac{\partial}{\partial S}\left[\hat{\Sigma}_{11}^{*}(S)\right]+\hat{G}_{y}^{*} \frac{\partial}{\partial S}\left[\hat{\Sigma}_{33}^{*}(S)\right]\right)
$$

Derivatives of R, T and W

$$
\begin{aligned}
& R(S)=\Sigma_{11}^{*}-\Sigma_{33}^{*} \\
& W(S)=\Sigma_{11}^{*}+\Sigma_{33}^{*} \\
& T(S)=R^{2}+4 \Sigma_{13}^{*}{ }^{2} \\
& \Sigma_{11}^{*}=\Sigma_{11}^{* 0}+2 \Sigma_{12}^{* 0} S+\Sigma_{22}^{* 0} S^{2} \\
& \Sigma_{33}^{*}=\Sigma_{33}^{* 0}+2 \Sigma_{34}^{* 0} S+\Sigma_{44}^{* 0} S^{2} \\
& \Sigma_{13}^{*}=\Sigma_{13}^{* 0}+\left(\Sigma_{14}^{* 0}+\Sigma_{23}^{* 0}\right) S+\Sigma_{24}^{* 0} S^{2} \\
& \begin{aligned}
\frac{\partial R}{\partial S} & =2\left(\Sigma_{12}^{0}-\Sigma_{34}^{0}\right)+2 S\left(\Sigma_{22}^{0}-\Sigma_{44}^{0}\right) \\
\frac{\partial W}{\partial S} & =2\left(\Sigma_{12}^{0}+\Sigma_{34}^{0}\right)+2 S\left(\Sigma_{22}^{0}+\Sigma_{44}^{0}\right) \\
\frac{\partial \Sigma_{13}^{*}}{\partial S} & =\Sigma_{14}^{0}+\Sigma_{23}^{0}+2 \Sigma_{24}^{0} S \\
\frac{\partial T}{\partial S} & =2 R \frac{\partial R}{\partial S}+8 \Sigma_{13}^{*} \frac{\partial \Sigma_{13}^{*}}{\partial S}
\end{aligned}
\end{aligned}
$$

Before we had written: $\begin{array}{l}\cos 2 \theta=\operatorname{sgn}(R) \frac{R}{\sqrt{T}} \\ R(S)=\Sigma_{11}^{*}-\Sigma_{33}^{*}\end{array} \square \frac{\partial}{\partial S}[\cos 2 \theta]=\operatorname{sgn}(R)\left(\frac{\partial R}{\partial S} \frac{1}{\sqrt{T}}-\frac{R}{2(\sqrt{T})^{3}} \frac{\partial T}{\partial S}\right)$

with

$$
\begin{aligned}
W(S) & =\Sigma_{11}^{*}+\Sigma_{33}^{*} \\
T(S) & =R^{2}+4 \Sigma_{13}^{* 2}
\end{aligned}
$$

where we need to evaluate the derivatives of R, T and W ...

Energy change: grad-phi effect

$$
F_{z}^{*}=\frac{1}{2}\left(\hat{F}_{x}^{*} \frac{\partial}{\partial S}\left[\hat{x}^{*}(\theta(S))\right]+\hat{F}_{y}^{*} \frac{\partial}{\partial S}\left[\hat{\bar{y}}^{*}(\theta(S))\right]+\hat{G}_{x}^{*} \frac{\partial}{\partial S}\left[\hat{\Sigma}_{11}^{*}(S)\right]+\hat{G}_{y}^{*} \frac{\partial}{\partial S}\left[\hat{\Sigma}_{33}^{*}(S)\right]\right)
$$

$$
\begin{aligned}
& \hat{\Sigma}_{11}^{*}=\frac{1}{2}(W+\operatorname{sgn}(R) \sqrt{T}) \\
& \hat{\Sigma}_{33}^{*}=\frac{1}{2}(W-\operatorname{sgn}(R) \sqrt{T})
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial}{\partial S}\left[\hat{\Sigma}_{11}^{*}\right] & =\frac{1}{2}\left(\frac{\partial W}{\partial S}+\operatorname{sgn}(R) \frac{1}{2 \sqrt{T}} \frac{\partial T}{\partial S}\right) \\
\frac{\partial}{\partial S}\left[\hat{\Sigma}_{33}^{*}\right] & =\frac{1}{2}\left(\frac{\partial W}{\partial S}-\operatorname{sgn}(R) \frac{1}{2 \sqrt{T}} \frac{\partial T}{\partial S}\right)
\end{aligned}
$$

Again what we need to know are the derivatives of R, T and W, which were already shown in the previous slides

Derivatives of R, T and W

$$
\begin{array}{rlrl}
R(S) & =\Sigma_{11}^{*}-\Sigma_{33}^{*} & \frac{\partial R}{\partial S} & =2\left(\Sigma_{12}^{0}-\Sigma_{34}^{0}\right)+2 S\left(\Sigma_{22}^{0}-\Sigma_{44}^{0}\right) \\
W(S) & =\Sigma_{11}^{*}+\Sigma_{33}^{*} & & \frac{\partial W}{\partial S} \\
T(S) & =R^{2}+4 \Sigma_{13}^{* 2} & & \left(\Sigma_{12}^{0}+\Sigma_{34}^{0}\right)+2 S\left(\Sigma_{22}^{0}+\Sigma_{44}^{0}\right) \\
\Sigma_{11}^{*} & =\Sigma_{11}^{* 0}+2 \Sigma_{12}^{* 0} S+\Sigma_{22}^{* 0} S^{2} & \frac{\partial \Sigma_{13}^{*}}{\partial S}=\Sigma_{14}^{0}+\Sigma_{23}^{0}+2 \Sigma_{24}^{0} S \\
\Sigma_{33}^{*} & =\Sigma_{33}^{* 0}+2 \Sigma_{34}^{* 0} S+\Sigma_{44}^{* 0} S^{2} & \frac{\partial T}{\partial S} & =2 R \frac{\partial R}{\partial S}+8 \Sigma_{13}^{*} \frac{\partial \Sigma_{13}^{*}}{\partial S}
\end{array}
$$

We have all the pieces, but on the way we introduced some denominators which can become zero! \rightarrow we will deal with it later...

$$
\begin{array}{rlrl}
R(S) & =\Sigma_{11}^{*}-\Sigma_{33}^{*} \\
W(S) & =\Sigma_{11}^{*}+\Sigma_{33}^{*} \\
T(S) & =R^{2}+4 \Sigma_{13}^{* 2} & \cos 2 \theta=\operatorname{sgn}(R) & \begin{array}{l}
R \\
\sqrt{T}
\end{array}
\end{array} \quad \begin{aligned}
& \hat{\Sigma}_{11}^{*}=\frac{1}{2}(W+\operatorname{sgn}(R) \sqrt{T}) \\
& \hat{\Sigma}_{33}^{*}=\frac{1}{2}(W-\operatorname{sgn}(R) \sqrt{T})
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial S}\left[\hat{\Sigma}_{11}^{*}\right]=\frac{1}{2}\left(\frac{\partial W}{\partial S}+\operatorname{sgn}(R) \frac{\partial T}{2 \sqrt{T} \frac{1}{S S}}\right) \\
& \frac{\partial}{\partial S}\left[\hat{\Sigma}_{33}^{*}\right]=\frac{1}{2}\left(\frac{\partial W}{\partial S}-\operatorname{sgn}(R) \frac{\partial T}{2 \sqrt{T} S S}\right)
\end{aligned}
$$

$$
\frac{\partial}{\partial S}[\cos 2 \theta]=\operatorname{sgn}(R)\left(\frac{\partial R}{\partial S} \frac{1}{\sqrt{T}}-\frac{R}{2(\sqrt{T})^{3}} \frac{\partial T}{\partial S}\right)
$$

$$
\begin{array}{rlrl}
\cos \theta & =\sqrt{\frac{1}{2}(1+\cos 2 \theta)} & \frac{\partial}{\partial S} \cos \theta=\frac{1}{4 \cos \theta} \frac{\partial}{\partial S} \cos 2 \theta \\
\sin \theta=\operatorname{sgn}(R) \operatorname{sgn}\left(\Sigma_{13}^{*}\right) \sqrt{\frac{1}{2}(1-\cos 2 \theta)} & \frac{\partial}{\partial S} \sin \theta=-\frac{1}{4 \sin \theta} \frac{\partial}{\partial S} \cos 2 \theta
\end{array}
$$

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

The algorithm in one slide

Initialization stage:

- Prepare coefficients for Lorentz boost
- Slice strong bunch
- Compute slice charges and centroid coordinates
- Boost strong beam slices
- Boost centroid coordinates
- Boost Σ-matrix
- Store all information in a data block

Tracking routine:

- Boost coordinates of the weak beam particle
- Compute S coordinate of the collision point (CP)
- Transport strong beam optics from the IP to the CP:
- Transport sigma matrix to the CP
- Compute coupling angle and beam sizes in the decoupled plane
- Compute auxiliary quantities for the calculation of the longitudinal kick
- Compute transverse kicks
- Transform coordinates of the weak beam particles to the un-coupled frame
- Compute transverse forces in the un-coupled frame
- Transform transverse kicks to the coupled frame
- Apply transverse kicks in the coupled frame (change p_{x}, p_{y})
- Transport transverse kick from the CP to the IP and change particle positions (x, y) accordingly
- Compute and apply the longitudinal kick
- Anti-boost coordinates of the weak beam particles

Very hard to read and to debug, it can be kept alive... but definitely not ideal

```
    if(ibbc1.eq.1) then
    dum(8)=two* ((bcu(ibb,4)-bcu(ibb,9))+ &!hr06
& (bcu (ibb, 6) -bcu (ibb,10) ) *sp)
    !hr06
    dum(9)=(bcu (ibb,5) +bcu (ibb,7))+(two*bcu(ibb,8))*sp !hr06
    dum(10)=(((dum(4)*dum(8)+(four*dum(3))*dum(9))/ &!hr06
&dum(5))/dum(5))/dum(5)
    !hr06
    dum(11)=sfac* (dum(8) /dum(5) -dum(4) *dum(10))
    dum(12) = (bcu (ibb, 4) +bcu (ibb,9)) +(bcu (ibb,6) +bcu (ibb, 10))*sp !hr06
dum(13)=(sfac*((dum(4)*dum(8))*half+(two*dum(3))*dum(9)))/dum(5) !hr06
    if(abs(costh).gt.pieni) then
        costhp=(dum(11)/four)/costh !hr06
    else
        costhp=zero
    endif
    if(abs(sinth).gt.pieni) then
        sinthp=((-1d0*dum(11))/four)/sinth !hr06
    else
        sinthp=zero
    endif
    track (6,i)=track(6,i)- &!hr06
&((()bbfx* (costhp*sepx0+sinthp*sepy0)+ &!hr06
&bbfy*(costhp*sepy0-sinthp*sepx0))+ &!hr06
&bbgx*(dum(12)+dum(13)))+bbgy*(dum(12)-dum(13)))/ &!hr06
&cphi) *half
    !hr06
    bbf0=bbfx
    bbfx=bbf0*costh-bbfy*sinth
    bbfy=bbf0*sinth+bbfy*costh
    else
        track (6,i)=track (6,i)-
        &
& (bbgx* (bcu (ibb, 4) +bcu (ibb, 6) *sp)+ &
&bbgy* (bcu (ibb, 9) +bcu (ibb, 10) *sp)) /cphi
    endif
    track (6,i)=track (6,i)-(bbfx* (track (2,i)-bbfx*half)+ &
&bbfy*(track(4,i)-bbfy*half))*half
    track (1,i)=track (1,i) +s*bbfx
    track (2,i)=track (2,i) -bbfx
    track (3,i)=track (3,i)+s*bbfy
    track (4,i)=track (4,i) -bbfy
```


SixTrack implementation

- Started from previous work done by J. Barranco
- Identified and described the interface of the main functional blocks
- Built tables with the descriptions of the cumbersome notation used in the code

```
TWiki> LHCAtHome Web > SixTrack > SixTrackBeamBeam (2017-03-21, Giovanniladarola) & Sdit Attach PDF
Information on Beam Beam
Overview of what is left to do in this section:
    - Explicit description of how the slicing is done in subroutine stald
    - Explain what bbcu is and how it is computed/obtained
    Describe the Synchro-Beam Mapping is performed
    - Additional variables needs to be explained (see argument lists for each subroutine)
How a Beam-beam element is defined in fort.2 and 3.
The beam beam element are directly translated from MADX to SixTrack input format. The parameters that define a BB in the fort. 2 lattice are,
Format _name type
name - May contain up to sixteen characters
type-20
The beam-beam elements definition is now done fully in the BEAM block of fort. 3 for both 4D and 6D lens.
4D lens (1 line per element)
name ibsix \Sigma\Sigmaxx}\mp@subsup{\Sigma}{yy}{}h\mathrm{ -sep v-sep strength-ratio
6D lens (3 lines per element)
name ibsix xang xplane h-sep v-sep
```



```
\Sigmaypyp}\mp@subsup{\Sigma}{xy}{}\mp@subsup{\Sigma}{xpy}{}\mp@subsup{\Sigma}{xpyp}{}\mp@subsup{\Sigma}{yyp}{}\mathrm{ strength-ratio
name - Name of the beam-beam element.
```

- Moved to the understanding and testing of the source code...

It quickly became evident that the only viable way of checking the SixTrack code was to build an independent implementation to compare against. Done keeping in mind:

- Readability, modularity, possibility to interface with other codes (PyHEADTAIL, SixTrackLib)

- Compatibility with GPU

// Boost coordinates of the weak beam
BB6D_boost(\&(bb6ddata->parboost), \&x_star, \&px_star, \&y_star, \&py_star, \&sigma_star, \&delta_star);

// Synchro beam

for (i_slice=0; i_slice<N_slices; i_slice++)
double sigma_slice_star = sigma_slices_star[i_slice]
double x_slice_star = x_slices_star[i_slice];
double y_slice_star = y_slices_star[i_slice];

```
//Compute force scaling factor
    double Ksl = N_part_per_slice[i_slice]*bb6ddata->q_part*q0/(p0*C_LIGHT);
```

 //Identify the Collision Point (CP)
 double \(\mathrm{S}=0.5 *(\) sigma_star - sigma_slice_star);
 // Propagate sigma matrix
double Sig_11_hat_star, Sig_33_hat_star, costheta, sintheta;
double dS_Sig_11_hat_star, dS_Sig_33_hat_star, dS_costheta, dS_sintheta;
// Get strong beam shape at the CP
BB6D_propagate_Sigma_matrix(\&(bb6ddata->Sigmas_0_star),
S, bb6ddata->threshold_singular, 1,
\&Sig_11_hat_star, \&Sig_33_hat_star,
\&costheta, \&sintheta,
\&dS_Sig_11_hat_star, \&dS_Sig_33_hat_star,
\&dS_costheta, \&dS_sintheta);
// Evaluate transverse coordinates of the weake baem w.r.t. the strong beam centroid double x_bar_star = x_star + px_star*S - x_slice_star; double y_bar_star = y_star + py_star*S - y_slice_star;
// Move to the uncoupled reference frame
double x_bar_hat_star = x_bar_star*costheta +y_bar_star*sintheta;
double y_bar_hat_star = -x_bar_star*sintheta +y_bar_star*costheta;
// Compute derivatives of the transformation
double dS_x_bar_hat_star = x_bar_star*dS_costheta +y_bar_star*dS_sintheta;
double dS_y_bar_hat_star = -x_bar_star*dS_sintheta +y_bar_star*dS_costheta;
// Compute derivatives of the transformation
double dS_x_bar_hat_star = x_bar_star*dS_costheta +y_bar_star*dS_sintheta; double dS_y_bar_hat_star = -x_bar_star*dS_sintheta +y_bar_star*dS_costheta;
// Get transverse fieds
double Ex, Ey, Gx, Gy;
get_Ex_Ey_Gx_Gy_gauss(x_bar_hat_star, y_bar_hat_star,
sqrt(Sig_11_hat_star), sqrt(Sig_33_hat_star), bb6ddata->min_sigma_diff, \&Ex, \&Ey, \&Gx, \&Gy);
// Compute kicks
double Fx_hat_star = Ksl*Ex;
double Fy_hat_star = Ksl*Ey;
double Gx_hat_star = Ksl*Gx;
double Gy_hat_star = Ksl*Gy;
// Move kisks to coupled reference frame
double Fx_star = Fx_hat_star*costheta - Fy_hat_star*sintheta;
double Fy_star = Fx_hat_star*sintheta + Fy_hat_star*costheta;
// Compute longitudinal kick
double Fz_star = 0.5*(Fx_hat_star*dS_x_bar_hat_star + Fy_hat_star*dS_y_bar_hat_star+ Gx_hat_star*dS_Sig_11_hat_star + Gy_hat_star*dS_Sig_33_hat_star);
// Apply the kicks (Hirata's synchro-beam)
delta_star $=$ delta_star + Fz_star+0.5*(
Fx_star*(px_star+0.5*Fx_star)+
Fy_star*(py_star+0.5*Fy_star));
x_star = x_star - S*Fx_star;
px_star = px_star + Fx_star;
y_star = y_star - S*Fy_star;
py_star = py_star + Fy_star;
$\underline{\}}$

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

Validation tests

- Very difficult to identify problems by using the full tracking simulations
- Need to test the single routine "on the bench"
- Procedure being performed for each functional block
- Built a C/python implementation from the equations in the document
- Extracted the corresponding sixtrack source code and compiled as of a stand-alone python module (f2py)
- "Stress test" performed on the two: consistency checks, comparison against each other
$\left.\left.\begin{array}{|l|l|l|l|l|}\hline \text { Module } & \text { Tests performed } & \text { Outcome } \\ \hline \text { Boost/anti-boost } & \text { - } & \text { Comparison Sixtrack vs C/python routine } & \text { - } & \text { Bug identified and corrected } \\ \hline \begin{array}{l}\text { Beam-beam forces } \\ \text { (with potential } \\ \text { derivatives w.r.t. } \\ \text { sigmas) }\end{array} & \text { - } & \text { Checked that the two cancel each other }\end{array}\right) \begin{array}{l}\text { Force compared against Finite Difference }\end{array}\right)$

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

Boost /anti-boost

- Boost and anti-boost should cancel each other exactly
- "Bench-test" cases: large crossing angle, test particle very off momentum and large px, py
- Test passed for the library
- Problem identified in the Sixtrack implementation

Error after boost + anti-boost

Python test routine		SixTrack routine	
\mathbf{x}	$4.3 \mathrm{e}-19$	x	$6.5 \mathrm{e}-19$
px	0.0	px	0.065
y	$4.3 \mathrm{e}-19$	y	$4.3 \mathrm{e}-19$
py	$3 . e 3-17$	py	0.027
sigma	0.0	sigma	0.0
delta	$1 \mathrm{e}-16$	delta	$2.0 \mathrm{e}-17$

Discrepancy found between in the anti-boost between derived equations and SixTrack source code:

$$
\begin{align*}
& p_{x}=p_{x}^{*} \cos \phi+h \cos \alpha \tan \phi \tag{95}\\
& p_{y}=p_{y}^{*} \cos \phi+h \sin \alpha \tan \phi \tag{96}
\end{align*}
$$

```
TRACK (2) = (TRACK (2) +CALPHA*SPHI*H1) *CPHI
TRACK (4) = (TRACK (4) +SALPHA*SPHI*H1) *CPHI
```

The lines should be:

```
TRACK (2) = (TRACK (2) *CPHI+CALPHA*TPHI*H1)
TRACK (4)=(TRACK (4)*CPHI+SALPHA*TPHI*H1)
```

- Digging a bit we found out that the issue was already present in Hirata's code from 1996, on which the Sixtrack implementation is based

Boost /anti-boost

- Correction implemented in SixTrack

Error after boost + anti-boost

Python test routine		SixTrack routine		SixTrack corrected	
\mathbf{x}	$4.3 \mathrm{e}-19$	\mathbf{x}	$6.5 \mathrm{e}-19$	\mathbf{x}	$6.5 \mathrm{e}-19$
px	0.0	px	0.065	px	$5.55 \mathrm{e}-17$
\mathbf{y}	$4.3 \mathrm{e}-19$	y	$4.3 \mathrm{e}-19$	\mathbf{y}	$4.3 \mathrm{e}-19$
py	$3 . \mathrm{e} 3-17$	py	0.027	py	$0.1 \mathrm{e}-19$
sigma	0.0	sigma	0.0	sigma	0.0
delta	$1 \mathrm{e}-16$	delta	$2.0 \mathrm{e}-17$	delta	$2.0 \mathrm{e}-17$

Boost /anti-boost
 - Problem confirmed by Riccardo simulating a beam-beam interaction with zero intensity in the strong beam

Original implementation

Coordinates before interaction
[\square dump_ip.dat

Coordinates after interaction
© | © (\mathbb{L} dump.b.dat

Corrected implementation

Coordinates before interaction

n

Coordinates after interaction

$0.00000 \quad 1.444989354 \mathrm{E}-01 \quad 1.217984946 \mathrm{E}-02 \quad 2.341007330 \mathrm{E}-02$-1.973240618E-03
$0.00000 \quad 1.444989354 \mathrm{E}-01 \quad 1.217984946 \mathrm{E}-02 \quad 2.341007330 \mathrm{E}-02-1.973240618 \mathrm{E}-03$ $\begin{array}{llllll}0.00000 & 1.444989354 \mathrm{E}-01 & 1.217984946 \mathrm{E}-02 & 2.341007330 \mathrm{E}-02 & -1.973240618 \mathrm{E}-03 \\ 0.00000 & 2.169989354 \mathrm{E}-01 & 1.829089161 \mathrm{E}-02 & 1.931331047 \mathrm{E}-01 & -1.627923509 \mathrm{E}-02\end{array}$ $\begin{array}{llllll}0.00000 & 2.169989354 \mathrm{E}-01 & 1.829089161 \mathrm{E}-02 & 1.931331047 \mathrm{E}-01 & -1.627923509 \mathrm{E}-02 \\ 0.00000 & 2.169989354 \mathrm{E}-01 & 1.829089161 \mathrm{E}-02 & 1.931331047 \mathrm{E}-01 & -1.627923509 \mathrm{E}-02\end{array}$ $\begin{array}{llllll}0.00000 & 2.169989354 \mathrm{E}-01 & 1.829089161 \mathrm{E}-02 & 1.931331047 \mathrm{E}-01 & -1.627923509 \mathrm{E}-02 \\ 0.00000 & 2.894989354 \mathrm{E}-01 & 2.440193375 \mathrm{E}-02 & 3.628561362 \mathrm{E}-01 & -3.058522956 \mathrm{E}-02\end{array}$ $\begin{array}{llllll}0.00000 & 2.894989354 \mathrm{E}-01 & 2.440193375 \mathrm{E}-02 & 3.628561362 \mathrm{E}-01 & -3.058522956 \mathrm{E}-02 \\ 0.00000 & 2.894989354 \mathrm{E}-01 & 2.440193375 \mathrm{E}-02 & 3.628561362 \mathrm{E}-01 & -3.058522956 \mathrm{E}-02\end{array}$ $\begin{array}{llllll}0.00000 & 2.894989354 \mathrm{E}-01 & 2.440193375 \mathrm{E}-02 & 3.628561362 \mathrm{E}-01 & -3.058522956 \mathrm{E}-02 \\ 0.00000 & 3.619989354 \mathrm{E}-01 & 3.051297588 \mathrm{E}-02 & 5.325791676 \mathrm{E}-01 & -4.489122400 \mathrm{E}-02\end{array}$ $0.00000 \quad 3.619989354 \mathrm{E}-01 \quad 3.051297588 \mathrm{E}-02 \quad 5.325791676 \mathrm{E}-01-4.489122400 \mathrm{E}-02$ $0.00000 \quad 4.344989354 \mathrm{E}-01 \quad 3.662401801 \mathrm{E}-02 \quad 7.023021991 \mathrm{E}-01-5.919721844 \mathrm{E}-02$ $0.00000 \quad 4.344989354 \mathrm{E}-01 \quad 3.662401801 \mathrm{E}-02 \quad 7.023021991 \mathrm{E}-01 \quad-5.919721844 \mathrm{E}-02$ $0.00000 \quad 1.308501247 \mathrm{E}-01 \quad 8.514045444 \mathrm{E}-03-9.960917299 \mathrm{E}-03 \quad 3.153577120 \mathrm{E}-04$ $0.00000 \quad 1.308501247 \mathrm{E}-01 \quad 8.514045444 \mathrm{E}-03-9.960917299 \mathrm{E}-03 \quad 3.153577120 \mathrm{E}-04$ $0.00000 \quad 1.041820623 \mathrm{E}-01-1.200951763 \mathrm{E}-02-8.217756745 \mathrm{E}-02 \quad 2.601701095 \mathrm{E}-03$ $0.00000 \quad 1.041820623 \mathrm{E}-01-1.200951763 \mathrm{E}-02 \quad-8.217756745 \mathrm{E}-02 \quad 2.601701095 \mathrm{E}-03$ $\begin{array}{lllll}0.00000 & 7.751400004 \mathrm{E}-02 & -3.253308069 \mathrm{E}-02 & -1.543942171 \mathrm{E}-01 & 4.888044424 \mathrm{E}-03 \\ 0.00000 & 7.751400004 \mathrm{E}-02 & -3.253308069 \mathrm{E}-02 & -1.543942171 \mathrm{E}-01 & 4.888044424 \mathrm{E}-03\end{array}$ $\begin{array}{llllll}0.00000 & 7.751400004 \mathrm{E}-02 & -3.253308069 \mathrm{E}-02 & -1.543942171 \mathrm{E}-01 & 4.888044424 \mathrm{E}-03\end{array}$ $0.00000 \quad 5.084593802 \mathrm{E}-02-5.30564374 \mathrm{E}-02-2.266108663 \mathrm{E}-01 \quad 7.174387701 \mathrm{E}-03$ $0.00000 \quad 2.417787621 \mathrm{E}-02 \quad-7.358020679 \mathrm{E}-02 \quad-2.988275150 \mathrm{E}-01 \quad 9.460730924 \mathrm{E}-03$
$0.00000 \quad 2.417787621 \mathrm{E}-02 \quad-7.358020679 \mathrm{E}-02$-2.988275150E-01 9.460730924E-03

Boost /anti-boost

- Impact on realistic simulation study assessed by Dario
- Tune scans comparison with 2017 ATS optics show no dramatic change, but slightly worse DA

Old version
ATS Optics; $\beta^{*}=40 \mathrm{~cm} ; \mathrm{Q}^{\prime}=15 ; \mathrm{I}_{\mathrm{MO}}=500 \mathrm{~A}$; $\varepsilon=2.5 \mu \mathrm{~m} ; \mathrm{I}=1.2510^{11} \mathrm{e} ; \mathrm{X}=150 \mu \mathrm{rad} ; \operatorname{Min} \mathrm{DA}$.

Corrected version
ATS Optics; $\beta^{*}=40 \mathrm{~cm} ; \mathrm{Q}^{\prime}=15 ; \mathrm{I}_{\mathrm{MO}}=500 \mathrm{~A}$;
$\varepsilon=2.5 \mu \mathrm{~m} ; \mathrm{I}=1.2510^{11} \mathrm{e} ; X=150 \mu \mathrm{rad} ; \operatorname{Min} \mathrm{DA}$.

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

Transverse kicks for a Gaussian beam

Transverse field for a Gaussian beam (Bassetti-Erskine)
sigmax $=5.0 \mathrm{e}-01 \mathrm{~m}$ sigma_y=9.0e-01 m, theta_dir=20.0 deg

Library tested against Poisson solver of PyECLOUD
(test repeated for tall, fat and round beams)

Transverse kicks for a Gaussian beam

Transverse field for a Gaussian beam (Bassetti-Erskine)

SixTrack tested against

 library(test repeated for tall, fat and round beams)

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

Other derivatives of the electric potential

$$
\begin{aligned}
& \hat{G}_{x}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{11}^{*}}\left(\hat{\bar{x}}^{*}, \hat{\bar{y}}^{*}, \hat{\Sigma}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right) \quad \hat{g}_{x}^{*}=-\frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{11}^{*}}=-\frac{1}{2\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}\left\{\hat{\hat{x}}^{*} \hat{E}_{x}^{*}+\hat{\hat{y}}^{*} \hat{E}_{y}^{*}+\frac{1}{2 \pi \epsilon_{0}}\left[\sqrt{\frac{\hat{\Sigma}_{33}^{*}}{\hat{\Sigma}_{11}^{*}}} \exp \left(-\frac{\left(\hat{\bar{x}}^{*}\right)^{2}}{2 \hat{\Sigma}_{11}^{*}}-\frac{\left(\hat{\hat{y}}^{*}\right)^{2}}{2 \hat{\Sigma}_{33}^{*}}\right)-1\right]\right\} \\
& \hat{G}_{y}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{33}^{*}}\left(\hat{x}^{*}, \hat{\hat{y}}^{*}, \hat{\Sigma}_{33}^{*}, \hat{\Sigma}_{33}^{*}\right) \quad \hat{\delta}_{y}^{*}=-\frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{33}^{*}}=\frac{1}{2\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}\left\{\hat{x}^{*} \hat{E}_{x}^{*}+\hat{y}^{*} \hat{E}_{y}^{*}+\frac{1}{2 \pi \epsilon_{0}}\left[\sqrt{\frac{\hat{\Sigma}_{11}^{*}}{\hat{\Sigma}_{33}^{*}}} \exp \left(-\frac{\left(\hat{x}^{*}\right)^{2}}{2 \hat{\Sigma}_{11}^{*}}-\frac{\left(\hat{\hat{y}}^{*}\right)^{2}}{2 \hat{\Sigma}_{33}^{*}}\right)-1\right]\right\}
\end{aligned}
$$

Library tested against numerical derivative

(test repeated for tall, fat and round beams)

Other derivatives of the electric potential

$$
\begin{aligned}
& \hat{G}_{x}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{11}^{*}}\left(\hat{\bar{x}}^{*}, \hat{\hat{y}}^{*}, \hat{\Sigma}_{11}^{*}, \hat{\Sigma}_{33}^{*}\right) \quad \hat{\delta}_{x}^{*}=-\frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{11}^{*}}=-\frac{1}{2\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}\left\{\hat{\hat{x}}^{*} \hat{E}_{x}^{*}+\hat{\hat{y}}^{*} \hat{E}_{y}^{*}+\frac{1}{2 \pi \epsilon_{0}}\left[\sqrt{\frac{\hat{\Sigma}_{33}^{*}}{\hat{\Sigma}_{11}^{*}}} \exp \left(-\frac{\left(\hat{x}^{*}\right)^{2}}{2 \hat{\Sigma}_{11}^{*}}-\frac{\left(\hat{\hat{y}}^{*}\right)^{2}}{2 \hat{\Sigma}_{33}^{*}}\right)-1\right]\right\} \\
& \hat{G}_{y}^{*}=-K_{s l} \frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{33}^{*}}\left(\hat{x}^{*}, \hat{\hat{y}}^{*}, \hat{\Sigma}_{33}^{*}, \hat{\Sigma}_{33}^{*}\right) \quad \hat{\delta}_{y}^{*}=-\frac{\partial \hat{U}^{*}}{\partial \hat{\Sigma}_{33}^{*}}=\frac{1}{2\left(\hat{\Sigma}_{11}^{*}-\hat{\Sigma}_{33}^{*}\right)}\left\{\hat{x}^{*} \hat{E}_{x}^{*}+\hat{y}^{*} \hat{E}_{y}^{*}+\frac{1}{2 \pi \epsilon_{0}}\left[\sqrt{\frac{\hat{\Sigma}_{11}^{*}}{\hat{\Sigma}_{33}^{*}}} \exp \left(-\frac{\left(\hat{x}^{*}\right)^{2}}{2 \hat{\Sigma}_{11}^{*}}-\frac{\left(\hat{\hat{y}}^{*}\right)^{2}}{2 \hat{\Sigma}_{33}^{*}}\right)-1\right]\right\}
\end{aligned}
$$

SixTrack tested against

 library(test repeated for tall, fat and round beams)

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

Σ-matrix propagation with linear coupling

Library tested against MAD-X:

- Built a simple line with a strong skew quadrupole
- Entering with a de-coupled beam
- Saves Σ-matrix at regularly spaced markers for comparison against library

Check optics propagation against MAD-X

Σ-matrix propagation with linear coupling

Library tested against MAD-X:

- Built a simple line with a strong skew quadrupole
- Entering with a de-coupled beam
- Saves Σ-matrix at regularly spaced markers for comparison against library

Check optics propagation against MAD-X

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

Σ-matrix transformation to un-coupled frame

Library tested against numerical diagonalization of the Σ-matrix

Check rotation against matrix diagonalization
At s=0: Sig11=8.4e-06,Sig22=4.1e-09,Sig33=1.0e-05,Sig44=1.3e-09
Sig12=1.9e-07,Sig13=-3.6e-06,Sig14=-3.8e-08,
Sig23=-7.6e-08,Sig24=-8.1e-10,Sig34=1.2e-07

Σ-matrix transformation to un-coupled frame

Library tested against numerical diagonalization of the Σ-matrix

Check derivatives against finite differeces

Σ-matrix transformation to un-coupled frame

SixTrack tested against library: test failed!
Sign error in the computation of the coupling angle

Original source code:

```
if(abs(sinth).gt.pieni) then
    sinth=(-1d0*sfac)*sqrt(sinth)
else
    sinth=zero
endif
```


Σ-matrix transformation to un-coupled frame

SixTrack tested against library: test failed!

Sign error in the computation of the coupling angle

```
if(abs(sinth).gt.pieni) then
```

if(abs(sinth).gt.pieni) then
sinth=(sfac)*sqrt(sinth)

```
    sinth=(sfac)*sqrt(sinth)
```


Corrected source code:

```
else
    sinth=zero
endif
```


Σ-matrix transformation to un-coupled frame

Input sigma matrix:

\{'Sig_11_0': 2.1046670129999999e-05,
'Sig_12_0': 2.7725426699999999e-07,
'Sig_13_0': 5.9207071659999999e-06,
'Sig_14_0': 1.2224001670000001e-07,
'Sig_22_0': 3.6622825020000002e-09,
'Sig_23_0': 7.4141336339999994e-08,
'Sig_24_0': 1.495491124e-09,
'Sig_33_0': $3.165637487 e-06$,
'Sig_34_0': 7.9058234540000002e-08,
'Sig_44_0': 2.040387648e-09\}

Checked by Kyrre using full SixTrack

 simulations (numerical divergence of the computed kicks)More info at: https://github.com/SixTrack/SixTrack/issues/267\#issuecomment-307333656

After bug correction derivatives were also found to be ok

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

Library: slicing could be easily re-implemented using python inverse error function

Sixtrack: implementation is correct but not very accurate

Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

Complete multi-slice interaction

Sixtrack (corrected) vs library: agreement to the $6^{\text {th }}$ digit!

```
Compare kicks against sixtrack:
D x -2.32123980148e-07 -2.32123980355e-07 err=2.08e-16
D_px 4.62575633839e-08 4.62575633839e-08 err=0.00e+00
D_y -1.95977011284e-07 -1.9597701092e-07 err=-3.64e-16
D_py 3.88258677153e-08 3.88258677153e-08 err=0.00e+00
D sigma -5.29477794942e-10 -5.29477350852e-10 err=-4.44e-16
D_delta 6.18915584942e-08 6.18915584951e-08 err=-8.67e-19
```


Outline

- Introduction
- "6D" beam beam treatment
- Handling the crossing angles: "the boost"
- Transverse "generalized kicks"
- Description of the strong beam (Σ-matrix)
- Handing linear coupling
- Longitudinal kick
- Implementation
- Testing:
- "Boost" and "Anti-boost"
- Transverse kicks
- Other derivatives of the electric potential
- Σ-matrix propagation with linear coupling
- Σ-matrix transformation to un-coupled frame
- Constant charge slicing
- Complete multi-slice interaction
- Handling the denominators

Handling the denominators: case \#0

Case T>0, $\left|\Sigma_{13}^{*}\right|>0$

We use the expression that we have derived before:

$$
\begin{aligned}
R(S) & =\Sigma_{11}^{*}-\Sigma_{33}^{*} & & \hat{\Sigma}_{11}^{*}=\frac{1}{2}(W+\operatorname{sgn}(R) \sqrt{T}) \\
W(S) & =\Sigma_{11}^{*}+\Sigma_{33}^{*} & \cos 2 \theta=\operatorname{sgn}(R) \frac{R}{\sqrt{T}} & \hat{\Sigma}_{33}^{*}=\frac{1}{2}(W-\operatorname{sgn}(R) \sqrt{T})
\end{aligned}
$$

$$
\frac{\partial}{\partial S}\left[\hat{\Sigma}_{11}^{*}\right]=\frac{1}{2}\left(\frac{\partial W}{\partial S}+\operatorname{sgn}(R) \frac{1}{2 \sqrt{T}} \frac{\partial T}{\partial S}\right)
$$

$$
\frac{\partial}{\partial S}\left[\hat{\Sigma}_{33}^{*}\right]=\frac{1}{2}\left(\frac{\partial W}{\partial S}-\operatorname{sgn}(R) \frac{1}{2 \sqrt{T}} \frac{\partial T}{\partial S}\right)
$$

$$
\frac{\partial}{\partial S}[\cos 2 \theta]=\operatorname{sgn}(R)\left(\frac{\partial R}{\partial S} \frac{1}{\sqrt{T}}-\frac{R}{2(\sqrt{T})^{3}} \frac{\partial T}{\partial S}\right)
$$

$$
\cos \theta=\sqrt{\frac{1}{2}(1+\cos 2 \theta)}
$$

$$
\sin \theta=\operatorname{sgn}(R) \operatorname{sgn}\left(\Sigma_{13}^{*}\right) \sqrt{\frac{1}{2}(1-\cos 2 \theta)}
$$

$$
\begin{aligned}
\frac{\partial}{\partial S} \cos \theta & =\frac{1}{4 \cos \theta} \frac{\partial}{\partial S} \cos 2 \theta \\
\frac{\partial}{\partial S} \sin \theta & =-\frac{1}{4 \sin \theta} \frac{\partial}{\partial S} \cos 2 \theta
\end{aligned}
$$

Handling the denominators: case \#0

Case T>0, $\left|\Sigma_{13}^{*}\right|>0$

Tests:

Mode: check_singularities At s=4.0:
SIG13=1.0 T=8.0, $\mathrm{a}=2.0 \mathrm{e}-\overline{01}, \mathrm{~b}=-3.0 \mathrm{e}-02, \mathrm{c}=4.0 \mathrm{e}-01, \mathrm{~d}=1.0 \mathrm{e}-01$

—— Expression with denominator (apparently singular)
---- Expression with correction

Handling the denominators: case \#0

Case T>0, $\left|\Sigma_{13}^{*}\right|>0$

Tests against Sixtrack:

Mode: vs sixtrack At s=4.0:
SIG13=1.0 T=8.0, $a=2.0 \mathrm{e}-0 \overline{1}, \mathrm{~b}=-3.0 \mathrm{e}-02, \mathrm{c}=4.0 \mathrm{e}-01, \mathrm{~d}=1.0 \mathrm{e}-01$

—— Library (with correction)
---- Sixtrack

Handling the denominators: case \#1

Case T>0, $\left|\Sigma_{13}^{*}\right|=0$:

The highlighted formulas break and alternative expressions need to be found:

$$
\begin{array}{rlrl}
R(S) & =\Sigma_{11}^{*}-\Sigma_{33}^{*} & & \hat{\Sigma}_{11}^{*}=\frac{1}{2}(W+\operatorname{sgn}(R) \sqrt{T}) \\
W(S) & =\Sigma_{11}^{*}+\Sigma_{33}^{*} & \cos 2 \theta=\operatorname{sgn}(R) \frac{R}{\sqrt{T}} & \\
T(S) & =R^{2}+4 \Sigma_{13}^{* 2} & \hat{\Sigma}_{33}^{*}=\frac{1}{2}(W-\operatorname{sgn}(R) \sqrt{T})
\end{array}
$$

$$
\frac{\partial}{\partial S}\left[\hat{\Sigma}_{11}^{*}\right]=\frac{1}{2}\left(\frac{\partial W}{\partial S}+\operatorname{sgn}(R) \frac{1}{2 \sqrt{T}} \frac{\partial T}{\partial S}\right)
$$

$$
\frac{\partial}{\partial S}\left[\hat{\Sigma}_{33}^{*}\right]=\frac{1}{2}\left(\frac{\partial W}{\partial S}-\operatorname{sgn}(R) \frac{1}{2 \sqrt{T}} \frac{\partial T}{\partial S}\right)
$$

$$
\frac{\partial}{\partial S}[\cos 2 \theta]=\operatorname{sgn}(R)\left(\frac{\partial R}{\partial S} \frac{1}{\sqrt{T}}-\frac{R}{2(\sqrt{T})^{3}} \frac{\partial T}{\partial S}\right)
$$

$$
\begin{array}{rlrl}
\cos \theta & =\sqrt{\frac{1}{2}(1+\cos 2 \theta)} & \frac{\partial}{\partial S} \cos \theta=\frac{1}{4 \cos \theta} \frac{\partial}{\partial S} \cos 2 \theta \\
\sin \theta=\operatorname{sgn}(R) \operatorname{sgn}\left(\Sigma_{13}^{*}\right) \sqrt{\frac{1}{2}(1-\cos 2 \theta)} & \frac{\partial}{\partial S} \sin \theta=-\frac{1}{4 \sin \theta} \frac{\partial}{\partial S} \cos 2 \theta
\end{array}
$$

Case T>0, $\left|\Sigma_{13}^{*}\right|=0:$

$$
\begin{aligned}
\cos 2 \theta=\operatorname{sgn}\left(\Sigma_{11}^{*}-\Sigma_{33}^{*}\right) \frac{\Sigma_{11}^{*}-\Sigma_{33}^{*}}{\sqrt{\left(\Sigma_{11}^{*}-\Sigma_{33}^{*}\right)^{2}+4 \Sigma_{13}^{* 2}}} \\
\frac{\frac{\partial}{\partial S} \cos \theta}{\frac{\frac{\partial}{\partial S} \sin \theta}{}=\frac{1}{4 \cos \theta} \frac{\partial}{\partial S} \cos 2 \theta} \frac{1}{4 \sin \theta} \frac{\partial}{\partial S} \cos 2 \theta
\end{aligned}
$$

Handling the denominators: case \#1

Case T>0, $\left|\Sigma_{13}^{*}\right|=0$:

Around the singular point we can write:

$$
\Sigma_{13}^{*}=c \Delta S+d \Delta S^{2}
$$

with

$$
\begin{aligned}
a & =\Sigma_{12}^{*}-\Sigma_{34}^{*} \\
b & =\Sigma_{22}^{*}-\Sigma_{44}^{*} \\
c & =\Sigma_{14}^{*}+\Sigma_{23}^{*} \\
d & =\Sigma_{24}^{*}
\end{aligned}
$$

$\cos 2 \theta=\frac{|R|}{\sqrt{R^{2}+4 \Sigma_{13}^{* 2}}}=\frac{1}{\sqrt{1+4 \frac{\Sigma_{13}^{* 2}}{R^{2}}}} \simeq \frac{1}{1+2 \frac{\Sigma_{13}^{*}}{R^{2}}} \simeq 1-2 \frac{\Sigma_{13}^{*}{ }^{2}}{R^{2}} \quad \sin \theta=\operatorname{sgn}(R) \operatorname{sgn}\left(\Sigma_{13}^{*}\right) \frac{\left|\Sigma_{13}^{*}\right|}{|R|}=\frac{\Sigma_{13}^{*}}{R}$

At the singular point

$$
\frac{\partial}{\partial S} \sin \theta=\frac{1}{R^{2}}\left[(c+2 d \Delta S) R-\frac{\partial R}{\partial S}\left(c \Delta S+d \Delta S^{2}\right)\right] \square \frac{\partial}{\partial S} \sin \theta=\frac{c}{R}
$$

Handling the denominators: case \#1

Case T>0, $\left|\Sigma_{13}^{*}\right|=0$:

Tests:

Mode: check_singularities At s=4.0:
SIG13=0.0 T=4.0, $a=-5.0 \bar{e}-01, b=0.0, c=-3.0 e-01, d=1.0 e-01$

—— Expression with denominator (apparently singular)
---- Expression with correction

Handling the denominators: case \#1

Case T>0, $\left|\Sigma_{13}^{*}\right|=0:$
Tests against Sixtrack:

Mode: vs_sixtrack At s=4.0:
SIG13=0.0 T=4.0, $a=-5.0 \mathrm{e}-01, b=0.0, c=-3.0 \mathrm{e}-01, d=1.0 \mathrm{e}-01$

—— Library (with correction)
---- Sixtrack

Case T=0, $|c|>0$

The highlighted formulas break and alternative expressions need to be found:

$$
\begin{array}{rlrl}
R(S) & =\Sigma_{11}^{*}-\Sigma_{33}^{*} \\
W(S) & =\Sigma_{11}^{*}+\Sigma_{33}^{*} \\
T(S) & =R^{2}+4 \Sigma_{13}^{* 2} & \cos 2 \theta=\operatorname{sgn}(R) & R \\
\sqrt{T}
\end{array} \quad \begin{aligned}
& \hat{\Sigma}_{11}^{*}=\frac{1}{2}(W+\operatorname{sgn}(R) \sqrt{T}) \\
& \hat{\Sigma}_{33}^{*}=\frac{1}{2}(W-\operatorname{sgn}(R) \sqrt{T})
\end{aligned}
$$

$$
\frac{\partial}{\partial S}\left[\hat{\Sigma}_{11}^{*}\right]=\frac{1}{2}\left(\frac{\partial W}{\partial S}+\operatorname{sgn}(R) \frac{\partial T}{2 \sqrt{T}} \frac{\partial T}{}\right)
$$

$$
\frac{\partial}{\partial S}\left[\hat{\Sigma}_{33}^{*}\right]=\frac{1}{2}\left(\frac{\partial W}{\partial S}-\operatorname{sgn}\left(R \underset{\sim}{2 \sqrt{T})} \frac{\partial T}{T}\right)\right.
$$

$$
\frac{\partial}{\partial S}[\cos 2 \theta]=\operatorname{sgn}(R)\left(\frac{\partial R}{\partial S} \frac{1}{\sqrt{T}}-\frac{R}{2(\sqrt{T})^{3}} \frac{\partial T}{\partial S}\right)
$$

$$
\cos \theta=\sqrt{\frac{1}{2}(1+\cos 2 \theta)}
$$

$$
\sin \theta=\operatorname{sgn}(R) \operatorname{sgn}\left(\Sigma_{13}^{*}\right) \sqrt{\frac{1}{2}(1-\cos 2 \theta)}
$$

$$
\begin{aligned}
\frac{\partial}{\partial S} \cos \theta & =\frac{1}{4 \cos \theta} \frac{\partial}{\partial S} \cos 2 \theta \\
\frac{\partial}{\partial S} \sin \theta & =-\frac{1}{4 \sin \theta} \frac{\partial}{\partial S} \cos 2 \theta
\end{aligned}
$$

Handling the denominators: case \#2

Case T=0, $|c|>0$

Around the singular point we can write:

$$
a=\Sigma_{12}^{*}-\Sigma_{34}^{*}
$$

$$
R=2 a \Delta S+b \Delta S^{2}
$$

$$
T=\Delta S^{2}\left[(2 a+b \Delta S)^{2}+4(c+d \Delta S)^{2}\right]
$$

$$
\cos 2 \theta=\frac{|2 a+b \Delta S|}{\sqrt{(2 a+b \Delta S)^{2}+4(c+d \Delta S)^{2}}}
$$

$$
\frac{\partial}{\partial S}[\cos 2 \theta]=\operatorname{sgn}(2 a+b \Delta S)\left[\frac{b}{\sqrt{(2 a+b \Delta S)^{2}+4(c+d \Delta S)^{2}}}-\frac{(2 a+b \Delta S)\left(2 a b+b^{2} \Delta s+4 c d+4 d^{2} \Delta S\right)}{\left(\sqrt{(2 a+b \Delta S)^{2}+4(c+d \Delta S)^{2}}\right)^{3}}\right]
$$

$$
\begin{gathered}
\Delta S=0 \\
\frac{\partial}{\partial S}[\cos 2 \theta]=\operatorname{sgn}(2 a)\left[\frac{b}{2 \sqrt{a^{2}+c^{2}}}-\frac{a(a b+2 c d)}{2\left(\sqrt{a^{2}+c^{2}}\right)^{3}}\right]
\end{gathered}
$$

Case T=0, $|c|>0$

$$
\begin{array}{ll}
a=\Sigma_{12}^{*}-\Sigma_{34}^{*} \\
b=\Sigma_{22}^{*}-\Sigma_{44}^{*} \\
c=\Sigma_{14}^{*}+\Sigma_{23}^{*} & R=2 a \Delta S+b \Delta S^{2} \\
d=\Sigma_{24}^{*} & T=\Delta S^{2}\left[(2 a+b \Delta S)^{2}+4(c+d \Delta S)^{2}\right]
\end{array}
$$

$$
\begin{aligned}
& \hat{\Sigma}_{11}^{*}=\frac{W}{2}+\frac{1}{2} \operatorname{sgn}\left(2 a \Delta S+b \Delta S^{2}\right)|\Delta S| \sqrt{(2 a+b \Delta S)^{2}+4(c+d \Delta S)^{2}} \\
& \hat{\Sigma}_{33}^{*}=\frac{W}{2}-\frac{1}{2} \operatorname{sgn}\left(2 a \Delta S+b \Delta S^{2}\right)|\Delta S| \sqrt{(2 a+b \Delta S)^{2}+4(c+d \Delta S)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial S}\left[\hat{L}_{11}^{*}\right]=\frac{1}{2} \frac{\partial W}{\partial S}+\frac{1}{2} \operatorname{sgn}\left(2 a \Delta S+b \Delta S^{2}\right) \operatorname{sgn}(\Delta S)\left[\sqrt{(2 a+b \Delta S)^{2}+4(c+d \Delta S)^{2}}+\frac{\Delta S\left(2 a b+b^{2} \Delta s+4 c d+4 d^{2} \Delta S\right)}{\sqrt{(2 a+b \Delta S)^{2}+4(c+d \Delta S)^{2}}}\right] \\
& \frac{\partial}{\partial S}\left[\hat{\Sigma}_{33}^{*}\right]=\frac{1}{2} \frac{\partial W}{\partial S}-\frac{1}{2} \operatorname{sgn}\left(2 a \Delta S+b \Delta S^{2}\right) \operatorname{sgn}(\Delta S)\left[\sqrt{(2 a+b \Delta S)^{2}+4(c+d \Delta S)^{2}}+\frac{\Delta S\left(2 a b+b^{2} \Delta s+4 c d+4 d^{2} \Delta S\right)}{\sqrt{(2 a+b \Delta S)^{2}+4(c+d \Delta S)^{2}}}\right]
\end{aligned}
$$

$$
\Delta S=0 \quad \hat{\Sigma}_{11}^{*}=\frac{W}{2} \quad \begin{array}{ll}
\partial S & \frac{\partial}{\partial 1} \\
& \hat{\Sigma}_{33}^{*}=\frac{W}{2}
\end{array} \quad \frac{\partial}{\partial S}\left[\hat{\Sigma}_{33}^{*}\right]=\frac{1}{2} \frac{1}{2} \frac{\partial W}{\partial S}+\operatorname{sgn}(2 a) \sqrt{a^{2}+c^{2}}, \operatorname{sgn}(2 a) \sqrt{a^{2}+c^{2}}
$$

Handling the denominators: case \#2

Case T=0, $|c|>0$

Tests:

Mode: check_singularities At s=4.0:
SIG13=0.0 T=0.0, $a=4.0 \mathrm{e}-01, \mathrm{~b}=0.0, \mathrm{c}=1.2, \mathrm{~d}=1.0 \mathrm{e}-01$

—— Expression with denominator (apparently singular)
---- Expression with correction

Handling the denominators: case \#2

Case T=0, $|c|>0$

Tests against Sixtrack:

Mode: vs sixtrack At s=4.0:
SIG13=0.0 T=0.0, $a=4.0 \mathrm{e}-01, \mathrm{~b}=0.0, \mathrm{c}=1.2, \mathrm{~d}=1.0 \mathrm{e}-01$

—— Library (with correction)
---- Sixtrack

Case T=0, c=0, |a|>0

The highlighted formulas break and alternative expressions need to be found:

$$
\begin{array}{rlrl}
R(S) & =\Sigma_{11}^{*}-\Sigma_{33}^{*} \\
W(S) & =\Sigma_{11}^{*}+\Sigma_{33}^{*} \\
T(S) & =R^{2}+4 \Sigma_{13}^{* 2} & \cos 2 \theta=\operatorname{sgn}(R) & \begin{array}{l}
R \\
\sqrt{T}
\end{array} \\
& \hat{\Sigma}_{11}^{*}=\frac{1}{2}(W+\operatorname{sgn}(R) \sqrt{T}) \\
\hat{\Sigma}_{33}^{*}=\frac{1}{2}(W-\operatorname{sgn}(R) \sqrt{T})
\end{array}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial S}\left[\hat{\Sigma}_{11}^{*}\right]=\frac{1}{2}\left(\frac{\partial W}{\partial S}+\operatorname{sgn}(R) \frac{1}{2 \sqrt{T} \frac{\partial T}{S S}}\right) \\
& \frac{\partial}{\partial S}\left[\hat{\Sigma}_{33}^{*}\right]=\frac{1}{2}\left(\frac{\partial W}{\partial S}-\operatorname{sgn}\left(R\left(\frac{\partial T}{2 \sqrt{T} S}\right)\right.\right.
\end{aligned}
$$

$$
\frac{\partial}{\partial S}[\cos 2 \theta]=\operatorname{sgn}(R)\left(\frac{\partial R}{\partial S} \frac{1}{\sqrt{T}}-\frac{R}{2(\sqrt{T})^{3}} \frac{\partial T}{\partial S}\right)
$$

$$
\cos \theta=\sqrt{\frac{1}{2}(1+\cos 2 \theta)}
$$

$$
\sin \theta=\operatorname{sgn}(R) \operatorname{sgn}\left(\Sigma_{13}^{*}\right) \sqrt{\frac{1}{2}(1-\cos 2 \theta)}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial S} \cos \theta=\frac{1}{4 \cos \theta} \frac{\partial}{\partial S} \cos 2 \theta \\
& \frac{\partial}{\partial S} \sin \theta=-\frac{1}{4 \sin \theta} \frac{\partial}{\partial S} \cos 2 \theta
\end{aligned}
$$

Case $T=0, c=0,|a|>0$

$$
\begin{array}{ll}
a=\Sigma_{12}^{*}-\Sigma_{34}^{*} & \\
b=\Sigma_{22}^{*}-\Sigma_{44}^{*} & R=2 a \Delta S+b \Delta S^{2} \\
c=\Sigma_{14}^{*}+\Sigma_{23}^{*} & \\
d=\Sigma_{24}^{*} & T=\Delta S^{2}\left[(2 a+b \Delta S)^{2}+4(c+d \Delta S)^{2}\right]
\end{array}
$$

We proceed as before:
$\cos 2 \theta=\operatorname{sgn}(R) \frac{R}{\sqrt{T}} \square \cos 2 \theta=\frac{|2 a+b \Delta S|}{\sqrt{(2 a+b \Delta S)^{2}+4(c+d \Delta S)^{2}}} \square \cos 2 \theta=\frac{|2 a|}{2 \sqrt{a^{2}+c^{2}}}$

$$
\begin{aligned}
\cos \theta & =\sqrt{\frac{1}{2}(1+\cos 2 \theta)} \\
\sin \theta & =\operatorname{sgn}(R) \operatorname{sgn}\left(\Sigma_{13}^{*}\right) \sqrt{\frac{1}{2}(1-\cos 2 \theta)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial S} \cos \theta=\frac{1}{4 \cos \theta} \frac{\partial}{\partial S} \cos 2 \theta \\
& \frac{\partial}{\partial S} \sin \theta=-4 \operatorname{tin} \frac{\partial}{\partial S} \cos 2 \theta
\end{aligned}
$$

Same as before but this
denominator becomes zero

Case $T=0, c=0,|a|>0$

$$
\begin{aligned}
a & =\Sigma_{12}^{*}-\Sigma_{34}^{*} \\
b & =\Sigma_{22}^{*}-\Sigma_{44}^{*} \\
c & =\Sigma_{14}^{*}+\Sigma_{23}^{*} \\
d & =\Sigma_{24}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& R=2 a \Delta S+b \Delta S^{2} \\
& T=\Delta S^{2}\left[(2 a+b \Delta S)^{2}+4(c+d \Delta S)^{2}\right]
\end{aligned}
$$

We need to expand to higher order:

$$
\cos 2 \theta=\frac{1}{\sqrt{1+\frac{4 d^{2} \Delta S^{2}}{(2 a+b \Delta S)^{2}}}} \simeq 1-\frac{2 d^{2} \Delta S^{2}}{(2 a+b \Delta S)^{2}}
$$

$$
\sin \theta=\operatorname{sgn}(R) \operatorname{sgn}\left(\Sigma_{13}^{*}\right) \sqrt{\frac{1}{2}(1-\cos 2 \theta)} \quad \sin \theta=\frac{d \Delta S}{2 a}\left|1-\frac{b \Delta S}{2 a}\right|
$$

$$
\frac{\partial}{\partial S} \sin \theta=\frac{d}{2 a}
$$

Case $\mathrm{T}=\mathbf{0}, \mathrm{c}=\mathbf{0},|a|>0$

Tests:

Mode: check_singularities At s=4.0:
SIG13 $=0.0 \quad \mathrm{~T}=0.0, \mathrm{a}=-6.5 \mathrm{e}-01, \mathrm{~b}=-5.0 \mathrm{e}-02, \mathrm{c}=0.0, \mathrm{~d}=-1.0 \mathrm{e}-01$

—— Expression with denominator (apparently singular)
---- Expression with correction

Case $\mathrm{T}=\mathbf{0}, \mathrm{c}=\mathbf{0},|a|>0$

Tests against Sixtrack:

Mode: vs_sixtrack At s=4.0:
SIG13=0.0 T=0.0, $a=-6.5 \mathrm{e}-01, \mathrm{~b}=-5.0 \mathrm{e}-02, \mathrm{c}=0.0, \mathrm{~d}=-1.0 \mathrm{e}-01$

—— Library (with correction)
---- Sixtrack

Case T=0, $c=0, a=0$

$$
\begin{aligned}
a & =\Sigma_{12}^{*}-\Sigma_{34}^{*} \\
b & =\Sigma_{22}^{*}-\Sigma_{44}^{*} \\
c & =\Sigma_{14}^{*}+\Sigma_{23}^{*} \\
d & =\Sigma_{24}^{*}
\end{aligned}
$$

$$
R=b \Delta S^{2}
$$

$$
\Sigma_{13}^{*}=d \Delta S^{2}
$$

$$
T(S)=R^{2}+4 \Sigma_{13}^{* 2}
$$

$\cos 2 \theta=\operatorname{sgn}(R) \frac{R}{\sqrt{T}}$

$$
\cos 2 \theta=\frac{|b|}{\sqrt{b^{2}+4 d^{2}}}
$$

which is a constant...

Case T $=0, c=0, a=0$

Tests:

Mode: check_singularities At s=4.0:
SIG13=0.0 T=0.0, $a=0.0, b=-5.0 e-02, c=0.0, d=1.0 e-01$

———Expression with denominator (apparently singular)
---- Expression with correction

Case T $=0, c=0, a=0$

Tests against Sixtrack:

Mode: vs_sixtrack At s=4.0:
SIG13=0.0 T=0.0, $a=0.0, b=-5.0 e-02, c=0.0, d=1.0 e-01$

—— Library (with correction)
----- Sixtrack

Summary

- Complete mathematical derivation needed for implementation available in the prepared note (CERN-ACC-NOTE-2018-0023)
- Implemented in a Python/C library for usage in other simulation codes (SixtrackLib, PyHEADTAIL) and compatible with GPU
- "Stress tests" performed on the different functional blocks of the library
\rightarrow Passed
- Source code including all tests available on github
- SixTrack implementation tested against library. Outcome:
- Uncoupled case:
- Bug identified in "inverse boost" \rightarrow corrected (now in the production version)
- Other tests passed
- Coupled case:
- Suffering from a serious bug (wrong sign) \rightarrow corrected (now in the production version)
- Apparently singular cases (denominators) not correctly handled \rightarrow strategy to be defined (requires serious re-structuring, should we just replace everything with the library code?)
- Next steps:
- Tests on GPU
- Performance profiling and, if needed, optimization
- Real life usage (fancy GPUs in Bologna should be coming soon())

