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Abstract

These slides illustrate the numerical modelling of a beam-beam interaction using the “Synchro Beam Mapping” approach. The employed description
of the strong beam allows correctly accounting for the hour-glass effect as well as for linear coupling at the interaction point. The implementation of
the method within the SixTrack code is reviewed and tested.
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Introduction

Goal: review of the 6D beam-beam lens implemented in SixTrack

Tried to answer two main questions:

• What is the code supposed to do?
Mathematical derivation behind the implemented numerical model

• Is the code doing what it is supposed to do?
 Verify the implementation of the above numerical model



The code simulates a beam-beam interaction using the “Synchro Beam 
Mapping”  technique in the presence of:

• Crossing angle (f)

• Arbitrary crossing plane (a)

• Optics at the IP described by a general 4D correlation matrix (S-matrix) 
 hour glass effect, elliptic beams, alphas, and linear coupling at the IP 
are included in the modeling

This makes the mathematical derivation quite heavy

Implementation in Sixtrack in largely based on:

• [1] A symplectic beam-beam interaction with energy change, by K. Hirata, 
H. W. Moshammer, F. Ruggiero, 1992

• [2] Don't be afraid of beam-beam interactions with a large crossing angle, 
by K. Hirata, 1993

• [3] 6D Beam-Beam Kick including Coupled Motion, by L.H.A. Leunissen, F. 
Schmidt, G. Ripken, 2001

… but important parts (e.g. inverse boost, “optics de-coupling” including 
longitudinal derivatives) are not reported in the papers nor anywhere else, to 
our best knowledge…

Introduction

https://cds.cern.ch/record/243013?ln=en
https://cds.cern.ch/record/243013
https://cds.cern.ch/record/243013?ln=en
https://cds.cern.ch/record/243013?ln=en
https://cds.cern.ch/record/243013?ln=en


• Invested some time in understanding and re-constructing the mathematical 
treatment trying to use as little as possible the source code as a reference

Independent reconstruction of the equations to verify the implementation 
in Sixtrack and to be used as a basis for a modern implementation (GPU 
compatible, for example)

Parts not available in literature (mainly inverse Lorentz boost, and a large 
fraction of the coupling treatment) had to be re-derived

• Prepared a document including the full set of equation to enable a possible re-
implementation (and avoid that somebody has to redo the same exercise in ten 
years :-)

Introduction

https://indico.cern.ch/event/684338/
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The goal

• We want to simulate a beam-beam interaction taking into account the 

finite longitudinal size of the two beams

• We are in the framework on the weak-strong treatment: we have a particle 

(of the weak-beam) that we are tracking. It interacts with a strong beam 

that is “rigid”, i.e. unaffected by the weak beam 



Hypotheses that need to be satisifed

We will use the “synchro-beam mapping” approach introduced by Hirata, Moshammer and 

Ruggiero [1]. To do so, the following conditions need do be satisfied:

o We work in ultra-relativistic approximation v=c for both beams

o The strong beam is travelling backwards sstrong (t) = sstrong+ct

o Px = Py = 0 for the strong beam:

 The transverse electric field can be calculated solving a 2D Poisson problem 

o The angles of the test particle are small so that we can assume that it travels at the 

speed of light along s:  s(t) = s-ct

• In the presence of a crossing angle a reference frame satisfying all the conditions above 

cannot be found by simple rotation in the lab frame, but this can be obtaining by applying 

also a Lorentz boost in the crossing plane as shown by Hirata in [2]
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A dance of reference systems

s

x

y

a
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Assuming that the beams are colliding (no 

separation):

• We assume that we are in the reference 

system of the weak beam

• The Interaction Point (IP) is at s=0

• The crossing plane is defined by our s-axis 

and by the strong beam

• We call a the angle between the crossing 

plane and the x-s plane

• We call f the half crossing angle

• In the presence of an offset between the beams (separation), 

the orientation of the reference system is defined by the weak 

beam closed orbit and the system is centered at the IP 

location as defined for the strong beam  the strong beam 

passes always through the origin of the reference frame



Weak beam

Barycentric
reference frame

IP

Crossing plane

• We look at the problem in the 

crossing plane

• We introduce move to the 

“barycentric” reference system in 

which the weak and the strong beam 

are at +f and -f respectively

f

A dance of reference systems



Barycentric
reference frame

S

IP

Crossing plane

• In the crossing plane the interaction 

looks like this…

• To apply the Hirata, Moshammer, 

Ruggiero treatment we practically  

need to suppress the angle for the 

two beams (impossible by simple 

rotation) 

A dance of reference systems



Barycentric
reference frame

Boosted
reference frame

S*

S

IP

Crossing plane

• In the crossing plane the interaction 

looks like this…

• To apply the Hirata, Moshammer, 

Ruggiero treatment we practically  

need to suppress the angle for the 

two beams (impossible by simple 

rotation) 

• This can be achieved by using a 

boosted frame that is moving w.r.t. 

the lab

A dance of reference systems



IP

Boosted
reference frame

S*

Weak beam Strong beam

Crossing plane

In the boosted frame the interaction 

looks like this

A dance of reference systems



“Boost transformation” in formulas

• A is the matrix transforming the accelerator 

coordinates (Courant-Snyder) to Cartesian 

coordinates:

• RCP is the rotation matrix bringing the 

crossing plane in the X-Z plane:

• RCA is the rotation matrix moving to the 

barycentric frame:

• Lboost is the Lorentz boost in the direction 

of the rotated X-axis: 

This transformation is applied for 

positions:



“Boost transformation” in formulas

• B is the matrix transforming the accelerator 

coordinates (Courant-Snyder) to Cartesian 

coordinates:

• RCP is the rotation matrix bringing the 

crossing plane in the X-Z plane:

• RCA is the rotation matrix moving to the 

barycentric frame:

• Lboost is the Lorentz boost in the direction 

of the rotated X-axis: 

This transformation is applied for 

momenta:



“Boost transformation” in formulas

Not all particles with s=0 are fixed points of the transformation:

 A drift back to s=0 needs to be performed as we are tracking w.r.t. s and not w.r.t. time

We compute the angles:

We drift the particles to s = 0:

The entire procedure needs to be reverted after the interaction, see note.
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IP

Boosted
reference frame

S*

Weak beam Strong beam

Crossing plane

The strong beam is cut in several slices

having different transverse offset

The synchro-beam method: transverse “generalized kicks”



Boosted
reference frame

S*IP

z=0
z=0

Crossing plane

A particle with z=0 and a slice having 

z=0 collide at the IP

The synchro-beam method: transverse “generalized kicks”



Boosted
reference frame

S*

Crossing plane

IP

z=0 z>0
z=0

Collision Point
(CP)

A particle and a slice with generic z 

coordinates will collide at a different s 

coordinate, Collision Point - CP, given by:

(in sixtrack jargon z is called s)

… but within the tracking code, the beam-
beam interaction acts as a thin element 
installed at the IP (i.e. the s where the 
synchronous particles of the two beams 
meet). This means that:
• Particles are tracked to the IP
• The BB interaction is applied
• Tracking restarts from the IP
• The description of the strong beam is 

provided at the IP

The synchro-beam method: transverse “generalized kicks”



We proceed as follows:

1. We drift the slice and the weak particle 

from the IP to the CP

Boosted
reference frame

S*

Crossing plane

IPz=0

z>0
px>0

z=0

Collision Point
(CP)

(a particle having an angle will probe 

the strong-beam electric field at a 

different transverse coordinates)

w.r.t. the 

slice centroid

2. We apply the kick a the CP:

3. We drift the particles back from the CP 

to the IP using the new angles:

Transverse kicks need to 

be computed based on the 

shape of the strong beam…

The synchro-beam method: transverse “generalized kicks”
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Optics of the strong beam: S matrix

• The shape of the strong beam is described by 4D correlation matrix (S-matrix)

Convention:
1x, 2px, 3y, 4py

Points having same phase space density lie on hyper-
elliptic manifolds defined by the equation:

The phase space distribution can be written as: S contains all the information about the 
beam shape and divergence (including linear 
coupling) and can be transported from the 
IP to the CP (assuming that we are in a drift):

with



Linear coupling of the strong beam

In general, linear coupling of the strong beam can be present:

 The coupling angle and the beam sizes in the decoupled frame can be obtained by 
diagonalization of the S-matrix 

 Coupling angle depends on the s-coordinate
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Linear coupling of the strong beam

Worked on simplifying the notation in this part:

q

Semi-axes in the 
decoupled frame:

In general, linear coupling of the strong beam can be present:

 The coupling angle and the beam sizes in the decoupled frame can be obtained by 
diagonalization of the S-matrix 

 Coupling angle depends on the s-coordinate



Linear coupling of the strong beam

Worked on simplifying the notation in this part:

q

In general, linear coupling of the strong beam can be present:

 The coupling angle and the beam sizes in the decoupled frame can be obtained by 
diagonalization of the S-matrix 

 Coupling angle depends on the s-coordinate



Linear coupling of the strong beam

q

Once the coupling angle and the beam sizes in the 
decoupled plain are known, we proceed as follows:

1. We calculate the particle 
coordinates in the 
decoupled frame at the CP:

2. We calculate the kick from 
the slide in the decoupled 
reference frame:

where
is the electric potential

For Gaussian (uncoupled) beams, closed forms exist to 
evaluate these quantities.

Bassetti-Erskine



Linear coupling of the strong beam

q

Once the coupling angle and the beam sizes in the 
decoupled plain are known, we proceed as follows:

1. We calculate the particle 
coordinates in the 
decoupled frame at the CP:

3. We rotate the kicks to de 
coupled reference frame  

4. We apply the kicks to the 
transverse momenta and 
drift back to the IP (as 
explained before)

2. We calculate the kick from 
the slide in the decoupled 
reference frame:

where
is the electric potential

For Gaussian (uncoupled) beams, closed forms exist to 
evaluate these quantities.
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Boosted
reference frame

S*

Energy change: effect of the angle

Crossing plane

IPz=0

z>0
px>0

Collision Point
(CP)

v

Estrong

The longitudinal kick has two components:

The trajectory is, in general, not 
perpendicular to the transverse fields of 
the strong beam (see Hirata [1] for 
detailed explanation)  this introduces 
this term in the longitudinal kick



Energy change: grad-phi effect

Another component of the longitudinal kick arises from the fact that the transverse shape of the 
strong beam is changing along z (hour-glass effect, “rotating” coupling angle)

 The electric potential depends on z 

 The gradient of the electric potential (i.e. the electric field) has a z component 

 There is a z-kick, i.e. again a change in the particle energy

We need to evaluate the derivative w.r.t. z (or s, or small-s) of the electric potential

As we have written down most of the involved quantities as a function of the coordinate of the CP 
(capital-S) we just notice that: 

The longitudinal kick has two components:

(in sixtrack jargon 

z is called s)



Energy change: grad-phi effect

where:

Derivative rule for nested functions:

We need to evaluate these eight terms…



Energy change: grad-phi effect

For these four terms a closed forms 
exist for transverse Gaussian 
beams 

Bassetti-Erskine



Energy change: grad-phi effect

For these four terms a closed forms 
exist for transverse Gaussian 
beams 



Energy change: grad-phi effect

With some some 
goniometric trick

We just need 
to evaluate 

Before we had written:

with 
where we need to evaluate the 
derivatives of R, T and W…



Energy change: grad-phi effect

With some some 
goniometric trick

We just need 
to evaluate 

Before we had written:

with 
where we need to evaluate the 
derivatives of R, T and W…

Derivatives of R, T and W



Energy change: grad-phi effect

Again what we need to know are the derivatives of R, T and W, which 
were already shown in the previous slides 

Derivatives of R, T and W



Handling the denominators

We have all the pieces, but on the way we introduced some denominators which 
can become zero!  we will deal with it later…
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The algorithm in one slide

Initialization stage:
• Prepare coefficients for Lorentz boost
• Slice strong bunch 

o Compute slice charges and centroid coordinates
• Boost strong beam slices

o Boost centroid coordinates 
o Boost S-matrix

• Store all information in a data block

Tracking routine:
• Boost coordinates of the weak beam particle
• Compute S coordinate of the collision point (CP)
• Transport strong beam optics from the IP to the CP:

o Transport sigma matrix to the CP
o Compute coupling angle and beam sizes in the decoupled plane
o Compute auxiliary quantities for the calculation of the longitudinal kick

• Compute transverse kicks
o Transform coordinates of the weak beam particles to the un-coupled frame
o Compute transverse forces in the un-coupled frame
o Transform transverse kicks to the coupled frame
o Apply transverse kicks in the coupled frame (change px, py)
o Transport transverse kick from the CP to the IP and change particle 

positions (x,y) accordingly
• Compute and apply the longitudinal kick
• Anti-boost coordinates of the weak beam particles



... 

if(ibbc1.eq.1) then

dum(8)=two*((bcu(ibb,4)-bcu(ibb,9))+ &!hr06

&(bcu(ibb,6)-bcu(ibb,10))*sp) !hr06

dum(9)=(bcu(ibb,5)+bcu(ibb,7))+(two*bcu(ibb,8))*sp !hr06

dum(10)=(((dum(4)*dum(8)+(four*dum(3))*dum(9))/ &!hr06

&dum(5))/dum(5))/dum(5) !hr06

dum(11)=sfac*(dum(8)/dum(5)-dum(4)*dum(10))

dum(12)=(bcu(ibb,4)+bcu(ibb,9))+(bcu(ibb,6)+bcu(ibb,10))*sp !hr06

dum(13)=(sfac*((dum(4)*dum(8))*half+(two*dum(3))*dum(9)))/dum(5) !hr06

if(abs(costh).gt.pieni) then

costhp=(dum(11)/four)/costh !hr06

else

costhp=zero

endif

if(abs(sinth).gt.pieni) then

sinthp=((-1d0*dum(11))/four)/sinth !hr06

else

sinthp=zero

endif

track(6,i)=track(6,i)- &!hr06

&((((bbfx*(costhp*sepx0+sinthp*sepy0)+ &!hr06

&bbfy*(costhp*sepy0-sinthp*sepx0))+ &!hr06

&bbgx*(dum(12)+dum(13)))+bbgy*(dum(12)-dum(13)))/ &!hr06

&cphi)*half !hr06

bbf0=bbfx

bbfx=bbf0*costh-bbfy*sinth

bbfy=bbf0*sinth+bbfy*costh

else

track(6,i)=track(6,i)- &

&(bbgx*(bcu(ibb,4)+bcu(ibb,6)*sp)+ &

&bbgy*(bcu(ibb,9)+bcu(ibb,10)*sp))/cphi

endif

track(6,i)=track(6,i)-(bbfx*(track(2,i)-bbfx*half)+ &

&bbfy*(track(4,i)-bbfy*half))*half

track(1,i)=track(1,i)+s*bbfx

track(2,i)=track(2,i)-bbfx

track(3,i)=track(3,i)+s*bbfy

track(4,i)=track(4,i)-bbfy

SixTrack implementation

Very hard to read and to debug, it can be kept alive… but definitely not ideal



• Started from previous work done by J. Barranco

• Identified and described the interface of the main functional blocks

• Built tables with the descriptions of the cumbersome notation used in the code

• Moved to the understanding and testing of the source code…

SixTrack implementation



Library implementation

It quickly became evident that the only viable way of checking the SixTrack code was to build 
an independent implementation to compare against. Done keeping in mind:

• Readability, modularity, possibility to interface with other codes (PyHEADTAIL, SixTrackLib)

• Compatibility with GPU
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• Very difficult to identify problems by using the full tracking simulations

o Need to test the single routine “on the bench”

• Procedure being performed for each functional block

o Built a C/python implementation from the equations in the document

o Extracted the corresponding sixtrack source code and compiled as of a 
stand-alone python module (f2py)

o “Stress test” performed on the two: consistency checks, comparison against 
each other

Validation tests



Validation tests

Module Tests performed Outcome

Boost/anti-boost • Comparison Sixtrack vs C/python routine
• Checked that the two cancel each other

• Bug identified and corrected

Beam-beam forces
(with potential 
derivatives w.r.t. 
sigmas)

• Comparison sixtrack vs C/python routine
• Force compared against Finite Difference 

Poisson solver (PyPIC)
• Other derivatives compared against 

numerical integration/derivation

• All checks passed

Beam shape 
propagation and 
coupling treatment

• Comparison Sixtrack vs C/python routine
• Comparison against MAD for a coupled 

beam line
• Crosscheck with numerical derivation

• Bug identified and corrected
• Vanishing denominators not 

treated correctly  correct 
treatment developed and 
implemented in the library, to be 
ported in SixTrack

Slicing • Check against independent 
implementation 

• Passed but precision is quite 
poor (1e-3)

Computation of the 
kicks

• Check against independent 
implementation 

• All checks passed
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• Boost and anti-boost should cancel each other exactly

• “Bench-test” cases: large crossing angle, test particle very off momentum and large px, py

• Test passed for the library

• Problem identified in the Sixtrack implementation

SixTrack routine

x 6.5e-19 

px 0.065

y 4.3e-19 

py 0.027 

sigma 0.0 

delta 2.0e-17

Python test routine

x 4.3e-19 

px 0.0

y 4.3e-19 

py 3.e3-17 

sigma 0.0 

delta 1e-16

Error after boost + anti-boost

Boost /anti-boost



Discrepancy found between in the anti-boost between derived equations and SixTrack
source code:

TRACK(2)=(TRACK(2)+CALPHA*SPHI*H1)*CPHI 

TRACK(4)=(TRACK(4)+SALPHA*SPHI*H1)*CPHI

The lines should be:

TRACK(2)=(TRACK(2)*CPHI+CALPHA*TPHI*H1) 

TRACK(4)=(TRACK(4)*CPHI+SALPHA*TPHI*H1)

• Digging a bit we found out that the issue was already present in Hirata’s code
from 1996, on which the Sixtrack implementation is based

Boost /anti-boost

http://wwwslap.cern.ch/collective/hirata/


SixTrack routine

x 6.5e-19 

px 0.065

y 4.3e-19 

py 0.027 

sigma 0.0 

delta 2.0e-17

Python test routine

x 4.3e-19 

px 0.0

y 4.3e-19 

py 3.e3-17 

sigma 0.0 

delta 1e-16

Error after boost + anti-boost

SixTrack corrected

x 6.5e-19 

px 5.55e-17 

y 4.3e-19 

py 0.1e-19 

sigma 0.0 

delta 2.0e-17

• Correction implemented in SixTrack

Boost /anti-boost



• Problem confirmed by Riccardo simulating a beam-beam interaction with zero 
intensity in the strong beam

Coordinates before interaction Coordinates after interaction

Original implementation

Coordinates before interaction Coordinates after interaction

Corrected implementation

Boost /anti-boost



• Impact on realistic simulation study assessed by Dario

• Tune scans comparison with 2017 ATS optics show no dramatic change, but 
slightly worse DA

Old version Corrected version

Boost /anti-boost
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Transverse kicks for a Gaussian beam

Transverse field for a Gaussian beam (Bassetti-Erskine)

Library tested against 
Poisson solver of PyECLOUD

(test repeated for tall, fat and 
round beams)



SixTrack tested against 
library

(test repeated for tall, fat and 
round beams)

Transverse kicks for a Gaussian beam

Transverse field for a Gaussian beam (Bassetti-Erskine)
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Library tested against 
numerical derivative

(test repeated for tall, fat and 
round beams)

Other derivatives of the electric potential



SixTrack tested against 
library

(test repeated for tall, fat and 
round beams)

Other derivatives of the electric potential
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S-matrix propagation with linear coupling

Library tested against MAD-X: 
• Built a simple line with a strong skew quadrupole
• Entering with a de-coupled beam
• Saves S-matrix at regularly spaced markers for comparison against library
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Lines: library
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• Built a simple line with a strong skew quadrupole
• Entering with a de-coupled beam
• Saves S-matrix at regularly spaced markers for comparison against library
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Lines: library
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quadrupole



Outline

• Introduction

• “6D” beam beam treatment 

o Handling the crossing angles: “the boost”

o Transverse “generalized kicks”

o Description of the strong beam (S-matrix)

o Handing linear coupling

o Longitudinal kick

• Implementation

• Testing:

o “Boost” and “Anti-boost”

o Transverse kicks

o Other derivatives of the electric potential

o S-matrix propagation with linear coupling

o S-matrix transformation to un-coupled frame

o Constant charge slicing

o Complete multi-slice interaction

• Handling the denominators



S-matrix transformation to un-coupled frame

Library tested against numerical diagonalization of the S-matrix



S-matrix transformation to un-coupled frame

Library tested against numerical diagonalization of the S-matrix



S-matrix transformation to un-coupled frame

SixTrack tested against library: test failed!
Sign error in the computation of the coupling angle

C
o

u
p

lin
g

 a
n
g

le
 [

d
e
g

]

if(abs(sinth).gt.pieni) then 

sinth=(-1d0*sfac)*sqrt(sinth) 

else 

sinth=zero 

endif

Original source code:
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S-matrix transformation to un-coupled frame

SixTrack tested against library: test failed!
Sign error in the computation of the coupling angle

if(abs(sinth).gt.pieni) then 

sinth=(sfac)*sqrt(sinth) 

else 

sinth=zero 

endif

Corrected source code:



{'Sig_11_0': 2.1046670129999999e-05,

'Sig_12_0': 2.7725426699999999e-07,

'Sig_13_0': 5.9207071659999999e-06,

'Sig_14_0': 1.2224001670000001e-07,

'Sig_22_0': 3.6622825020000002e-09,

'Sig_23_0': 7.4141336339999994e-08,

'Sig_24_0': 1.495491124e-09,

'Sig_33_0': 3.165637487e-06,

'Sig_34_0': 7.9058234540000002e-08,

'Sig_44_0': 2.040387648e-09}

More info at: https://github.com/SixTrack/SixTrack/issues/267#issuecomment-307333656

S-matrix transformation to un-coupled frame

Input sigma matrix:

Original Corrected

Checked by Kyrre using full SixTrack
simulations (numerical divergence of the 
computed kicks)



After bug correction derivatives were also found to be ok

S-matrix transformation to un-coupled frame
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Constant charge slicing

Library: slicing could be easily re-implemented using python inverse error function



Constant charge slicing

Sixtrack: implementation is correct but not very accurate
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Complete multi-slice interaction

Sixtrack (corrected) vs library: agreement to the 6th digit!
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Handling the denominators: case #0

We use the expression that we have derived before:



Expression with denominator (apparently singular)

Expression with correction

Tests:

Handling the denominators: case #0



Library (with correction)

Sixtrack

Tests against Sixtrack:

Handling the denominators: case #0



Handling the denominators: case #1

The highlighted formulas break and alternative expressions need to be found:



Handling the denominators: case #1



Which is always regular once we assume T>0 and therefore R2>0

Around the singular point we can write:

with 

At the singular point

Handling the denominators: case #1



Expression with denominator (apparently singular)

Expression with correction

Tests:

Handling the denominators: case #1



Library (with correction)

Sixtrack

Tests against Sixtrack:

Handling the denominators: case #1



Handling the denominators: case #2

The highlighted formulas break and alternative expressions need to be found:



DS = 0

Handling the denominators: case #2

Around the singular point we can write:



DS = 0

Handling the denominators: case #2



Expression with denominator (apparently singular)

Expression with correction

Tests:

Handling the denominators: case #2



Library (with correction)

Sixtrack

Tests against Sixtrack:

Handling the denominators: case #2



Handling the denominators: case #3

The highlighted formulas break and alternative expressions need to be found:



Same as before but this 
denominator becomes zero

We proceed as before:

Handling the denominators: case #3



We need to expand to higher order:

Handling the denominators: case #3



Expression with denominator (apparently singular)

Expression with correction

Tests:

Handling the denominators: case #3



Library (with correction)

Sixtrack

Tests against Sixtrack:

Handling the denominators: case #3



which is a constant…

Handling the denominators: case #4



Expression with denominator (apparently singular)

Expression with correction

Tests:

Handling the denominators: case #4



Library (with correction)

Sixtrack

Tests against Sixtrack:

Handling the denominators: case #4



Summary

• Complete mathematical derivation needed for implementation available in 
the prepared note (CERN-ACC-NOTE-2018-0023)

• Implemented in a Python/C library for usage in other simulation codes 
(SixtrackLib, PyHEADTAIL) and compatible with GPU
o “Stress tests” performed on the different functional blocks of the library

 Passed
• Source code including all tests available on github
• SixTrack implementation tested against library. Outcome:

o Uncoupled case:
 Bug identified in “inverse boost”  corrected (now in the 

production version)
 Other tests passed

o Coupled case:
 Suffering from a serious bug (wrong sign)  corrected (now in the 

production version)
 Apparently singular cases (denominators) not correctly handled 

strategy to be defined (requires serious re-structuring, should we 
just replace everything with the library code?)

• Next steps:
• Tests on GPU
• Performance profiling and, if needed, optimization
• Real life usage (fancy GPUs in Bologna should be coming soon)

https://github.com/giadarol/WeakStrong

