Andrey Golutvin Imperial College London

Some ideas^(*) on the scintillating part of the *calorimeter module*

*(*) Ideas from Sergey Didenko (MISIS), Yuri Guz (IHEP), Pavel Shatalov (ITEP) and Andreas Schopper (CERN)*

LHCb upgrade ECAL module will have the same geometrical dimension as the current module, i.e. 12×12 cm2 cross section

BUT:

LHCb upgrade calorimeter will run in extreme radiation conditions up to a few tens Mrad

→ Require very RH scintillator and light guides transporting the scintillating light at the *rear of the module*

2

Main goals of R&D study:

- *Optimisation of the scintillating light output*
- Study of radiation hardness and performance of different scintillators **particula tungsten-Our favorite choice is GAGG crystal** (see next talk by Oleg), annealing of PbWO₄ (CMS crystal) is also worth to be understood
	- *Construction of module prototypes and evaluation at test beams*

Two zones of the LHCb ECAL: Super rad. hard zone and "conventional" zone

- ü *Super radiation hard ECAL module requires dedicated R&D*
- ü *"Conventional" zone requires pragmatically thought approach to ensure long term operation (spare modules etc…)*
- ü *R&D on new electronics to improve time resolution for both zones*

Brief summary of the relevant GAGG properties (More details in the next talk by Oleg)

Brief summary of GAGG parameters:

- *Very dense crystal with small Moliere radius and short radiation length*
- *"Green" scintillating light*
- *<i>a* Very large Light Yield \rightarrow Good energy resolution for the homogeneous calorimeter is
- *Fast crystal*

Radiation hardness to be tested but preliminary studies indicate very good radiation hardness

Irradiation tests at the PS beam

Irradiation test of the module components: GAGG crystals and GaAs detectors

Section 1: fluence $3 \cdot 10^{14}$ p/cm²

1-1 - UV glass type I Ø25 mm x 1 mm 1-2 - UV glass type II Ø25 mm x 1 mm 1-3 - plastic scintillator $20x20x3$ mm³ 1-4 - GaAs chips

Section 2: fluence 1.10¹⁵ p/cm²

- 2-1 UV glass type I Ø25 mm x 1 mm
- 2-2 UV glass type II Ø25 mm x 1 mm
- 2-3 plastic scintillator 20x20x3 mm³
- 2-4 GaAs chips

 $2-5$ - GaGG sample $20x20x2$ mm³

Section 3: fluence 3.10¹⁵ p/cm²

- 3-1 plastic scintillator 20x20x3 mm³
- 3-2 GaAs chips
- $3-3$ GaGG sample $20x20x2$ mm³
- 3-4 GaGG sample 20x20x10 mm³

Irradiated components will be available for the post-irradiation analysis in January / February 2018

Segmented readout of the scintillating light Determine the maximum length of the GAGG crystal which can sustain the radiation; readout each crystal separately

ü *GaAs photodiode* SiN. passivation *Ultrathin Schottky barrier or* guard ring contact pad 120Å Pt *p-i-n photodetector* Schottky barrier i-GaAs *Parameters (epitaxial process:)* Ultra-thin Schottky **Barrier Photodetector** n^* -GaAs type n growth rate, mm/h | 9–10 ohmic contact *i*-layer thickness, μ m | up to 120 SiN, passivation guard ring carrier concentration, contact pad cm⁻³ $\sim 10^{11}$ $\mu_e \tau_e$, cm²/V 2⋅10⁻⁴
u_k· τ_k , cm²/V 2⋅10⁻⁵ p^{\prime} i -GaAs $\mu_h \cdot \tau_h$, cm²/V p-i-n Photodetector EL2 concentration. cm⁻³ $\sim 10^{12}$ (*) n^* -GaAs ohmic contact

Note: EL2 defects concentration in GaAs produced by Czochralski process is ~1016 per cm3

GaAs vs GaN photodiode

ü *GaN photodiode*

- *High radiation tolerance*
- *High temperature stability*
- *Simple design*
- *Spectral range 250 350 nm Good for LYSO crystal*

The maximum spectral sensitivity of GaAs is in the wavelength range of 450 to 800 nm \rightarrow *Ideally matching the green light from the GAGG crystal*

ü *If radiation hard, a combination of the GAGG (or LYSO) crystal with GaAS (or GaN) readout would provide very fast ECAL with good energy and spatial resolution, and longitudinal segmentation (+ directionality)*

Readout of the scintillating light at the rear of the module (no longitudinal segmentation) Need for radiation hard light guide to transport the light

ü *WLS fibres*

A "shashlik"-like solution for W-LYSO structure, with WLS fibers made of quartz capillaries filled with liquid WLS.

Not impossible also for W-GAGG structure, with, e.g., Rhodamine-6G as a WLS liquid (5-7 ns decay time).

 \checkmark Thin plane light guide attached to *side of the ECAL cell No WLS, but the scint. light can be transported using mirror reflection*

Quartz plate or air gap with embedded system of micro mirrors to provide light scintillator *transportation by mirror reflection. The mechanical implementation has to be properly thought about*

R&D towards improving time resolution

*Timing measurements with good enough precision with (plastic or crystal based) Shashlik calorimeter can be feasible, see, e.g.: arXiv:0709.4514 – measurements for plastic based Shashlik (KOPIO), they claim σ*_{*T*} = (72 ± 4)/√*E* ⊕ (14 ± 2)/*E* (ps) for low energy photons arXiv:0709.4514 0.6 *by measuring the time difference of the same shower* \boldsymbol{u} er
ac
by photon *propagation in the two adjacent modules. Longitudinal* <u>นเ</u> electron *shower fluctuations have been corrected by simulation.* $\frac{1}{2}$

Data are well described by MC

Measured energy, GeV

CMS PbWO₄ ECAL module (CMS CR -2016/408) has
CMS PbWO₄ ECAL module (\Box demons traced very good time resolution √²⁰ ps) at the test beam → Hope to achieve **/**
a similar or even better time resolution **a similar, or even better time resolution time on type of particle and its energy is energy in the GAGG crystal thanks to its large** $\frac{1}{2}$ It
Or
A *demonstrated very good time resolution Light Yield*