Possible Directions of R&D on the GAGG Crystals

O.Buzanov Ph.D, Professor JSC Fomos-Materials

JSC Fomos-Materials

- Founded in 2001
- Main competence is single crystal growing technology
- Company possesses a full production circle that now includes:
 - Initial charge synthesis
 - Crystal growing process (12 crystal growing Cz pullers),
 - Modern and high productivity equipment for crystal processing (orient cutting, drilling, grinding, polishing and electrode deposition)
 - Testing
- High qualified staff, engineers and PhDs
- ISO 9001 certified
- Wide sales geographic:
- Fruitful and mutually beneficial cooperation with institutions
 of RAS and Ministry of Education NRS-KI, IK RAS, NUST MISiS, IREA
- Private companies RINK, NeoChim etc.

- Company has previous experience in crystal growth of PWO, YAG:Nd, GGG, LaAlO₃ and others
- Company manufactures following crystals
 - Langasite La₃Ga₅SiO₁₄
 - \circ Langatate La₃Ga_{5.5}Ta_{0.5}O₁₄
 - Catangasite $Ca_3TaGa_3Si_2O_{14}$
 - 0 *LN, LT*
 - \circ Isotopic enriched calcium molybdate $^{40}\mathrm{Ca}^{100}\mathrm{MoO}_4$ and others.
- A wide range of products such as:
 - SAW wafers for filters & resonators
 - Piezoelectric sensitive elements for high temperature sensors
 - Scintillation elements for detectors

The IBS/CUP-JSC Fomos-Materials contract for production of ⁴⁰Ca¹⁰⁰MoO₄ SEs for AMoRE-Pilot (Dec. 2014 - June 2017)

Isotopical enrichment	Molybdenum enriched on Mo-100 isotope – no less than 95%						
Isotopical depletion	Calcium depleted on Ca-48 isotope – less than 0,002%						
Radioactive purity	No more than 100 micro-Bq/kg for Bi214 (U238 chain) No more than 500 micro-Bq/kg for Bi211 (U235 chain), <mark>Alpha-activity:</mark> No more than 10 mBq/kg for total alpha-activity of U- and Th-chains.						

RESOURSES in Russia

- Production of Mo-100 exists in Russia *at tenths hundred kg scale*
- Production of Ca-40 isotope exists in Russia (a stock of enriched on Ca-40 and depleted on Ca-48 material after production Ca-48 isotope
- Up to now JSC Fomos-Materials is a unique company to produce isotopic enriched complex oxide crystals with extra-high pure materials
- JSC Fomos-Materials established technology of SE production, fabricated pilot lot of SEs and have a real possibility of SEs production for big-scale experiment

SE10 Impurity Determination and Isotopic Enrichment

Element	Content, ppb
Th	<0,1
U	<0,1

Isotopic composition	Content, atomic %			
⁹² Mo	0,38			
⁹⁴ Mo	0,23			
⁹⁵ Mo	0,4			
⁹⁶ Mo	0,44			
⁹⁷ Mo	0,28			
⁹⁸ Mo	3.17			
¹⁰⁰ Mo	95,1			
Isotopic composition	Content, atomic %	6		
Isotopic composition ⁴⁰ Ca	Content, atomic % 99,949±0,006	6		
Isotopic composition ⁴⁰ Ca ⁴² Ca	Content, atomic % 99,949±0,006 0,019	6		
Isotopic composition ⁴⁰ Ca ⁴² Ca ⁴³ Ca	Content, atomic % 99,949±0,006 0,019 0,002	6		
Isotopic composition ⁴⁰ Ca ⁴² Ca ⁴³ Ca ⁴⁴ Ca	Content, atomic % 99,949±0,006 0,019 0,002 0,028	6		
Isotopic composition ⁴⁰ Ca ⁴² Ca ⁴³ Ca ⁴⁴ Ca ⁴⁶ Ca	Content, atomic % 99,949±0,006 0,019 0,002 0,028 ≤0,001	/0		
Isotopic composition ⁴⁰ Ca ⁴² Ca ⁴³ Ca ⁴⁴ Ca ⁴⁶ Ca ⁴⁸ Ca	Content, atomic % 99,949±0,006 0,019 0,002 0,028 <0,001 0,002	<u>/o</u>		

JSC Fomos-Materials can produce extrapure crystals with impurity content lower than 0.1 ppb

6	Element	Substance %						
	Li	< 0.0001	Cu	< 0.0001	Sn	<0.0001	Yb	< 0.0001
_	Ве	< 0.0005	Zn	< 0.0002	Sb	< 0.0001	Lu	< 0.0001
	В	< 0.001	Ga	< 0.0001	Те	< 0.0002	Hf	< 0.0001
	Na	< 0.002	Ge	< 0.0001	I	< 0.0005	Та	< 0.0001
	Mg	< 0.0003	As	< 0.0001	Cs	< 0.0001	W	0.0007
	Al	< 0.0003	Se	< 0.002	Ba	< 0.0001	Re	< 0.0001
6	Si	< 0.005	Br	< 0.005	La	< 0.0001	Os	< 0.0001
-	Р	< 0.005	Rb	< 0.0001	Ce	< 0.0001	Ir	< 0.0001
	К	< 0.005	Sr	< 0.0001	Pr	< 0.0001	Pt	< 0.0001
	Ca	basement	Y	< 0.0001	Nd	< 0.0001	Au	< 0.0001
	Sc	< 0.0002	Zr	< 0.0001	Sm	< 0.0001	Hg	< 0.0001
	Ti	< 0.0004	Nb	< 0.0001	Eu	< 0.0001	Tl	< 0.0001
	V	< 0.001	Ru	< 0.0001	Gd	< 0.0001	Pb	< 0.0001
	Cr	< 0.001	Rh	< 0.0001	Tb	< 0.0001	Bi	< 0.0001
	Mn	< 0.0001	Pd	< 0.0001	Dy	< 0.0001	Th	< 0.0001
	Fe	< 0.005	Ag	< 0.0001	Но	< 0.0001	U	< 0.0001
	Со	< 0.0001	Cd	< 0.002	Er	< 0.0001		
	Ni	< 0.0001	In	< 0.0001	Tm	< 0.0001		

New Perspective Crystal for Scintillation Application

Crystal*	Den- city	Melting Point	Hydro- scopicity	Main Scint. Decay Time, ns	LY, Ph/MeV	Energy Res. at 662 keV, %
Pr:Lu ₃ Al ₅ O ₁₂	6.71	1980	No	20 (20-40%)	16000-20000	4.5-6.5
Ce:Gd ₃ (Ga,Al) ₅ O ₁₂	6.63	1850	No	88 (90%)	46000-51000	4.9-5.5
PbWO ₄	8.28	1160	No	3-6	200	30-40
CdWO ₄	7.90	1325	No	5000	27000	6.6
Ce:Lu ₂ SiO ₅	7.4	2150	No	35	26000	7.9
Ce:Y ₂ SiO ₅	4.45	2070	No	39	32000	8.1
Ce:Gd ₂ SiO ₅	6.71	1900	No	60	12500	7.8
Bi ₄ Ge ₃ O ₁₂	7.13	1050	No	300	8500	9.0
Ce:LuAlO ₃	8.34	~1900	No	16-20	11400	9.0
Ce,Eu:LiCaAlF ₆	4.88	820	No	1670	40000	
Ce:LaBr ₃	5.30	783	Yes, very high	16(100%)	70000	2.6

Kimura H., et al., Czochralski Growth of $Gd_3(Ga_{1-x}Al_x)_50_{12}$ Single Crystals, Journal of Crystal Growth 74 (1986) 187-190 187

Kamada, K., et al., Composition Engineering in Cerium-Doped (Lu,Gd)₃(Ga,Al)₅O₁₂ Single Crystal Scintillators. Crystal Growth & Design, 2011. 11(10): p. 4484-4490.

*Yoshikawa A., et al., Czochralski Growth and Properties of Scintillating Crystals, Acta Physica Polonica A, 2013., v.124. No.2, p.250-264

C&A Corporation

URL: http://www.c-and-a.jp E-mail: info@c-and-a.jp

For Wide Commercial Application Need to Decrease or Eliminate Phosphorescence!

1. Effect of codoping on scintillation and optical properties of a Ce-doped Gd₃Ga₃Al₂O₁₂ scintillator / Tyagi M., Meng F., Koschan M., e.a. // Journal of Physics D: Applied Physics. - 2013. - V. 46. - No. 47. - P. 475302.

Impurity Distribution

1. *A. Yoshikawaa, V. Chani and M. Nikl, Czochralski Growth and Properties of Scintillating Crystals) Acta Physica Polonica A 124 (2013) No. 2 250-264

JSC Fomos-Materials can optimize a cost of crystal with guarantee of crystal quality and homogeneity

Cerium Distribution in GGAG

$$C_{Ce_{cryst}} = K_{Ce} C_{0_{melt}} (1-g)^{K_{Ce}-1}$$

Pfann Equation for Normal Crystallization Process

L.Qin, H.Li, Sheng Lu, D.Ding, G.Ren, Growth and characteristics of LYSO(Lu_{2(1-x-y)}Y_{2x}SiO₅:Ce_y) scintillation crystals, J. of Cryst. Growth 281 (2005) 518-524
 A. Yoshikawaa, V. Chani and M. Nikl, Czochralski Growth and Properties of Scintillating Crystals) Acta Physica Polonica A 124 (2013) No. 2 250-264

GGAG:Ce Crystal Growth by Czochralski Method

JSC Fomos-Materials made a lot of crystal growth experiments with optically non-active impurities

Already Grown GGAG Crystals

Up to now JSC Fomos-Materials grew GGAG crystals with following compositions:

 GGAG:Ce with different cerium concentrations •GGAG:Ce with different Ga/Al ratio •GGAG:Ce with codoping of:

listed elements

Magnesium Calcium Strontium Barium Scandium Zirconium Titanium •GGAG:Ce with pair and triple codoping of above

MAGG-MULTIDOPED ALUMINUM GALLIUM GARNET

MAGG is the gadolinium aluminum gallium garnet doped with Ce and pair of codopands is a perfect scintillation material designed to overcome drawbacks of Ce solely doped and Mg or Ca codoped crystals.

Density, g/cm ³	Z _{eff} /photo absorp. coeff., 511 keV,cm ⁻¹	Luminescence maximum, nm	Light yield, ph/MeV	Decay kinetics, ns(%)	Energy resolution, %	Time resolution (CTR), ps
6.68-6.63 depending on Al/Ga ratio	51/0.12	520	38000(RT) 46000(-45°C)	30 (25%), 80 (60%), 100- 200 ns (15%)	6,2(511keV) At -20°C with SiPM 3,6(1270keV) at -20°C with SiPM	170 (-20 to 20°C)

Scintillation kinetics of GAGG:Ce (dark blue) and MAGG (magenta) samples measured at room temperature

Radiation Instruments and New Components LLC Minsk, Belarus

> Noise before scintillation kinetics characterize level of phosphorescence. 1 channels corresponds to 1 ns

Parameters of kinetics of:

GAGG:Ce: τ1= 32ns(36%),τ2=86ns (56%),τ3=354ns (8%); MAGG- τ1= 27ns(34%),τ2=73ns (54%),τ3=200ns (11%).

Amplitude spectra of 137Cs source measured with R329 PMT at different temperatures

Radiation Instruments and New Components LLC Minsk, Belarus

Codoping safe a lightyeld

Change of the energy resolution for a photo-peak with temperature of GAGG:Ce (red dots) and MAGG(black dots)

13.12.2017

JSC Fomos-Materials

Gated (measured in different time gates) light output of sample with temperature

Radiation induced absorption spectra of GAGG and

Radiation Instruments and New Components LLC Minsk, Belarus

MAGG crystals

Ce³⁺ absorption bands and location of the Ce³⁺ luminescence realatively to absorption spectra

Radiation induced absorption spectra of GAGG and MAGG crystals obtained at different stages of the technology development (irradiation with 60Co (1,2MeV)

JSC Fomos-Materials

Possible Directions of R&D on the GAGG Crystals

For the 1st Stage

- The quality of the crystal (the energy resolution) and the choice of its methods of control
- Optimization of Ce³⁺ and codopands concentrations (light yield and radiation hardness)
- High temperature heat treatment of the grown crystals (temperature, gas medium, duration etc.)
- Development of technological processes for mechanical treatment of the grown crystals (manufacturing of special form crystal elements)
- Product Specification must be determinate
 For the 2nd Stage
- Statistical analysis of the developed complex technology –
- yield, return and irrecoverable loss of the crystal growth process
- Economic analysis initial costs, cost, etc.

As-grown GGAG:Ce Crystal 50 mm in dia.

Full Technological Circle

- Initial Charge Synthesis
- Crystal Growing
- High Temperature Heat Treatment
- Cutting, Grinding, Drilling, Polishing.
- ISO 9001:2008

Examples of Optical Elements Production

JSC Fomos-Materials

Sensitive elements for HT sensors: pressure and vibration

21

JSC Fomos-Materials

13.12.2017

MAGG Scintillation Elements Ø16x60 mm

 $\sqrt{R a 0,01}$ (\checkmark)

13.12.2017

THANK YOU FOR YOUR ATTENTION

buzanov@newpiezo.com

www.newpiezo.com