

Phase Noise and AVC Loop Studies

Quartullo Danilo

Acknowledgements: S. Albright, M. A. Angoletta, A. Findlay, M. Paoluzzi, E. Shaposhnikova, H. Timko and the BLonD team

Review of the LLRF PSB Requirements for LIU-PSB, 29/11/2017

Contents

- 1) RF phase noise at h=1 for longitudinal emittance blow-up
	- Introduction
	- Noise priciple and beam-based feedback model in simulations
	- MD results for different types of operational beams
	- Summary and future plans
- 2) Minimum requirements for the LLRF after LS2
	- Introduction
	- Scanned parameters
	- Results
	- Summary and future plans

RF phase noise: introduction (1/3)

- \triangleright Current blow-up: high harmonic phase modulation from dedicated RF system (C16) => difficult to set, control in operation and reproduce in simulations.
- \triangleright Band-limited RF phase noise in h=1 can replace this method saving also RF voltage.

RF phase noise: introduction (2/3)

- \triangleright Last July it was proved during an MD that it is possible to blow up the longitudinal emittance of LHC25ns beams from 1 eVs to 2.8 eVs injecting RF phase noise in h=1
- \triangleright This blow-up was also obtained with the C16 but with more constraints (sequential plateaus in bucket area during ramp) and more spent time for setting => noise very promising

RF phase noise: introduction (3/3)

- \triangleright However more tests were needed for better understanding and to cover more cases
- Several MDs have been carried out in the past weeks to ascertain if **RF phase noise injection in h=1 can substitute C16 for different machine and beam parameters**
- **5 different types of beam** have been considered
	- LHC INDIV
	- BCMS
	- LHC25ns
	- ISOLDE
	- SFTPRO
- \triangleright Noise calculated with Python and pasted into spare GFAS through Inspector
	- This speedups the setting but some additional improvements will help even more
- ≥ 100 ms of blow-up possible using 10 μs point spacing (LLRF trigger time)
	- Enough for now but in the future it could be necessary more
- \triangleright Possibility to inject noise through phase loop and directly into the C02 drive
	- Useful to set the loops to zero without cancelling the noise.
- In the following results when blow-up with noise was not possible **it does not mean** that all possible configurations have been studied
	- However a lot of effort has been spent and maybe that is a hint that it does not work or at least it can be very difficult to set in operation with good reproducibility

Beam-based feedbacks in simulations

- \triangleright The main goal of the phase loop is to damp the rigid-bunch dipole oscillations reducing the difference between the beam and designed synchronous phases.
- \triangleright The aim of the radial loop is to maintain the beam orbit at the design one.
- \triangleright Realistic and phase and radial loops in simulations starting from PSB RF synoptic

Remarks:

- In simulations $\Delta \varphi_{b, rf}$ is obtained convolving the beam profile with the window-function of the band-pass filter of the machine.
- In simulations estimate of ΔR using (3) instead of radial position pick-up measurements
- Two gains for phase loop and two gains for radial loop (one 'global' and one 'local')
- The 'global gain' is not seen inside (1) and (2)

LHCINDIV

\triangleright No C₀₄

- \triangleright C02 voltage such to have fs0 constant during longitudinal shaving
- \triangleright Noise in the band [0, fs] in C300-C400 to excite losses (one piece of noise)
- \triangleright Noise injected through PL and into C02
- \triangleright PL gain, different noise bands, rms amplitude and spectrum shapes scanned

C16 better than noise

With noise: correct intensity, too small emittance

With noise: correct emittance, too high intensity **With C16**

BCMS (1/2)

No C04

- No matched area emittance blow-up but RMS emittance blow-up
- \triangleright Noise during C500-C600.
- \triangleright Just the bunch core has to be targeted
- Large fs change in C500-C600 (noise regeneration every 5 ms)
- \triangleright Space charge lower the synchrotron frequency and that was taken into account to estimate fs
- \triangleright Different noise bands tried, different Ctime frames and gains for PL, noise through PL and C02…

BCMS (2/2)

C16 better than noise

LHC25ns (1/3)

- \triangleright Are small emittance blow-ups also possible (to 1.4 eVs instead of 2.8 eVs)?
- $\geq 8+6$ kV in bunch lengthening mode
- \triangleright Noise in C500-C600 regenerated every 10 ms to follow fs change
- \triangleright All four rings tested
- Attention to losses in C500-C600 (small margin in bucket area there)
- \triangleright Noise through phase loop

Ring 1

Shot 2 $\varepsilon_1 = 1.39$ eVs

Shot 1 $\varepsilon_1 = 1.4$ eVs Shot 2 $\varepsilon_1 = 1.39$ eVs Comparison of losses with C16 and noise

 ϵ $\sigma_{noise} = 0.068$ rad, flat spectrum

LHC25ns (2/3)

Ring 2

Same frequency bands used for Ring 1 but $\sigma_{noise} = 0.085$ rad and linear spectrum

Ring 3

Shot 1 $\varepsilon_1 = 1.41$ eVs Shot 2 $\varepsilon_1 = 1.36$ eVs Comparison of losses with C16 and noise 2:38:42 28 Nov 2017 2:40:42 28 Nov 2017 *Ring 4 (reference with C16) Ring 3* 日 時 $\frac{35}{24}$ $\frac{12}{36}$ **BCT**

Same frequency bands used for Ring 1 but $\sigma_{noise} = 0.08$ rad

LHC25ns (3/3)

Ring 4

Same frequency bands used for Ring 1 but $\sigma_{noise} = 0.09$ rad and linear spectrum

C16 and noise are equivalent

Simulation in BLonD code: with intensity effects, phase and radial loops (same gains used in MD)

Noise used MD and simulation Phase space in simulation Loop corrections during cycle

ISOLDE

- \triangleright N = 800e10, target emittance at extraction $\varepsilon_1 = 1.8$ eVs
- \triangleright RF 8+8 bunch lengthening, quality of the beam less important here

- \triangleright Same noise program used for LHC25ns beam with just a different amplitude (0.15 rad)!
	- Synchrotron frequency distribution 'not so different' from the case 8+6
- \triangleright The parameter setting for the C16 for the LHC25ns and ISOLDE beams is very different.
	- More time for setting up

Noise better than C16

SFTPRO

- \geq 2.6 eVs are needed before C700,
	- bunch splitting at extraction where the 2 bunches have 1.3 eVs emittance each
- \triangleright RF 8+8 bunch lengthening

C16 left bunch $\varepsilon_1 = 1.09$ eVs C16 right bunch $\varepsilon_1 = 1.16$ eVs

Noise left bunch $\varepsilon_1 = 1.12$ eVs Noise right bunch $\varepsilon_1 = 1.18$ eVs

- \triangleright Noise during C550-C660, again following the LHC25ns case!
- Other different set of parameters for C16
- \triangleright Much better bunch quality at extraction

Noise better than C16

Summary (1/2)

- \triangleright Numerous MDs have been carried out recently to understand if RF phase noise can replace high frequency modulation for emittance blow-up after LS2.
- \triangleright The following conclusions can be drawn:
	- Given a certain target emittance, high-frequency modulation requires usually less cycle time than noise to blow up the beam (see the examples shown here were C16 needs roughly half of the time for blow-up relative to noise).
	- When the theory behind high frequency modulation can be applied, the obtained blow-up is almost perfect.
	- However the application of theory can lead to constraints (see blow-up to 2.8 eVs of LHC beams) and to long spent time to set the various parameters (mostly for higher blow-up).
	- In addition the phase between the C16 and the C02 and C04 cavities is unknown and variable (problems of reproducibility and optimization).
	- On the contrary, some particular configurations for noise have been proven to be working numerous times under very different conditions (see ISOLDE and SFTPRO beams) with just very small changes froma case to case.
	- Simualtions can reproduce what is measured, but the reason why this particular configuration for blow-up works so well is still under investigation.
	- Finally some effort was spent to apply noise in single RF without success (the same applies to bunch shortening mode tested this year)

Summary (2/2)

 \triangleright Injecting the noise directly into the C02 drive was not useful during MDs

- Playing with the shape of the spectrum (flat, linear, exponential) allowed to inject the noise directly into the phase loop.
- Tests have been done dropping the phase loop to minimal working value during blow-up but the results didn't improve.
- \triangleright Possible improvements to facilitate operation:
	- More user-friendly way to set the parameters for noise (Simon already did a lot!)
	- Noise for more than 100 ms using 10 μs space.

Future plans:

- \triangleright Studies to understand better why noise in single RF is uneffective and why noise in bunch-lengthening gives brillian results.
- \triangleright MDs to validate LLRF feedback model used in simulations.
- \triangleright Additionan MDs for noise for a possible reliability run in 2018.
- \triangleright MDs to measure synchrotron frequency shift due to space charge in single RF and double RF bunch shortening mode
	- Validation of Z/n estimation used in simulation
	- Very important for the choise of the noise band to apply.

Contents

- 1) RF phase noise at h=1 for longitudinal emittance blow-up
	- Introduction
	- Noise priciple and beam-based feedback model in simulations
	- MD results for different types of operational beams
	- Summary and future plans
- 2) Minimum requirements for the LLRF after LS2
	- Introduction
	- Impedance model
	- Scanned parameters
	- Results
	- Summary and future plans

Introduction (1/3)

- \triangleright Several studies have been carried out this year to analyse the PSB longitudinal beam dynamics after LS2 in view of possibile instability issues.
- \triangleright Two types of beam were considered, the HL-LHC (3.6e12) and an hypothetical highintensity (1.6e13) one.
- \triangleright Maximum available Finemet RF voltage 20 kV (4 kV left for spare).
- \triangleright First part of the ramp in double RF (bunch lengthening) to reduce space charge.
- \triangleright Controlled longitudinal emittance blow-up using phase noise in C550-C650.
- \triangleright Noise injected in the phase loop of the main RF (h=1).
- $\triangleright V_1$ is dropped after C650 to 8 kV to have the desired bunch length at extraction.
- \triangleright Lower available voltage for high-intensity beams (higher beam loading to counteract).

Ramp entirely in single RF with $V1 = 16$ kV (cycle II) also tested in the past.

Introduction (2/3): HL-LHC

- \triangleright In simulations it was possible to smoothly blow up a nominal HL-LHC beam (3.6e12) from 1.4 eVs to 3 eVs without any problem during C550-C650.
- \triangleright The bunch length at extraction was 195-205 ns as required.

Blow-up in single RF using exponential spectrum to counteract phase loop action

Introduction (3/3): high-intensity

- \triangleright Instability (high frequency modulation and uncontrolled longitudinal emittance blow-up) due to Finemet impedance peak at 20 MHz.
- \triangleright Increasing the number of revolution harmonics at which the Finemet impedance is reduced delays the instability.
- \triangleright Instability delayed also in single RF during all cycle ($V_1 =$ 16 kV, CYCLE II), however at extraction the emittance is larger than in CYCLE I.

20 MHz modulation visible in the phase space!

PSB impedance model

Scanned parameters

- \triangleright Intensities: 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 e13
- \triangleright RF programs: constant 16; 8+8 and 10+10 kV bunch lengthening with drop of V1 to 8 kV and to V2 to 0 (similar to Cycle I)
- \triangleright Longitudinal emittances at C300: 1, 1.2 and 1.4 eVs
- \triangleright Number of notches: 8, 12, 16, 20
- \triangleright Resonator model used here to represent notches
	- Same model used for previous results
	- Using directly the transfer function excites the instability even earlier and stronger (discrepancy between the two models has to be understood)
- \triangleright No controlled blow-up and no loops were applied

Notch measurement

- **- Bunch profile** (1 eVs) in a double RF (bunch lengthening mode).
- **- Multi-turn induced voltage** as the sum of **spacecharge** and **Finemet voltage** with reduction by feedback (FB).
- --- Finemet voltage without reduction βy FB

No losses where unstable, 16 resonators better than 8 as expected

Conventions:

when instability starts

Results: 8+8 kV

8 notches:

Intensity at C300 [1e13]

16 notches:

Intensity at C300 [1e13]

Because of 8+8 voltage, bunch splitting at 640ns, then instability and losses (more than 50% for all the cases) start. Instability starts later with 16 resonators.

Results: 10+10 kV

 \triangleright Better results than 8+8 (using 16 notches).

- \triangleright Negligible losses (<1%)
- \triangleright However strong instability at the end of the ramp
- \triangleright Using eight notches gives even more instability

Typical case for 8+8 kV for comparison

 ε_1 =1 eVs, N=1.1e13, C300-C730

Using 20 notches

 \triangleright Simulated also some cases with 20 notches in single RF 16 kV

 \triangleright Results similar to the 16 notches case but further simulations are needed

Summary

- \triangleright Simulations have shown that high-intensity beams can be unstable.
- \triangleright Some parameters have been scanned
- \triangleright Results show that 16 notches give better results that 8 notches, but still beams with intensity \approx 1.6e13 present instability
	- 16 kV case: more stable configurations, instability delayed
	- 8+8 kV case: high number of losses due to splitting and synchronous phase shift, with 16 notches instability delayed
	- 10+10 kV: no losses here (lower synchronous phase shift) and again 16 notches better than 8
- \triangleright Few tests using 20 notches don't show particular improvements relative to the 16 notches case.

Future plans:

- \triangleright Improve the model used in simulation
- \triangleright Improve the number of simulations to have a better parameter range for scan
- \triangleright Understand how this instability can be cured (attention to RF program design, noise injection in the first part of the ramp to keep bunch length constant,...)