CMS CPU efficiency task force
activity

David Colling
(with input from lots of people -Thank You!)

The task force

 Formed May/June last year.

* Contains a wide variety of CMS computing
people

* Chaired by the person in CMS computing
management who had been complaining most
loudly about this issue (me)

All Tier-1s : Efficiency as CPU vs Wallclock time

* Why formed? -

100 \/\,\/w—\’-‘—-’v—‘\/ ————— N —
May be not fair to ¢
. 50
compare with LHCb
but ATLAS it 0
i N N T N TN PN N TN P PN SN N VN PN TN BN BN S TN A A
certain Iy IS ,LQQ,L@}@\I’L@Q%@%@’qp\’,La\j,l‘cn\b{w&v%@a@fb‘qp\?m@?’%Q\%%a\f’%@' S S S
F VT EF T T EFE T EFTE TS TS
10/04/2018 TRV FIFFIT RIS TIE R T Y

ALICE ATLAS CMS =& LHCb

CMS submission infrastructure -
the Global Pool

The policies of the Negotiator are
configurable by CMS in the
glideinWMS frontend. Currently we
match jobs to resources based on a
list of DESIRED _Sites and
requirements for the number of CPUs
" startd (RequestCpus), memory

“gob T (RequestMemory), and disk

caheam | (RequestDisk). In the near future, we
plan also to provision and request 1/0
capacity.

10/04/2018 d.colling@imperial.ac.uk 3

The CMS software

CMS is the only LHC experiment to have truly multithreaded
software. This has several advantages:

* Reduces memory/core

* Has flexibility to scale workflows from single core to multicore even
at run time to match the available cores.

* Can use many core machines (such as KNL). This will bring in an
inefficiency but is worth it
However, this will bring some inefficiency (Amdahl’s Law), but
in controlled conditions our most time demanding applications
still have better than 95% efficiency. The Grid is clearly
different.

10/04/2018 d.colling@imperial.ac.uk

Sources of Inefficiency

Broadly speaking, one can factorize the CPU inefficiency problem into two separate
sources.

* |nefficiencies associated with the submission infrastructure = (1 — qn)

These accounts for CPUs not being utilized as the pilot infrastructure is not able
to direct work to the pilots. This results in unoccupied and inefficient cores.

* Inefficiencies associated with the job itself = (1 - €Job)

This accounts for CMS software not being able to utilize CPU efficiently, due to
factors (for example) such as data access or limitations due to Amdahl’s law in
multi-threaded applications.

Note total efficiency is the product of the efficiencies i.e. €]y .€Joh so inefficiency in
both can easily lead to a very low overall efficiency

10/04/2018 d.colling@imperial.ac.uk

Submission Infrastructure -
multicore scheduling

CPU cores

Job

job

job

job

[==R =>4 S TE I S I

job

job

job

Pilots typically live for 48 hours

10/04/2018

d.colling@imperial.ac.uk

Often stated as the cause of the
inefficiency, despite the inefficiency
existing long before we had this
model

Different from any other VO.

Single core jobs can cause
fragmentation and cause problems
matching multicore jobs. But
renewing finite lived pilots provides
unfragmented pilots to the pool.
Re-use of pilots in the CMS model by
multiple jobs saves several minutes of
wallclock time per pilot overhead in
re-scheduling and re-validating pilots
as well as re-negotiating schedulers’
access to them.

Legitimate causes of unused
cores In glideins

* High memory jobs

* The CMS VO card says that we require 2GB/core. If we have jobs requiring
more than 2GB/core then the memory can be exhausted before the CPUs.

e The HLT farm

* The VMs running on the older generation of machines have less than
2GB/virtual core.

* For sometime the HLT has been able to suspend jobs and restart them up to
24 hours later depending on data taking and it use as the HLT. The
accounting records the CPU time used and the total wall clock time -

INCLUDING the time when it was suspended. This gives very poor CPU
efficiency results!

10/04/2018 d.colling@imperial.ac.uk

Number of cores

Occupation (%)

Inefficiency and job pressure
patterns

Global pool cores in production job numbers

500.000

400.000

300.000

200.000

o \Wm
16 18 20 22 24 26 28 30 1 3 5 7 9 " 13

Global pool pilot occupation percentages

10/04/2018

d.colling@imperial.ac.uk

Fluctuating Job pressure
can cause dips in core use
in glideins as the resources
are no longer needed. This
was exacerbated by pilots
being started in response
to pressure that was up to

- a week old as they had

been queuing for that long
and were no longer
needed.

Inefficiency and job pressure

patterns

CMS global pool Running and Queued pilots vs pilot request time (June 20th)
Queued & Running

15000
10000
5000

—— = B
e R P

AR S LRI \)) 3)) \ 3
§ & & & f P PP NP LN E PN s P
*\ @\ 0%\ Qb\ Qb\ Bb\ Vb\ Qb\ *\ @\ Qh\ Q%\ Qb\ Qb\ VQ Vb\ *\ *\ Qh\ 0@

Pilot request date

CMS global pool Running and Queued global pool pilots vs pilot request time (July 28th)

Queued M Running

20000
10000

q

4 4 i \ \
\ Al \ \ \ N
gt g gt g

Al Al Al Al
q o “1\'19’ “1\'1'\‘ “1\'19" “1\'13’

Pilot request date

13/11/2017

Glidins
queued up to
2 weeks in
June 2017

End of July
2017.

d.colling@imperial.ac.uk

Introduced 3 hour limit on
idle glideins in a queue on
the 3 July 2017.

Further reduced to 1 hour
on the 24t July 2017.

Can potentially cause churn
is site batch queues.

Number of jobs

Occupation (%)

Inefficiency and job pressure
patterns

* After July fixes fluctuating job

Global pool production job numbers

oo pressure still causes issues
o * Perhaps the glideinWMS Frontend
w;m could actively manage the number
of queued pilots in a continuous
A\ /_\\ F way, not only requesting new
o ——g \J/ \ \\W \q\(\m pilots be sul?mitteFl when .
S s e wr o we aw necessary given a increase in

demand, but also cancelling those
which are no longer needed when
job pressure shrinks.

* Perhaps the introduction of
backfill (like ATLAS)

13/11/2017 d.colling@imperial.ac.uk 10

Retiring Glideins

CPU cores I retire
job | iot| | 1
- job |
[o) 1o
job | iobI ' wﬁstage
. . job job
JOb JOb iob | iob IJ |
job job
1
time

Note that this graphic does
rather exaggerate the effect.

10/04/2018

d.colling@imperial.ac.uk

At some point the glidein stops
accepting more jobs and allows the
existing jobs to complete without
being killed by the pilot being
terminated. This period had been set
to 580minutes (9:40).

Once a glidein has no more work it
waits a period to allow for the condor
negotiation process to see if it is still
needed (was cut from 20mins to 10 in
July) and then terminates. A multicore
pilot must wait until after the last job
has completed.

The retiring time was cut to 240mins
in October

11

INS

Glide

Iring

Ret

7%

— % Retiring

Effect of introducing the
change can be seen.

However the retiring effect
was already lower than

i

6%

5%

4%

historical values because
we were running a large

number of 8 core

00:90 TT-0T-LTOC
0€:6T OT-0T-LTOC
00:60 OT-0T-LTOZ
0€:¢22 60-0T-LTO0C
00:2T 60-0T-LTOZ
0€:T0 60-0T-LTOZ
00:ST 80-0T-LTOT
0€:%0 80-0T-LTO0C
00:8T LO-0T-LTOC
0€: L0 LO-0T-LTOZ
00:TZ 90-0T-LTO0C
0€:0T 90-0T-LTOZ
00:00 90-0T-LTOT
0€:€T SO0-0T-LTOT
00: €0 S0-0T-LTOC
0€:9T ¥0-0T-LTOC
00:90 ¥0-0T-LTOC
00:6T £0-0T-LTOC
0€:80 £0-0T-LTOZ
00:TZ ZTO-0T-LTOT
00:60 Z0-0T-LTOC
00:1Z2 TO-OT-LTOZ
00:80 TO-0T-LTOZ
00:0Z 0€-60-LTOC
0€: L0 0€E-60-LTOC
0€:8T 6Z-60-LT0OC
00:90 6T-60-LT0T
00: LT 8Z-60-LTOC
00:90 8Z-60-LT0C
00:8T LT-60-LTOT
0€:90 LZT-60-LTOC

production workflows in 8

core pilots.

12

d.colling@imperial.ac.uk

10/04/2018

How many cores

Cores in claimed dynamic slots by slot size for non-retiring glideins

slots 8 cores
slots_7_cores
slots 6 cores
slots 5 cores

150.000

(7]
o slots_4_cores
8 100.000
5 slots 3 cores
E Mf !) slots_2_cores
£ i A e slots_1_cores
= 50.000 4 k) " W’MJ \VV w\.‘ww_ ["ot ‘\\ft _1_
- h hadi ."f\l;v W
0
sept. 10 sept. 12 sept. 14 sept. 16 sept. 18 sept. 20 sept. 22 sept. 24 sept. 26 sept. 28 sept. 30 oct. 2 oct. 4 oct. 6 oct. 8

Time

[avg, min, max]: [49438.0, 18388, 89122] [140.0, 0, 2136] [5874.0, 729, 12552] [34545.0, 3196, 94984] [1851.0, 0, 4305] [1679.0, 0, 4854] [2168.0, 0, 7931] [38805.0, 0, 95632]

Global pool fragmentation: distribution of dynamic slot sizes
weighted by the number of allocated CPU cores, for the period of 30
days since Sept. 9th.

10/04/2018 d.colling@imperial.ac.uk 13

Occupation (%)

The effects of changes

Global pool pilot occupation percentages

= Sscore
occupation

—— pool occupation

Multiple changes

show improvement.

However some

significant fraction is

due to consistent Job

24 ago. 2017 14 21 28 sept. 2017 1 18 25 oct. 2017 16 Pressure (W|th 8 core
Time jObS)

10/04/2018 d.colling@imperial.ac.uk 14

Turning to the payloads

Having concentrated on the infrastructure for the first few
months of the task force, we then started to look at the payloads
themselves.

Main tool Is data collected in elasticsearch at CERN.

Some of the details of the plots that | show are wrong for
technical reason but the overall message is correct (I could
explain the caveats on plot but that would be tedious)

Found that different job types told different stories.

These Investigations are current and | will concentrate on a few
job types as examples. Not much of what this shows is yet
Implemented.

10/04/2018 d.colling@imperial.ac.uk 15

Misconfiguration

0.25

tl us fnal weighted by CPL

* One of the first things that
we found was some
production runs had been
misconfigured

* CPU efficiency had not
been part of the standard
checks performed by
production before a
workflow is submitted. It is

&0 100 now so hopefully these are

a thing of the past.

0.20

015 |

0.10

Weighted Number of tasks

0.05 |

0.00

40

Efficiency

Only using 1 out of 4 cores

10/04/2018 d.colling@imperial.ac.uk 16

GenSim

AQ000 1
v 30000
=
5
o
E 20000 -
=
=
10000 1
I} T T — T T T T T
0 5 10 15 20 25 a0
Mumber of cores
mean=80.2174535382
8000 4 std=13.8622769418
A
B BOO0 A
B
z
= 4000 1
=
=
2000 4
I} T T 1
0 20 A0 B0 an
Efficiency of GENSIM jobs running on 4 cores
10/04/2018

Mumber of jobs

mean=91_4663946923

(o)
(%}
i

std=6.05797903719

o)
L}
i

=
Ln
i

=
[}
i

Ln
i

0 —A . .

0 20 40 &0 80 100
Efficiency of GENSIM jobs running on 1 cores

GenSim should be >~90% efficient

But plots show that it clearly isn’t (and | have
seen it far worse than this)

The major problem here is that while
CMSSW is truly multicore very few of the
generators are so that we spend some
fraction of each of each multicore pilot
running a single core only.

Had meeting with generator group group last
on how we can fix this and there are some
plans.

d.colling@imperial.ac.uk 17

20000 1

Number of jobs
7]
(=]
=
(=]

=
(=]
(=]
(=]

5000 1

MIinIAOD production

Mumber of jobs

=]
=]

600 4

=
=

g

=]
=

Pt

(=]

=
L

mean=78.3907990386
std=14 2137788622

0 5 10 15 20 5
Mumber of cores

2500 -

2000 1

Number of jobs

=
=

]
(=]
(=]

=
2

mean=57 6507665728
std=15.9933301196

(=]
f

20 40 B0 BO
Efficiency of MINIAQD jobs running on B cores

10/04/2018

=5

20 a0 &0 80
Efficiency of MINIACD jobs running on 3 cores

Number of jobs

2000 1

&
[=]
[=]

1000 4

mean=561.3431957075
std=32.0520860333

a0 &0 80 100
Efficiency of MINIACD jobs running on 4 cores

Ignore this it was an artefact
this weekend . Didn’t use
CPU/wallclock (I think)

Is 10 bound so throwing more
cores at it makes the efficiency
decrease. Yet 8 cores was most

popular.

Decided not use more than 4

cores in future.

d.colling@imperial.ac.uk

18

Mumber of jobs

User analysis

mean=77.1849962968

std=26.2081781438

20 A0 &0 80
Efficiency of Analysis jobs running on 1 cores

200000 -
175000 | 20000 -
150000 17500 |
125000 4 15000
w 12500 -
100000 - -
2 10000 -
75000 - E
= 7500
50000 4
G000 1
25000 - _—
I} T . T T T T T D -
0 5 10 15 20 P 0
Nurber of cores
500 4 mean=56.7346293697 3500 -
std=21.7412529298 3000 -
¥ w3500 -
=1 2
5 5 2000 1
[H} i
= =]
E E 1500 -
= =
= =
1000 -
500 -

20 40 B0 80
Efficiency of Analysis jobs running on 4 cores

10/04/2018

an=17.4610430218
=15.5829765004

. |

20 40 G0 80 100
Efficiency of Analysis jobs running on 8 cores

d.colling@imperial.ac.uk

Ahhh...
Users, don’t you
just love’em?

CMSSW is
multithreaded so
their analyses can
be as well and we
even mildly
encourage it, but
only if they know
what they are
doing.

This has caused
discussion over the
weekend and so
the first thing is
that users will get a
message if they try
to submit multicore
analysis jobs
asking them if they
really want to do
that 19

Onsite v Offsite data

Note that this plot is weighted by the CPU time
used by jobs using onsite and offsite data at a
given but then all sites are treat equally so it
doesn't tells very much of overall use. However
what it does tell us is that there is a huge
variation between site. This needs further
investigation.

However, not all the sites with large differences
are small.

Weighted number of sites

That said, offsite data is an essential part of CMS

0
—20 0 20 40 B0 ED computing (not least for the premix libraries).

Difference between weighted mean effiencies (Onsite-Offsite)%

10/04/2018 d.colling@imperial.ac.uk 20

DIG]

* | had hoped to make a few plots here, but if the merest
whiff of wifi in my room was not enough to listen to the
Today programme at 6am it was never going to be

enough for an ES query. By 8am indico was a step too
far. So you have a narrative instead.

* CMS serve pileup from CERN and FNAL to all DIGI jobs
(Premixing). Saves vast amounts of disk space and
generally works fine (small efficiency loss but worth it).
However sometimes it doesn’t... still under investigation.

10/04/2018 d.colling@imperial.ac.uk

21

Grim Reaper time?

Looking at individual log
files we found some jobs
that would pause.
Sometimes for
considerable periods but
then continue normally.
These are still under
investigation.

We do have the ability to
“reap” the jobs but we
want to understand what
is going on before we
consider this approach

10/04/2018 d.colling@imperial.ac.uk 22

Conclusions

e The taskforce has been in existence for
~10months

* The situation is more complex than we thought.

e Can factorise infrastructure and payload
iInefficiencies but it is the product that counts.

 First concentrated on infrastructure but now
also following the different payloads.

* More work to do and fixes to implement.

10/04/2018 d.colling@imperial.ac.uk 23

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Inefficiency and job pressure patterns_clipboard0
	Inefficiency and job pressure patterns
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

