

Tier 1 CASTOR Consolidation

What goes up, must come down...

Rob Appleyard

Part 1

Introduction

CASTOR

- Currently 13 PB disk storage
 - D1T0 for ATLAS, LHCb, CMS
- 36 PB tape storage
- CERN:
 - 240PB of data on tape
 - 16PB of disk, all cache
- CERN (CASTOR developers) now only use CASTOR for tape-backed storage

Echo

- Replacing CASTOR D1T0
- Currently 9PB of usable disk storage.
- ATLAS migration well underway
- CMS migration starting
- LHCb a bit later

Tier 1 Data Flow Now

CASTOR Databases

- Everything in CASTOR is based on Oracle DBs.
 - Physical data location
 - Transaction information
 - Namespace mapping
 - Tape drive state
 - Transfer scheduling

Database Groupings

- 'Central services' DB
 - One DB instance for all WLCG users
 - Manages namespace
 - Manages tape interface & contents of tapes
- 'Stager' DB
 - Manages data residing on disk
 - One DB instance per major user community
 - 'Instance' one stager DB schema
- SRM DB
 - Collocated with stager

Part 2

What we have now

A Picture of CASTOR – GridFTP (ATLAS)

CASTOR Current State: Databases

- Two Oracle RACs are used to support CASTOR operations
 - One hosts ATLAS and our ALICE/general-use instance
 - The other hosts CMS, LHCb, and the central services
- Transaction rate: 390hz/RAC
- Load is strongly driven by disk-only operations

CASTOR Current State: Management Nodes

- AKA 'headnodes'
- Each instance has 3 dedicated management nodes headnodes, and 2-4 dedicated SRM interface nodes
 - Interface nodes handle control traffic only
- Plus two 'name servers' for the central services
 - Including tape system
- Grand total of 25 core management nodes
- Management nodes are currently 'pets', not 'cattle'
 - One management node failure → service offline ☺

CASTOR Current State: Storage nodes (1)

- Aka 'disk servers'
- 137 nodes
- Each node is 60-120 TB
 - One big RAID 6 array
- 10Gb networking
- Peak i/o performance typically ~3Gb/s/node
 - Constrained by disk i/o

CASTOR Current State: Storage nodes (2)

- 29 of those storage nodes are used only for tapebacked storage
 - Caching data on its way to/from tape
- Remaining 108 are disk-only
 - Will be retired when migration to Echo is complete

What if we do nothing?

- Disk server count drops from 137 to ~30
 - Transaction rate drops to ~5% of current (or lower)
- But we still have...
 - 29 management nodes
 - 2 RACs
 - Management nodes outnumber storage!
- Unacceptable management overhead

Part 3

What we are going to do

Project Objectives

- Reduce node count
- Reduce management overhead
- Improve service quality
- Don't lose any data!

User migration

- Users responsible for their own data management
 - LHC VOs well aware of need to migrate
- ATLAS: good progress at drawing down CASTOR disk
 - Production use of Echo
- CMS also using Echo in early stage production
- LHCb lagging a bit, work ongoing
- Once user says 'all clear from CASTOR', we can clean up any remaining data
 - There is always some

'Tier1Tape'

- Plan: create a fresh CASTOR instance using new DB hardware
- Once a user has nothing on disk…
 - Suspend new tape writes
 - Flush remaining migration candidates to tape
 - Repoint aliases to new instance
 - Restart
- Downtime for tape system ~ few hours
- Users can be migrated one-by-one

Post-Echo CASTOR Data Flow

Issues: Contention

- Potential for contention between users introduced into system
 - Disk cache needs to be relatively big to mitigate this
- Issue already in play for other system elements
 - Tape drives are a shared resource for all users
- Partitioning of cache is possible...
 - ...but not desirable

Issues: Scheduling Interventions

- Advantage of separate infrastructure for each user community: easy intervention scheduling
 - Not present when everyone shares
 - Need to find a date that suits everyone
- Difficult to mitigate
 - Saving grace: WLCG Tape access is usually orderly and planned
 - Able to plan with experiment data admins

Other Improvements: Management Nodes

- Change of structure is an opportunity to address other issues
- CERN CASTOR implementation uses 'cattle headnodes'
 - All management processes run on a set of identical nodes
 - HAProxy for failure-tolerence
 - George will be replicating these
- Shift to from physical to virtualized infrastructure
- Also push to SL7

Other Improvements: RAO

- New available feature in CASTOR 2.1.17:
 Recommended Access Order for recalls
- Tape drive gets many recall requests, figures out sensible order to minimise seek time
- 40%-60% improvement in seek time for large reads (says vendor)
 - Seen even better numbers than this from CERN...

CASTOR's Long-Term Future

- CERN CASTOR service is scheduled to be discontinued ~ mid 2019
 - New product: 'CTA¹'
 - No more development effort from CERN
- ...but...
 - Migrating away from CASTOR will take time
 - Improvements have time to bear fruit
- See other talks/discussions for more detail on our plans

Any Questions?

Image by Marco Belluci, distributed under CC 2.0 license. https://www.flickr.com/photos/marcobellucci/3534516458

