Facilities for BI Tests: CLEAR / Hiradmat / Diamond

T. Lefèvre on behalf of the BI team involved

BI technical board, CERN, 22nd February 2018

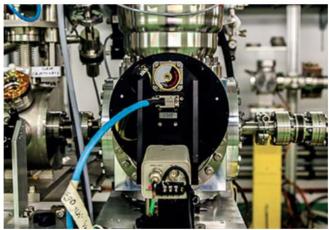
Outline

Beam instrumentation tests at CLEAR
 https://clear.web.cern.ch

Beam instrumentation tests at Hiradmat
 <u>https://espace.cern.ch/hiradmat-sps/Wiki%20Pages/Home.aspx</u>

• Beam instrumentation tests at **Diamond**

Beam Instrumentation Tests : Why?


- Testing new technologies, new concepts, new ideas
- Perform systematic checks on existing technologies
 - Avoid surprises when commissioning operational systems
 - Validation of new design of known technologies
- Operational machines are not made for R&D
 - Easily accessible, Enough time for beam tests, Simple set-up

Beam Instrumentation at CLEAR:

<u>clear</u>+

CERN COURIER

Oct 13, 2017 CLEAR prospects for accelerator research

CLEAR's plasma-lens experiment (expand for full image) A new user facility for accelerator R&D, the CERN Linear Electron Accelerator for Research (CLEAR), started operation in August and is ready to provide beam for experiments. CLEAR evolved from the former CTF3 test facility for the Compact Linear Collider (CLIC), which ended a successful programme in December 2016. Following approval of the CLEAR proposal, the necessary hardware modifications started in January and the facility is now able to host and test a broad range of ideas in the accelerator field.

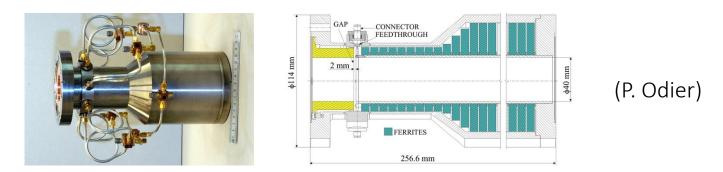
CLEAR prospects for accelerator research

by Matthew Chalmers

The CERN Linear Electron Accelerator for Research (CLEAR) will enhance and complement the existing accelerator R&D programme at CERN. (Image: Julien Ordan/CERN)

Beam Instrumentation at CLEAR:

Beam parameters	Range	Comments			
Energy	60 – 180 MeV	More flexible with 2 klystrons. > 220 MeV expected with pulse compression.			
Energy Spread	< 1 MeV (FWHM)				
Bunch Charge	1 pC – 200 pC	Photocathode changed but limited laser power. Goal: 0.6 nC.			
Bunch Length 2.4 ps – 8 ps		0.1 ps according to simulation. Velocity bunching studies to be resumed			
Normalized emittances	3 µm to 30 µm	Bunch charge dependent			
Repetition rate	0.8 to 5 Hz	25 Hz with klystrons and laser upgrade			
Number of micro-bunches in train	1 to >150	Single bunch capability assessed			
Micro-bunch spacing	1.5 GHz (Laser)	3.0 GHz: Dark current			

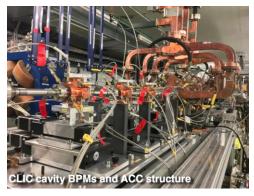

Beam Instrumentation at CLEAR:

BI Fellow working on CLEAR : Michele Bergamaschi

Beam Instrumentation at CLEAR Existing BI equipments (1/3)

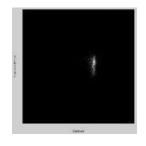
• Beam intensity: 1x WCM - High bandwidth (10kHz-7GHz) and High sensitivity

• Beam position: few Inductive BPMs (with modified electronic for better sensitivity)

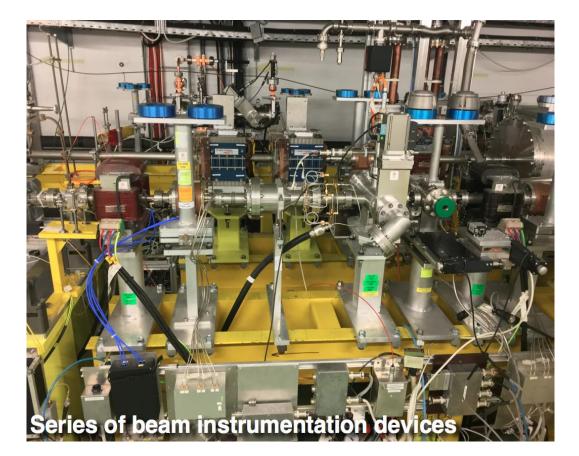


(M. Krupa, F. Guillot-vignot, M. Gasior)

Beam Instrumentation at CLEAR Existing BI equipments (2/3)


High resolution (<1um) Cavity BPM for precise measurements

(J. Nadenau & M. Wendt)

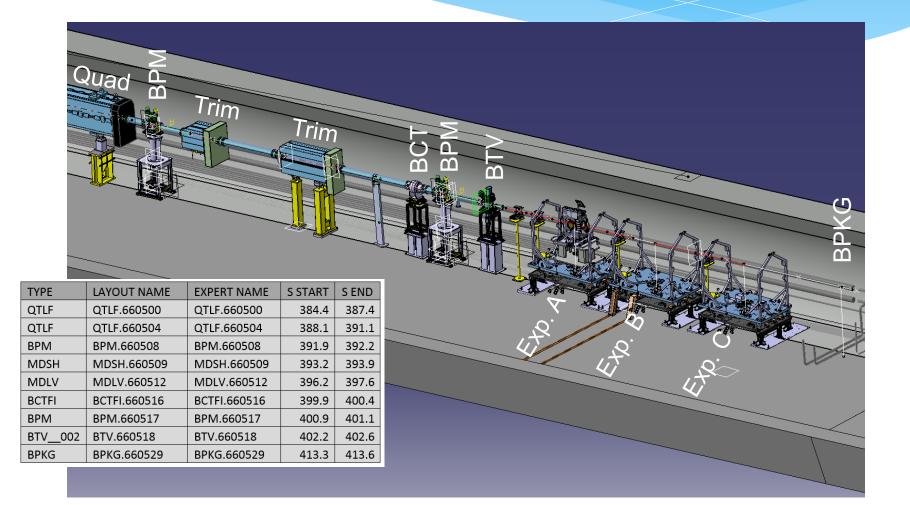

 Streak camera (shared with AWAKE) / Electro-optical spectral decoding for Bunch length measurement (sub-ps to ps)

(I. Gorgisyan & S. Mazzoni)

Beam Instrumentation at CLEAR Existing BI equipments (3/3)

Beam Instrumentation at CLEAR Testing Areas

In-vacuum test stand – 1m long equipped with a moving H&V stage


Beam Instrumentation at CLEAR Testing Areas

In-air test stand - 1m long optical breadboard at the end of the beam line Equipped with motor controllers for translation/rotation stages

Beam Energy	450 GeV
Pulse Energy	up to 3.4 MJ
Bunch intensity	up to 1.2 · 10 ¹¹ protons
Number of bunches	1 to 288
Maximum pulse intensity	4.0 · 10 ¹³ protons
Bunch length	11.24 cm
Bunch spacing	25, 50, 75 or 150 ns
Pulse length	7.2 μs
	/ -= =
Minimum cycle length	18 s ^c

In 2017, Installation of camera in TT61 to move away from the irradiated zone

 \rightarrow Optical line up to TT61

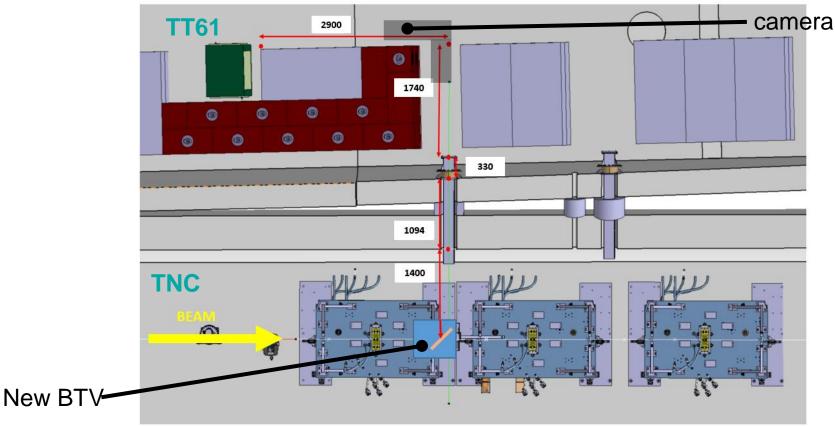


Table A: To become a 'BI test stand'

hotons

Schedule and beam time requests : 8 - 10 experiments / year

-ID	Title	Description	Contact person	Beam
HRMT 32	MicOpt	Measure performance of new radiation hard optical microphone	Daniel Deboy	2018 W??
HRMT 37	SextSc	Measure damage limit of superconducting magnets	Daniel Wollmann	2018 W34
HRMT 38	Flex MAT	Test range of carbon material and target with intense proton beam	Marinela Tomut	2018 W36
HRMT 47	Atlas PixRad	Estimate damage threshold of ATLAS inner detector & electronics	Antonio Sbrizzi	2018 W19
HRMT 48	PROTAD	Test Prototype for future antiproton production target	Claudio Torregrosa, Marco Calviani	2018 W21
HRMT 46	Ntof-Target	Evaluate two different solution for n-ToF Target	Marco Calviani, Raffaele Esposito	2018 W23
HRMT 45	TDIS-TZM	Validation test of TDIS jaw sub assembly	David Perez, Antonio Perillo-Marcone	2018 W30
HRMT 44	TCDIL-DEEP	Test 2 designs of TCDIL collimator jaw	Francois-Xavier Nuiry	2018 W28
HRMT 43	BeGrid 2	Test Thermal shock response of conventional and novel materials-	Marco Calviani	2018 W41
HRMT 19	BLM2	Verification of ionization chamber	Slava Grishin	2018 W??



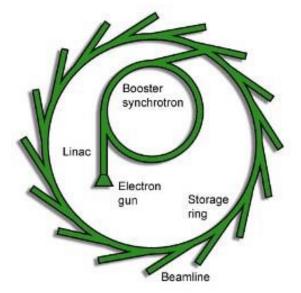
Technical | Injection systems

Injection Systems

In the linac, the electrons are grouped together into "bunches". A number of different modes of operation are possible.

Single-bunch mode: a single bunch of electrons, containing around 10 billion electrons, orbits around the storage ring.

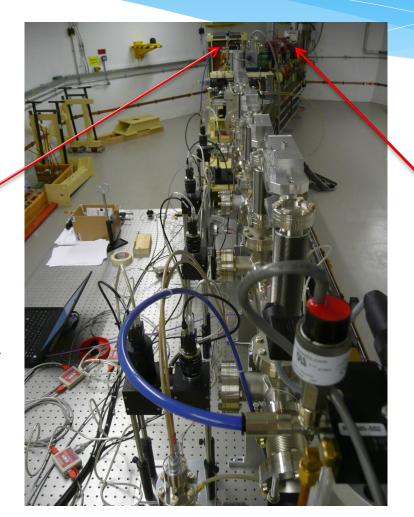
Multi-bunch mode: numerous bunches of electrons are grouped together into a "train" of bunches. The total length of each train and the spacing between consecutive trains can be varied.


Transfer lines are used to transport the 100 MeV electrons from the linac to the booster synchrotron. Another set of transfer lines are used to transport the 3 GeV electrons from the booster synchrotron to the storage ring.

Linac Specifications

Pre-injector energy:	100 MeV
Modulated thermionic gun:	500 MHz, 90 keV
Repetition rate:	2-5 Hz
Pulse length:	1-700 nS
Pulse charge (single pulse or long pulse):	<1.5 or <3 nC
Normalised emittance:	Less than 50 p mm*_mrad
Energy spread:	Less than ± 1.5%
Top-up capability:	Low charge, variable pulse sequences

Booster Specifications


Lattice:	22 cell FODO arrangement, 36 dipole magnets
Injection energy:	00 MeV
Extraction energy:	3 GeV
Circumference:	158.4 m
Current:	6 mA (max)
Emittance:	0.135 p mm*mrad
Tunes:	7.16, 4.11
Frequency:	2-5 Hz

Contact : Lorraine Bobb

Beam dump

<u>Test-stand 'BTS' in the</u> <u>transfer line from the</u> <u>booster to the main ring</u>

To storage ring

Beam Parameter at BTS Test Stand	Value
Max. charge per bunch (single bunch mode) [nC]	0.3
Charge per 120 bunch train [nC]	1.3
Bunch spacing [ns]	2
Beam size (h,v) [mm]	1.27 - 1.42, 0.57-0.60
Alpha (h,v)	-0.720.96, -0.710.82
Beta (h,v) [m]	11.00 - 13.93, 23.86-26.53
Emittance (h,v) [nm.rad]	134.5, 13.4
Dispersion [m]	0.5
Energy [GeV]	3
Energy spread	0.00073
Bunch length [mm]	≈2.5

Four OTR monitors and cavity BPMs from previous experiments are still installed. All instrumentation in this 2m region can be replaced for other experimental tests.

2017 OPERATIONS CALENDAR											
AP20			AP21				AP22				
JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
W	1	1								1	
T	2	2			1					2	
F	3	3			2			1		3	1
S	4	4			3			2		4	2
S 1	5	5	2		4	2		3	S8_Hybrid	5	3
M 2 to	6	6	3		5	3		4	2 SB_Hybrid	6	4
T 3	7	7	4	2	6	4	1	5	3	7	5
W 4 T 5 T 5	8	8	5	3	7 N	5	2	6	4	8 7	6
	9	9	6	4	8 😜	6	3	7	5	9	7
F 6 8	10	10	7	5	9 Ş	7	4	8	6	10 🖀	8
		11	8	6	8 9 20 10 11	8	5	9	Ž	nys	9
S 8	12	12	9	7		9	6	10	8	12	10
M 9	13	13	10	8	12	10	7	11	9	13	11
T 10	14	14	11	9	13	11	8	12	10	14	12
W 11	15	15	12	10	14	12	9	13 sa_Hybrid	11	15	13
T 12	16	16	13	11	15	13	10	14 S8_Hybrid	12	16	14
F 13 🔽	17	17	14 💊	12	16	14 👱	11	15 S8_Hybrid	13 🔁	17	15 ピ
S 14 5	18	18	15	113111	17		12	16 SB_Hybrid		18	16
S 15 🗠	1911	19		111114.111			13	SB_Hybrid		19	17
M 16	20	20		15	19	17	14	18 S8_Hybrid	16	20	18
T 17	21	21	18	16	20	18	15 m	19	17	21	19
W 18	22	22 🖵	19	17	21	19	16 🗧	20	18	22	20
T 19	23	23 5	20	18	22	20	16 17 18 18	21	19	23	21
F 20	24	23 24 25 26	21	19	23	21	18 🞽	22	20	24	22
S 21	25	25 2	22	20	24	22		23	21	25	23
S 22	26		23	21	25	23	20	24	22	26	24 2
M 23	27	27	24	22	26	24	21	25	23	27	25 26 27
T 24	28	28	25	23	27	25	22	26	24	28	- 26 ž
W 25		29	26	24 156	28	26	23	27 SB_Hybrid	25	29	27
T 26		30	27	25 156	29	27	24	28 SB_Hybrid	26	30	28
F 27		31	28	26	30	28	25	29 SB_Hybrid	27		29
S 28			29	27		29	26	30 SB_Hybrid	28		30
S 29			30	28		30	27		29		31
M 30				29		31	28		30		
T 31	l			30			29		31	l	
W				31	l		30				
T							31				

2017 ODEDATIONS CALENDAD

Start up/Machine Development (MD) User Mode (UM) User Mode (Special Beam Conditions) Public/company holiday Beamline Start-up

Jser Mode (Multi-bunch Hybrid) User Mode (Single bunch Hybrid) S8 Hybrid User Mode (156 bunches) Shutdown - start 0900hrs on the first day, finish 1700hrs on the last day Weekend

Typically 5 shutdowns per year where we can run linac and booster for experimental tests.

- Recuperating hardware from CTF3 to install inductive BPMs and Vacuum chamber with target manipulator
- o Installation foreseen in June 2018
- First beam tests could happen by end of June 2018

A strategy for BI R&D

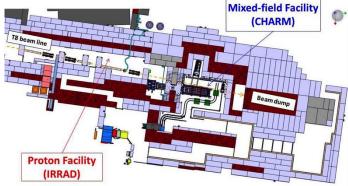
• Start R&D at CLEAR using low intensity bunches

- o Easiest access, low level of radiation, both in-air/in-vacuum test stand
- Test and Validate the 'best' design with high intensity protons at Hiradmat
 In-air test area on Table A
- Test and Validate design the 'best' design with higher energy electrons (γ = 6000, i.e. LHC at flat top) at Diamond/BTS

Conclusions

- CLEAR offers both in-air/in-vacuum testing capabilities with some flexibility
 - Already existing cable/fiber infrastructure, motor controllers, acquisition systems,...

- CLEAR is equipped with a full suite of beam instruments to guarantee its normal operation and to provide cross-calibration
 - More this year with Streak camera and EOS back in operation


 Testing at Hiradmat and Diamond also give the opportunity to complement the R&D with high intensity protons or highly relativistic beams Thanks for your attention

Developing Beam diagnostics at CERN

Testing on CERN PS Complex Area

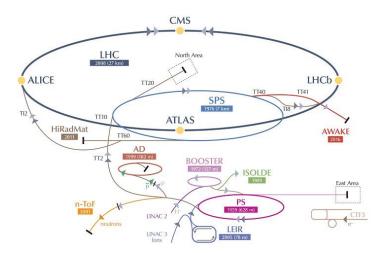
IRRAD – Proton irradiation (24GeV, max 5.10¹¹ protons per spill, Up to 10¹⁸ protons)
 see <u>https://irradiation.web.cern.ch/irradiation/</u>

• CHARM (CERN High-energy AcceleRator Mixed field facility) : mimic radiation environment found in the accelerator chain see <u>https://charm.web.cern.ch/CHARM/</u>

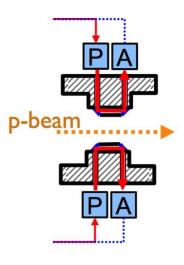
o Testing on CERN SPS Area

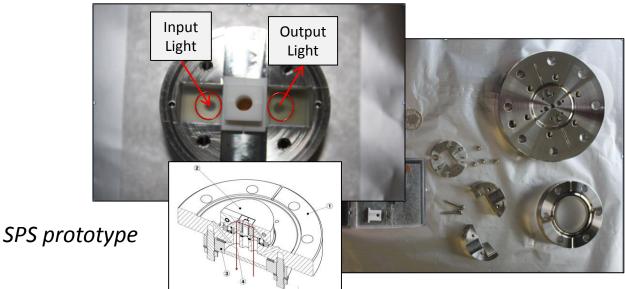
High Radiation to Material – 450GeV Protons with up to 288 Bunches with 25ns spacing (3 10¹³ protons per pulse)
 HiRadMat

see https://espace.cern.ch/hiradmat-sps/Wiki%20Pages/Home.aspx

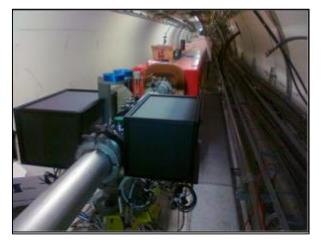

• Gamma Irradiation Facility in NA with a 15 TBq ¹³⁷Cs source see https://gif-irrad.web.cern.ch/gif-irrad/

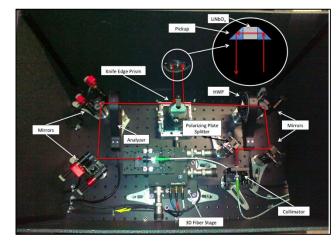
Developing Beam diagnostics at CERN


- Testing directly on the Operational Machines themselves
 - Limited time for hardware installation/modification in the tunnel (i.e. Technical stops)
 - Limited beam time available for tests during MDs
 - R&D is not always compatible with the strict requirements for Operational Machines
 - e.g. Testing gas jet monitor and their performance as function of gas pressure would conflict with


vacuum requirements

Instrumentation Test on CLEAR Electro-Optical Beam Position Monitor (1/2)


- Motivation in the framework of HL-LHC
 - Providing an all-optical BPM using birefringent crystal and optical fiber
 - More compact, lower impedance, good time resolution, no expensive/big cable
- Concept and current development
 - Encoding the beam field onto a continuous laser beam using LiNbO3 crystal
 - Two configurations either through **polarization change** or using interferences

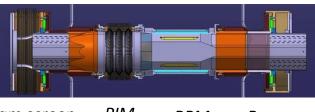


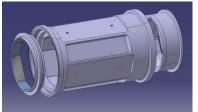
Instrumentation Test on CLEAR Electro-Optical Beam Position Monitor (2/2)

- Proposed test (second part of the year)
 - Install a spare SPS Pick-Up and optical set-up to perform detailed studies on CLEAR
 - Testing different crystal configurations: crystal with metal coating or not, special electrode,..
 - Perform beam position sensitivity curve
 - Develop the detection scheme: P/A method or interferometer

- Re-using some of existing CLEAR infrastructure: motor controller, optical fiber, ..
- Investigate the possibility to test in-air ?

Instrumentation Test on CLEAR HL-LHC Stripline BPM


- Series of 40 BPMs being designed for upgraded interaction regions in LHC (IP1&5)
 - Cryogenic BPMs in common beam pipe region (measuring counter-propagating beams)
- Testing the directivity of newly designed stripline using an existing LHC BPM in 2017

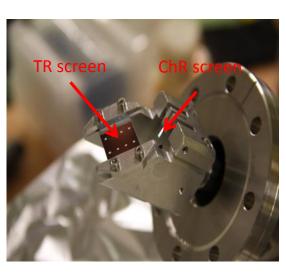

New design

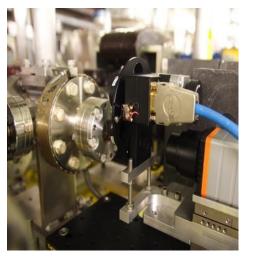
Expected Directivity of >30dB

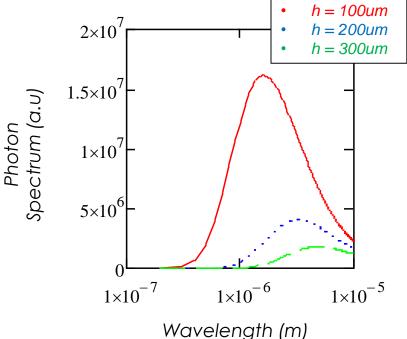
• Validation of prototype in 2018 (in-air ?): Octagonal BPM with Inermet (W-alloy) Interconnection between Quadrupoles

Beam screen PIM BPM Beam screen (RF bellow)

3D design of BPM under validation

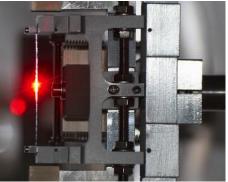

Instrumentation Test at CLEAR Diffraction Cherenkov Radiation studies

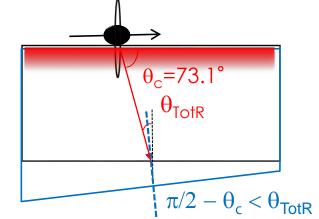

• Motivation and Concept


- Similar radiation process (Coherent Diffraction Cherenkov radiation effect) as in Dielectric loaded waveguides proposed for high gradient acceleration, THz source and micro-bunching generation (Cherenkov FEL) and for short bunch length diagnostics
- Studying the properties of incoherent diffraction cherenkov radiation (DChR) in dielectric materials for ultra relativistic beams
 - \circ Radiation yield scales with $\gamma\lambda$ (i.e. large flux of photons for relativistic protons compared to Synchrotron radiation)
 - Radiation intensity proportional to the length of the dielectric
 - Radiation emitted in well defined Cherenkov angle (practical aspect)
 - Recent experiment on Cornell Electron Storage Ring demonstrated large flux of photons in NIR emitted in 2cm long SiO2 radiator by 2.1GeV electrons
- Impact parameter h 1
- Possible use for future instrumentation projects (beam position and size)
 - Using diffraction cherenkov radiation for centering crystal collimator (LHC)
 - Developing a very high directivity beam position monitor for circular collider (Lepton, Hadron)

Instrumentation Test on CLEAR Cherenkov Diffraction Radiation studies

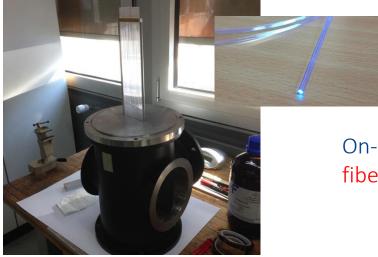
- Testing with 200MeV electrons
 - Producing ChDR in a 15x2x1.2mm Diamond crystal detected by IR Camera and photodiode
 - Comparing Transition, Cherenkov and Diffraction Cherenkov radiation:
 - Photons spectrum, Light yield, Light collection system, ...





Instrumentation Test on CLEAR Cherenkov Diffraction Radiation applications

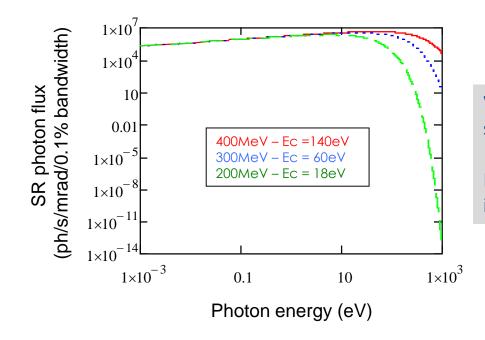
- Bent Crystals (via channelling effect) are now seriously considered as primary collimators for LHC and FCC
 - Investigating the use of Cherenkov Diffraction Radiation as way to center the crystals around the beam
 - In a 3mm long Silicon Crystal and impact parameter of 1mm the LHC beam (7TeV p⁺) would produce ≈5watts of radiation (1-10um wavelength)



- Crystal outer face built with different angle or with a high roughness to diffusive the light out
- Studying the detection system: e.g. coupling photons in an optical fiber
- o Possible set-up in-Air to allow flexible developments

Examples of possible future tests

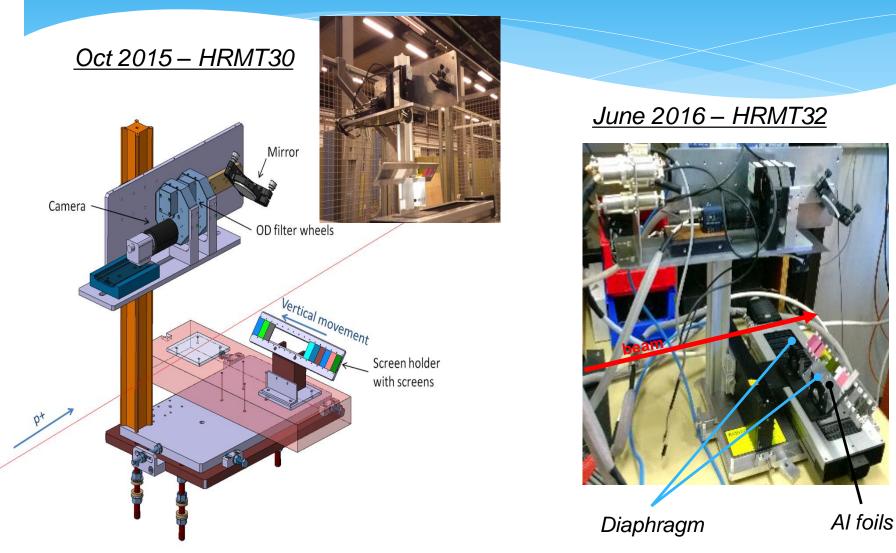
- Test and calibration of Secondary beam line monitors (EA), Particle detectors, Beam Loss Monitors
 - Possibility to reach low beam density down to 10⁵ electrons/cm² per pulse
 - Study of detector performance: i.e. MIP response, Time response, Saturation effects



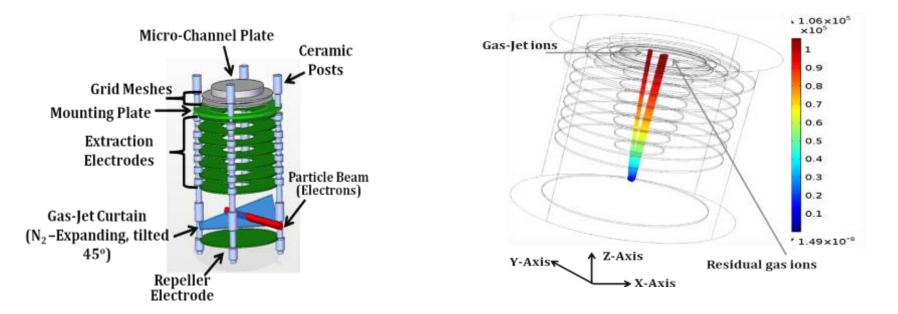
On-going development of high sensitivity Scintillating fiber for SPS NA and new EHN1 beam line

Examples of possible future tests

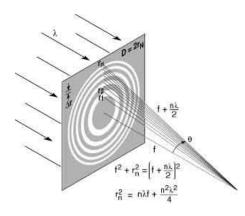
Synchrotron light monitors


- Imaging system for HL-LHC and FCC (visible, UV..)
- Beam halo monitor, longitudinal density monitors, ...

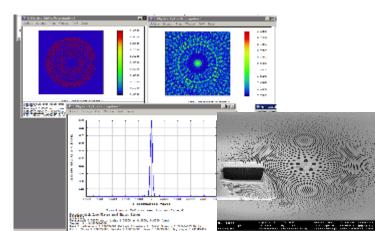
With 200MeV e⁻, similar photon spectrum as in LHC


Possibly to go to EUV/low-energy X-ray if doubling the beam energy

Possible in-air BTV setup


Gas-jet R&D with ULIV

- Beam ionises gas molecules, ions are extracted by electric field
- o Sufficiently thin gas jet would allow 2D image: if not used as a gas scanner
- o Initial forwards momentum of gas jet separates gas jet ions from residual gas ions


Gas-jet R&D with ULIV

 Matter-wave focusing for a thin gas jet (down to Tens of micrometers) – Fresnel Zone plate principle

- The path difference between each successive light ring is equal to 1 wavelength (at the focal point) constructive interference.
- Each zone is equal in area
- Focal spot size is roughly the width of the narrowest (outer) zone
- Compared to traditional lens: no spherical aberration, large chromatic aberration
- Design (ZEMAX) and fabrication of Apodised
 Photon Sieve reduces higher order diffraction,
 increases central maximum

