BSM 4 γ + X signatures

Rachid BENBRIK

LPHEA, Faculté Polydisciplianire de Safi, Université Cadi Ayyad, Maroc.

Talk given at 4th RISE meeting Warsaw, Poland

4. Dec. 2017

Outlines

- Introduction and Motivation
- 2HDM overview
- Photon as a tool in BSM searches
 - $4\gamma + W^{\pm}$ signature for a light H^{\pm} at the LHC Run II based on A.Arhrib, R.B, R. Enberg, W. Klemm, S. Moretti and S. Munir, Phys.Lett. B774 (2017) 591-598
 - 4γ production at the LHC Run-2 in progress arXiv.1712.XXXX. with A. Arhrib, R.B, S. Moretti, A. Rouchad, Q-S. Yan and X. Zhane
- Summary and perspectives

Introduction and Motivation:

Photon-based BSM analyses (based on the 8 TeV run-1 data):

- $\gamma + X$ resonnace searches
- $\gamma + X$ searches
- BSM through $H \rightarrow \gamma + X$

The mission of LHC Run II is:

- The improvement of the scalar boson mass and scalar boson coupling measurements.
- Find a clear hint of NP BSM
- Accurate measurements of the scalar boson couplings to SM particles would help to determine if the Higgs-like particle is the SM Higgs or a Higgs that belongs to a higher representations: more doublets, doublet & triplets, doublet & singlets
- Most of the High representations predicts: singly and/or doubly charged Higgs.

mass terms:

$$\sum_{i} (D_{\mu} \Phi_{i})^{+} (D_{\mu} \Phi_{i}) \quad , \quad D_{\mu} = \partial_{\mu} + ig \vec{T}_{a} \vec{W^{a}}_{\mu} + ig' \frac{Y}{2} B_{\mu}$$

$$\rho = \frac{m_W^2}{c_W^2 m_Z^2} = \frac{\sum_i v_i^2 (I_i (I_i + 1) - \frac{Y_i^2}{4})}{\sum_i v_i^2 \frac{Y_i^2}{2}} \approx 1.00037 \pm 0.00023$$

- 1. Doublets ($I_i = 1/2$, $Y_i = \pm 1$): tree ok but "rad. corrections"
- 2. $4I_i(I_i + 1) = 3Y_i^2$: $I_i = 3$ and $Y_i = 4$, rather complicated
- 3. Triplet representation: tune the triplet vev. In type-II see-saw: $v_{\Delta} < 5-8~\text{GeV}$

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}} (v_1 + \phi_1^0 + ia_1) \end{pmatrix}; \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (v_2 + \phi_2^0 + ia_2) \end{pmatrix}.$$

The most general potential for 2HDM:

$$\begin{split} V(\Phi_1, \Phi_2) &= m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 + (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c}) \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \frac{1}{2} [\lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + (\lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2) \Phi_1^{\dagger} \Phi_2 + \text{h.c.}], \end{split}$$

•
$$\mathbb{Z}_2: \Phi_i \to (-)^i \Phi_i \Leftrightarrow \lambda_{6,7} = 0$$

• No explicit CP violation: $Im(m_{12}^2 \lambda_{5,6,7}) = 0$

< Ξ.

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}} (v_1 + \phi_1^0 + ia_1) \end{pmatrix}; \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (v_2 + \phi_2^0 + ia_2) \end{pmatrix}.$$

$$-\mathcal{L}_{Y} = \sum_{a=1,2} \left[\bar{Q}_{L} Y_{d}^{a} \Phi_{a} d_{R} + \bar{Q}_{L} Y_{u}^{a} \tilde{\Phi}_{a} u_{R} + \bar{L}_{L} Y_{\ell}^{a} \Phi_{a} \ell_{R} + \text{h.c.} \right] \,,$$

leads to FCNCs at tree level.

• Classification of 2HDMs satisfying the Glashow-Weinberg condition which guarantees the absence of tree-level FCNC.

Type-I	$Y_{u,d}^1 = 0, Y_{\ell}^1 = 0$	
Type-II	$Y_u^1 = Y_{d,\ell}^2 = 0$	
Type-III (X)	$Y^1_{u,d}=Y^2_\ell=0$	
Type-IV (Y)	$Y_{u,\ell}^1 = \overline{Y_d^2} = 0$	
		 = .

CP conserving 2HDM: CP-even h,H, CP-odd A and H^{\pm}

The Yukawa Lagrangian:

$$-\mathcal{L}_{Yuk} = \sum_{\psi=u,d,l} \left(\frac{m_{\psi}}{v} \kappa_{\psi}^{h} \bar{\psi} \psi h^{0} + \frac{m_{\psi}}{v} \kappa_{\psi}^{H} \bar{\psi} \psi H^{0} - i \frac{m_{\psi}}{v} \kappa_{\psi}^{A} \bar{\psi} \gamma_{5} \psi A^{0} \right) + \left(\frac{V_{ud}}{\sqrt{2}v} \bar{u} (m_{u} \kappa_{u}^{A} P_{L} + m_{d} \kappa_{d}^{A} P_{R}) dH^{+} + \frac{m_{l} \kappa_{l}^{A}}{\sqrt{2}v} \bar{\nu}_{L} I_{R} H^{+} + H.c. \right)$$

	κ_u^h	κ^h_d	κ_l^h	κ_u^A	κ_d^A	κ_l^A
Type-I	c_{lpha}/s_{eta}	c_{lpha}/s_{eta}	c_{lpha}/s_{eta}	$\cot \beta$	$-\cot\beta$	$-\cot\beta$
Type-II	c_{α}/s_{β}	$-s_{lpha}/c_{eta}$	$-s_{lpha}/c_{eta}$	$\cot \beta$	aneta	aneta
Lepton-specific	c_{α}/s_{β}	c_{lpha}/s_{eta}	$-s_{lpha}/c_{eta}$	$\cot \beta$	$-\cot\beta$	aneta
Flipped	c_{lpha}/s_{eta}	$-s_{lpha}/c_{eta}$	c_{lpha}/s_{eta}	$\cot\beta$	aneta	$-\cot\beta$

→ < Ξ → <</p>

• Couplings:

$$\begin{split} hVV \propto \sin_{\beta-\alpha} &, \quad HVV \propto \cos_{\beta-\alpha} &, \quad AVV = 0 \\ hH^{\pm}W^{\mp} \propto \cos_{\beta-\alpha} &, \quad HH^{\pm}W^{\mp} \propto \sin_{\beta-\alpha} &, \quad AH^{\pm}W^{\mp} \propto \frac{g}{2} \\ H^{\pm}W^{\mp}\gamma = 0 \ (e.m \ inv) &, \quad H^{\pm}W^{\mp}Z = 0 \ \ but \ \ loop \ mediated \end{split}$$

- 2 alignment limits:
 - h=125 GeV SM-like: $\sin_{\beta-\alpha} = 1$ (Decoupling limit)
 - h < H=125 GeV SM-like: $\cos_{\beta-\alpha} = 1$: non-detected decays: $Br(H \rightarrow h^0 h^0, A^0 A^0) < 20 - 25\%$

$(\cos(\beta - \alpha) - \tan\beta)$ plan in 2HDM type-I

 2σ fits:

・ 同 ト ・ ヨ ト ・ ヨ ト

э

(See "Prospects for charged Higgs searches at the LHC," arXiv:1607.01320: A. Akeroyd et al)

- Light charged Higgs, i.e, with $m_{H\pm} \leq m_t m_b$: are copiously produced from $t\bar{t}$ production $pp \rightarrow t\bar{t} \rightarrow t\bar{b}H^- + c.c.$
- various direct production modes: $QCD: gb \rightarrow tH^{-} \text{ and } gg \rightarrow t\bar{b}H^{-},$ $gg \rightarrow W^{\pm}H^{\mp}$ (loop), $b\bar{b} \rightarrow W^{\pm}H^{\mp}$ $q\bar{q} \rightarrow \gamma, Z \rightarrow H^{+}H^{-},$ $gg \rightarrow H^{+}H^{-}$ (loop) $q\bar{q}' \rightarrow W^{*} \rightarrow \phi H^{\pm}$ where $\phi = h^{0}, H^{0}, A^{0},$
- Resonant production: $c\bar{s}, c\bar{b}
 ightarrow H^+$

•
$$W - Higgs$$
 fusion : $qb \rightarrow q'H^+b$

A.A, K.M. Cheung, J.S.Lee and C. T. Lu'JHEP'2016

fermionic decays

- $H^{\pm} \rightarrow \tau \nu$, cs , cb
- $H^{\pm} \rightarrow tb$

bosonic decays

•
$${\it H}^{\pm}
ightarrow {\it W}^{\pm} \phi^{0}$$
 , $\phi^{0}={\it h}^{0},{\it A}^{0},{\it H}^{0}$

A.Arhrib, R. B, S.Moretti, EPJC'17

• $H^{\pm}
ightarrow W^{\pm} \gamma, Z$: small loop mediated

A.A, R. Benbrik, W.T. Chang and TC.Yuan, IJMP2007

 H[±] → W[±]Z exists at tree level in triplet models. (production through WZ fusion)

→ < Ξ → <</p>

 H^{\pm} decays: tan $\beta = 4.5$, $m_H = 300$ GeV, (left) $m_A = 125$ GeV (right) $m_A = 90$ GeV: 2HDM-I

A.Arhrib, R. B and S. Moretti EPJC'17

 $H^{\pm} \rightarrow tb \text{ vs } H^{\pm} \rightarrow W^{\pm}A^{0}/W^{\pm}h^{0}$: $m_{H} = 300 \text{ GeV}$, $m_{h,A} = 125 \text{ GeV}$, $m_{H\pm} = 170 \text{ GeV}$

A.A, R. Benbrik and S. Moretti, EPJC'17

Yellow excluded by data, black by theoretical constraints

 $W^{\pm}H^{\mp}A \propto \frac{g}{2}$, $W^{\pm}H^{\mp}h \propto \frac{g}{2}\cos(\beta-\alpha)$, $W^{\pm}H^{\mp}H \propto \frac{g}{2}\sin(\beta-\alpha)$

very light A^0 : tan $\beta = 5$, $m_H = 300$ GeV, sin $(\beta - \alpha) = 1$

Implication for 2HDM: (left) 2HDM-I, (right) Lepton-specific, *WA* open for $m_A = 40$ GeV

Search for $H^{\pm} \rightarrow W^{\pm}A^0$ at LEP-II

LEP 183-209 GeV

$$\sigma(pp
ightarrow tar{t}) imes {
m BR}(t
ightarrow H^{\pm}b) imes {
m BR}(H^{\pm}
ightarrow W^{\pm *}\phi)$$
 , $\phi = A, h = 125 \,\, {
m GeV}$

In the alignment limit $\cos(\beta - \alpha) \approx 1$, the heavy CP-even Higgs H^0 completely mimics the SM Higgs:

$$H^{0}f\bar{f} = \frac{\sin\alpha}{\sin\beta} \approx 1$$

$$H^{0}VV = \cos(\beta - \alpha) \approx 1$$
(1)

Fermiophobic h^0

- In 2HDM-I, $h^0 f \bar{f} \propto \frac{\cos \alpha}{\sin \beta} = \sin(\beta \alpha) + \cot \beta \cos(\beta \alpha)$ For negative $\sin(\beta - \alpha)$ and positive $\cos(\beta - \alpha)$, it is clear that $\cos \alpha \rightarrow 0$. h^0 becomes fermiophobic.
- $h^0 VV \propto \sin_{\beta-\alpha} \approx 0$; $h^0 \rightarrow \{VV^*, V^*V^*\}$ very suppressed; $h^0 \rightarrow \gamma \gamma$ could reach 100%

•
$$H^{\pm}W^{\mp}h^0\propto\cos(\beta-\alpha)\approx 1$$

- light charged Higgs can be produced from $t \to b H^+$ and also $pp \to W^* \to H^\pm h^0$
- with h^0 close to fermiophobic, $pp \rightarrow t\bar{t} \rightarrow bWbH^+ \rightarrow 2b2Wh^0 \rightarrow 2b + 2W + 2\gamma$; $pp \rightarrow H^{\pm}h^0 \rightarrow Wh^0h^0 \rightarrow 4\gamma + W$

<ロ> <同> <同> < 回> < 回>

æ

 $\sigma(q\bar{q'}
ightarrow H^{\pm}h^0); \ \sigma(q\bar{q'}
ightarrow I
u4\gamma)$

ΒP	m_h	$m_{H^{\pm}}$	m_A	$\sin_{\beta-lpha}$	aneta	$\sigma_{W^{\pm}4\gamma}[fb]$	$Br(h^0 o \gamma\gamma)$
1	24.2	152.2	111.1	-0.048	20.9	359	0.94
2	28.3	83.7	109.1	-0.050	20.2	2740	0.97
3	44.5	123.1	119.9	-0.090	10.9	285	0.70
4	56.9	97.0	120.3	-0.174	5.9	39	0.22
5	63.3	148.0	129.2	-0.049	20.7	141	0.71

Rachid BENBRIK

BSM 4 γ + X signatures

Cuts and selection efficiencies

We require pseudorapidity $|\eta| < 2.5$ for the lepton and photons, and an isolation $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.4$ for all objects. (i) all photons: $p_T^{\gamma} > 10 \text{ GeV}$; charged lepton: $p_T^{\ell} > 20 \text{ GeV}$, (ii) imposes that $p_T^{\gamma} > 20 \text{ GeV}$ and $p_T^{\ell} > 10 \text{ GeV}$.

• The irreducible SM $W4 + \gamma$ Background $< 10^{-6}$ pb.

• The selection efficiencies: $\epsilon = \sigma(\text{cuts})/\sigma(\text{no cuts})$.

$m_{H^+} \setminus m_h$	20	30	40	50	60	70	80	90	100
80	0.04	0.08	0.10	0.08	0.05	< 0.01	/ / /		
90	0.05	0.10	0.13	0.13	0.10	0.06	< 0.01	$\langle / /$	\square
100	0.05	0.14	0.16	0.16	0.13	0.11	0.06	< 0.01	\langle / \rangle
110	0.06	0.13	0.18	0.19	0.17	0.16	0.13	0.07	< 0.01
120	0.07	0.14	0.20	0.22	0.24	0.22	0.17	0.13	0.06
130	0.10	0.16	0.23	0.25	0.28	0.25	0.24	0.20	0.15
140	0.10	0.18	0.23	0.27	0.28	0.31	0.28	0.27	0.21
150	0.11	0.19	0.26	0.31	0.31	0.33	0.32	0.29	0.27
160	0.12	0.21	0.26	0.29	0.34	0.34	0.34	0.30	0.32

 p_T^{γ} >10 GeV, p_T^{ℓ} >20 GeV

 $\sigma(q\bar{q'} \rightarrow H^{\pm}h \rightarrow I\nu + 4\gamma)$ with cuts

ATLAS: fermiophobic Higgs searches from SM-like: $\sigma_{ren}(pp \rightarrow H) \times BR(H \rightarrow AA) \times BR(A \rightarrow \gamma\gamma)^2$

$$\sigma_{4\gamma} = \sigma(pp
ightarrow H) imes BR(H
ightarrow hh) imes BR(h
ightarrow 2\gamma)^2$$
 at 13 TeV

Weι	lse	2HDM	type-l	with	the	following	scans:
-----	-----	------	--------	------	-----	-----------	--------

parameters	scan2	scan3	
m _H (SM-like)	125	125	
m _h	[10, 60]	[10, 60]	
m_A	[60, 150]	[62.5, 200]	
m_{H^\pm}	[100, 150]	[100, 170]	
aneta	[2, 50]	[2, 50]	
$\sin(\beta - \alpha) \& \alpha$	$\alpha = \frac{\pi}{2} - \delta$	$\alpha = \frac{\pi}{2}$	
m_{12}^2	$[0, \overline{1}00]$	[0, 150]	
$\lambda_6 = \lambda_7$	0	0	

- 2HDMC
- HB5 and HS2
- Additional constraints from ATALS and Z width.

<ロ> <四> <四> <四> <四> <四> <四> <四> <四> <四</p>

$$\sigma_{4\gamma} = \sigma(pp
ightarrow H) imes BR(H
ightarrow hh) imes BR(h
ightarrow 2\gamma)^2$$
 at 13 TeV

Rachid BENBRIK

BSM 4 γ + X signatures

æ

$$\sigma_{4\gamma} = \sigma(pp
ightarrow H) imes BR(H
ightarrow hh) imes BR(h
ightarrow 2\gamma)^2$$
 at 13 TeV

Figure: Distributions of important observables at detector level: (a) $m_{3\gamma}$ for $gg \rightarrow hh \rightarrow 4\gamma$, (b) $m_{3\gamma}$ for $gg \rightarrow AA \rightarrow 4\gamma$.

- **→** → **→**

Summary and perspectives

- In 2HDM-I there is regions of the parameter space compliant with theoretical and experimental constraints yielding substantial BRs for $H^{\pm} \rightarrow W^{\pm *}h/W^{\pm *}A$ in which the $m_{H^{\pm}} < m_t - m_b$, wherein $W^{\pm *} \rightarrow l\nu$ $(l = e, \mu)$.
- $\sigma(pp \rightarrow t\bar{t} \rightarrow tbH^+ \rightarrow tbWA^0)$ could be sizeable
- light H^{\pm} in the 80–160 GeV mass range, still being consistent with all LHC, LEP Tevatron and *B*-physics data.
- If $m_h < m_H = 125$ GeV, EWPT imply that H^{\pm} is rather light and decay to $W^{\pm}h^0$ with $h^0 \rightarrow \gamma\gamma$
- $pp \rightarrow H^{\pm}h^0 \rightarrow W^{\pm} + 4\gamma$ and $pp \rightarrow H \rightarrow hh \rightarrow 4\gamma$ with significant events.
- After reasonable cuts of the photons and the lepton, $\sigma_{W^{\pm}4\gamma}$ and $\sigma_{4\gamma}$ can still enjoy a cross section of the order 10 fb and 100 fb respectively.

Thank You

Rachid BENBRIK BSM 4 γ + X signatures

æ

Э

₽ > < €