
New StatusCode

Frank Winklmeier
University of Oregon

Gaudi Developers Meeting
29 November 2017

Frank Winklmeier • StatusCode Extension • Gaudi Developers Meeting • 29 Nov 2017 2

if (sc) ...

Summary from Gaudi Workshop
 Replace long with std::error_code
 Discussed changing integer values to more standard-conform

Survey of existing code revealed some surprises (to me)
 Note: Current StatusCode defines:
 This results in the following equivalences:

 Our code-base is full with “if (sc)”. What was the author's intend?
 Was the author aware of the above?
 Or was it intended as short for sc.isSuccess() ?

 Corollary
 StatusCode(StatusCode::RECOVERABLE).isFailure() == True

 sc.isFailure() not equivalent to sc==StatusCode::FAILURE

enum { FAILURE=01, SUCCESS=10, RECOVERABLE=2 };

operator long() const { return getCode(); }
bool isFailure() { return !isSuccess(); }

sc.isSuccess() ⇔ sc==StatusCode::SUCCESS
sc.isFailure() ⇔ sc!=StatusCode::SUCCESS
if (sc) ⇔ sc!=StatusCode::FAILURE
if (!sc) ⇔ sc==StatusCode::FAILURE

StatusCode sc(StatusCode::RECOVERABLE);
sc.isFailure() : true
if (sc) : true

In a binary SUCCESS/FAILURE world this is
all fine, but....

Frank Winklmeier • StatusCode Extension • Gaudi Developers Meeting • 29 Nov 2017 3

if (isFailure())

Anybody remember the history of this change?
 The comment suggests isFailure() used to be implemented as

 return m_code==StatusCode::FAILURE
 Probably best to keep the current behavior

Frank Winklmeier • StatusCode Extension • Gaudi Developers Meeting • 29 Nov 2017 4

Comparison operator `==`

In the current 1D StatusCode world the following two are equivalent:
 sc.isSuccess()
 sc == StatusCode::SUCCESS

In the new 2D StatusCode world this is no longer the case
 sc.isSuccess() asks the category if the given code is considered success
 sc == StatusCode::SUCCESS checks if code value and category are the same

 Note: StatusCode::SUCCESS is a concrete StatusCode from the default category

Survey
 In Gaudi there is only one place where sc==StatusCode::FAILURE is used (ApplicationMgr.cpp)
 But in ATLAS we have a couple of hundred...
 ==StatusCode::SUCCESS could be trivially replaced with isSuccess()
 But not ==StatusCode::FAILURE as this would then include RECOVERABLE

Conclusion
 Treat 0(FAILURE) and 1(SUCCESS) as special codes and always ignore category (e.g. in operator==)

Frank Winklmeier • StatusCode Extension • Gaudi Developers Meeting • 29 Nov 2017 5

Status of changes

Complete set of changes in Gaudi!514
 https://gitlab.cern.ch/gaudi/Gaudi/merge_requests/514
 Together with a few points for discussion...

Experience from ATLAS
 Started implementing the necessary changes in ATLAS code base for this MR
 No show-stoppers found, migration trivial
 But explicit type conversion already uncovered a few potential bugs

 e.g. found this in our tracking code

StatusCode sc = process(*lay, 0).isSuccess();
if (sc.isSuccess()) {
 …
}
else if (sc.isRecoverable())

TrkDetDescrTools/src/LayerMaterialProvider.cxx:63:61: error: conversion from 'bool' to non-scalar
 type 'StatusCode' requested
 StatusCode sc = process(*lay, 0).isSuccess();
                                   ~~~~~~~~~~~~~~~~~~~~~~~~~~^~

   

https://gitlab.cern.ch/gaudi/Gaudi/merge_requests/514

