Jefferson Lab Experience

Joe Preble

Workshop on cryogenic and vacuum sectorisations of the SPL November 9-10, 2009

Outline: CEBAF cryogenic and vacuum system

- Description
- Operating experience
- Configuration sensitivities

Description

CHL System Schematic

LINACs Configuration

CHL Capacities

- Current 6 GeV (CHL #1)
 - ·Load: 4248W @ 2.1K, 11648 W @ 50K
 - ·Capacity: 4600W @2.1K, 12000W @ 50K
- •New 12 GeV (CHL #1 + new CHL#2)
 - ·Load: 7400W @ 2.1K, 14650W @ 50K
 - •Capacity: 9200W @ 2.1K, 24000W @ 50K

Cryomodule Description: 10 m pitch

- 8 cavities and power couplers
- 2 cryogenic circuits, 2K & 50K
- 4 U-tubes supplying cryogens, 2 supply and 2 return
- 2 beamline warm to cold transition with isolation valves
- •3 independent vacuum systems, beamline, power coupler, and insulating vacuum
- 1m warm beamline between cryomodules

Cryomodule Description

Cryomodule Description: 2K circuit

2 Headers

5" ½ filled with liquid and 1"completely filled with liquid

Return end includes heat exchanger, real improvement in design over CEBAF CM

Transfer Line

Loads/Capacities: 6GeV/12GeV Breakdown

Unit Loads			6 GeV		12 GeV							
					North Linac			South Linac				
	2 K	50 K	#	2 K	50 K	#	2 K	50 K	#	2 K	50 K	
Loads (#,W)												
Static												
Transfer Line	530	6360	1	530	7000	0.57	228	3990	0.43	302	3010	
Original CM's	16	110	42.25	676	4648	21.25	340	2448	20	320	2200	
12 GeV CM's	18	250				6	108	1250	5	90	1250	
Dynamic												
Original CM's	72	40	42.25	3042		21.25	1530	850	20	1440	800	
12 GeV CM	250	50				6	1500	300	5	1250	250	
Totals 42.25 4248 11648 25,25 3706 7988 29.25 3402 6710											6710	
Totals	5		42.25	4248	11048	25,25	3/00	1900	29,25	3402	0/10	
<u>Capacities</u>	s (W)											
CHL#1 (W)				4600	12000		4600	12000				
% of Full Load				92%	97%		85%	67%				
			-							· · · · · ·		
CHI #2(W)										4600	12000	
% of Full Load										77%	56%	

Operational Experience

Installation and commissioning

- Original installation and commissioning was completed in sections as we built cryomodules and cryo plant, injector first, ~ ½ first linac, ..., saving considerable amounts of time
- Remove and replace cryomodules with the linac cold
 - 3 days to remove a cryomodule and install a drift tube
 - ~week to replace a cryomodule and cool down to 2 K

Maintenance activities

- Can include cryomodule work requiring a thermal cycle, ~week
- Response to loss of power, hurricanes in our case

Operational Experience

- •Refurbishment program started after ~15 years of operations, remove 1 or 2 cryomodules and completely rework them, 10 over 3 years
 - Increased machine energy
 - Benefit from current processing technologies
 - replace o-rings, pumps, gauges, ...
- Upgrade
 - Add additional cryomodules over time
 - Cool down when wanted

Configuration Sensitivities

❖Model LINAC performance based on SNS and CEBAF LINACs, Spreadsheet model available for discussion, sample below

length, m	ea				
cavitiy length in cm, m	1.3	5.2	10.4	20.8	41.6
quad length (every 4th cav)	0.8	0.0	0.8	1.6	3.2
Beamline transition, m	0.8	1.6	1.6	1.6	1.6
Total length per cm, m		6.8	12.8	24.0	46.4
Total cm length in linac, m		340.0	320.0	300.0	290.0
warm spacing between cm	1.0	50.0	25.0	12.5	6.3
Total linac length		390	345	313	296
Distribution costs		1470	1185	1013	926
Total Cost cm+dist		46470	44935	43513	42801

Configuration Sensitivities

- ❖Duty Cycle determines cryo load
- ❖# of cavities in a cryomodule has little effect on the cryo load

Configuration Sensitivities

❖Using 12.5 % Duty Cycle

