

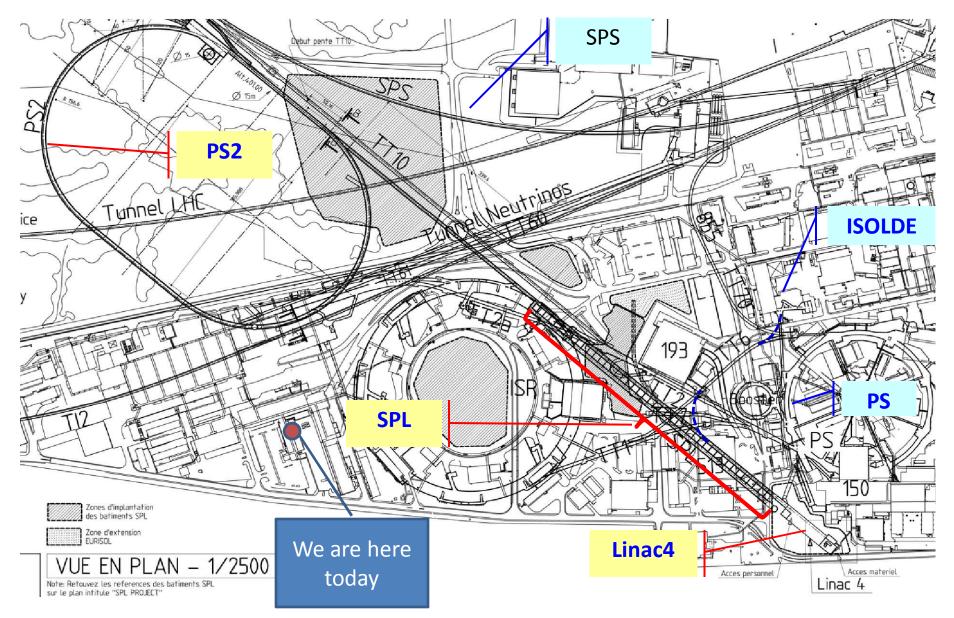
Workshop on cryogenic and vacuum sectorisations of the SPL

CERN, 9th - 10th November 2009

Workshop Organisation and Goals

Vittorio Parma TE-MSC

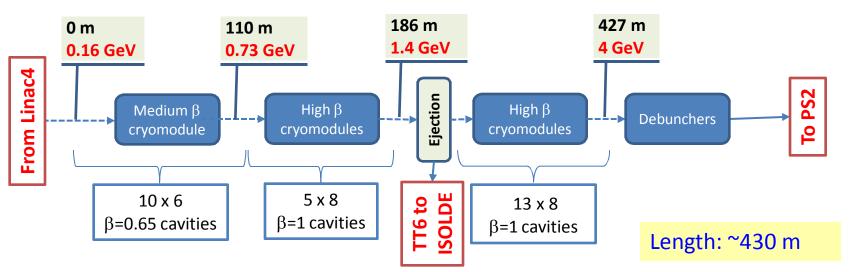
Monday 09 November 2009


14:00	Welcome (10')	Roland Garoby (CERN)
14:10	Workshop organization and goals (20')	Vittorio Parma (CERN)
14:30	SPL machine architecture (30') (🖮 slides 🗖)	Frank Gerigk (CERN)
15:00	SPL integration layouts (20) (🍉 slides 🔼 🔮)	Sylvain Weisz (CERN)
15:20	Coffee break (15')	
15:35	Experience from SNS (30')	Fabio Casagrande (ORNL)
16:05	Experience from DESY (30') (َ slides 🔨)	Bernd Petersen (DESY)
16:35	Cryogenic cooling schemes (30) (َ Slides 🔂 🗐) Udo Wagner (CERN)
17:05	Vacuum sectorisations (30')	Paul Cruikshank (CERN AT-VAC)
17:35	1st interaction session on SPL open issues (1600)	
19:00	"No host" Dinner (2h00') (Glassbox (Rest. no 1	Main building))

Tuesday 10 November 2009

09:00	Experience from FNAL (30') (112-R-028)	John WEISEND (SLAC)
09:30	Experience from KEK (30') (<u>112-R-028</u>)	N Ohuchi (KEK)
10:00	Experience from BNL (30') (<u>112-R-028</u>)	Rama Buchi Rao Calaga (TBC)
10:30	Coffee break (15') (<u>112-R-028</u>)	
10:45	Experience from LEP and LHC (30') (112-R-028)	Olivier Brunner (CERN)
11:15	2nd interaction session on SPL open issues (1h00') (112-R-028)	
12:15	Workshop lunch (by invitation only) (1h45') (La Caravelle (Restaurant no 2))	
14:00	3rd interaction session on SPL open issues (1h00') (112-R-028)	
15:00	Coffee break (15') (<u>112-R-028</u>)	
16:00	Conclusions and recommendations (30') (112-R-028.)	Vittorio Parma (CERN)

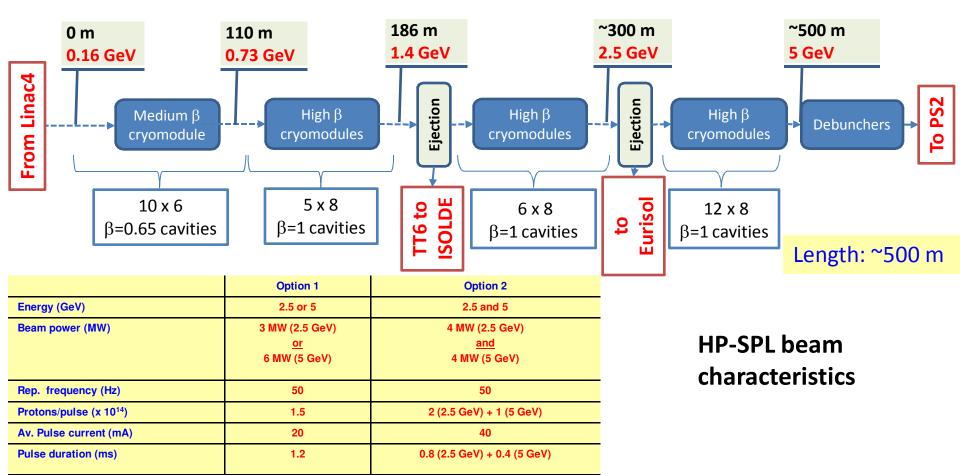
Layout injector complex



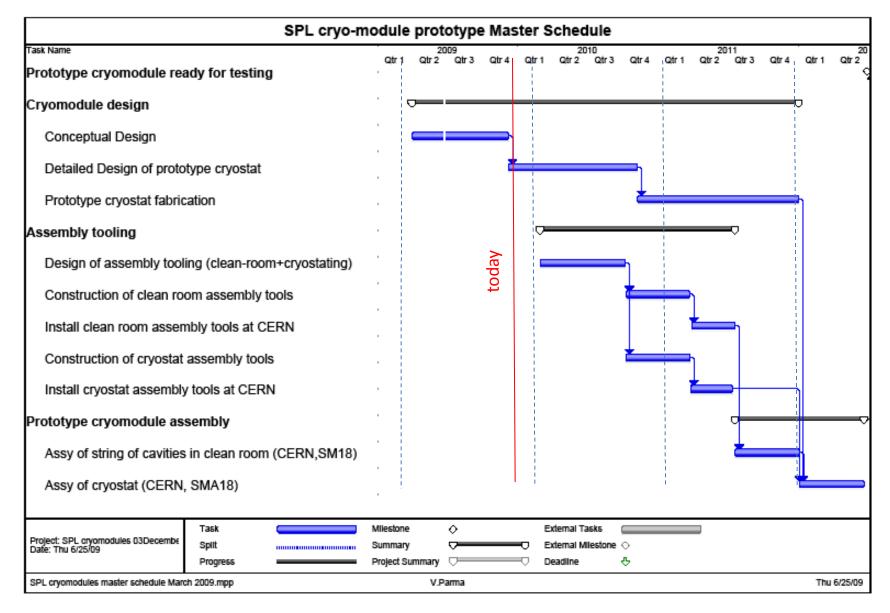
The SPL study

Goals of the study (2008-2012):

- Prepare a Conceptual Design Report with costing to present to CERN's management for approval
- ...aimed at a start of construction of the low power SPL (LP-SPL) optimized for PS2 and LHC at the beginning of 2013


LP-SPL beam characteristics

Kinetic energy (GeV)	4
Beam power at 4 GeV (MW)	0.16
Rep. period (s)	0.6
Protons/pulse (x 10 ¹⁴)	1.5
Average pulse current (mA)	20
Pulse duration (ms)	1.2


The SPL study (cont.d)

• ... with an optional possibility of a later upgrade to 5 GeV and multi MW high power beam (HP-SPL).

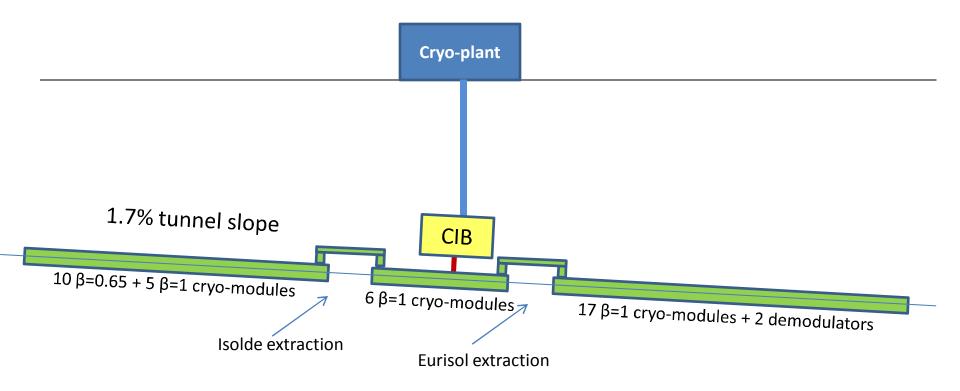
Construction of a cryo-module prototype (as part of the SPL study)

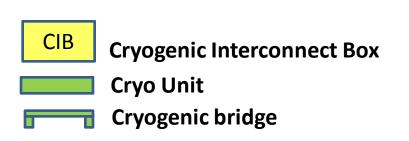
Topics for discussion

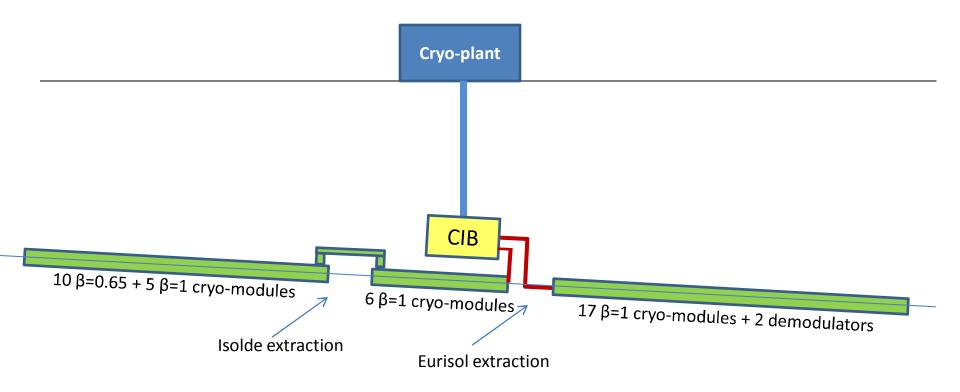
- What is already decided (not for discussion today):
 - Cavities cooled in saturated superfluid helium (T~ 2K, P~ 3.1 kPa)
 - Cavities RF frequency: 704 MHz
 - One surface cryoplant at mid lenght of the SPL:
 - ~ 6 MW @ 4.5K for LP-SPL (~ 20 MW @ 4.5K for HP-SPL)
- What is to be discussed today:
 - Cryogenic cooling layouts and schemes and consequences on machine cryostats:
 - Single "continuous" cryostat vs. fully "segmented" cryostat with cryo distribution line
 - Intermediate variants
 - Vacuum systems and consequences on machine cryostats:
 - Insulation vacuum and need for vacuum barriers
 - Cavity/beam vacuum and need for gate valves
 - possibly also coupler vacuum
- We need to learn from the experience of other machines and labs

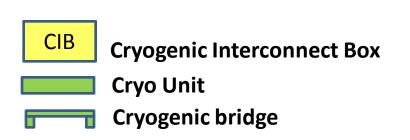
Road map of the workshop

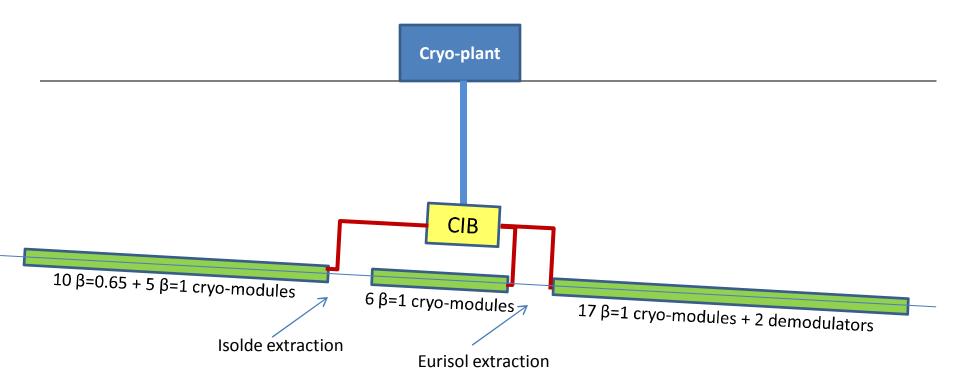
- Machine availability:
 - "work-horse" in the injection chain
 - 100% availability not viable,.What is achievable? And at which cost?
- Reliability of built-in components and operational risks (degraded performance without intervention)
 - Typical faults expected on:
 - Cavities
 - Couplers
 - Tuners
- Operation with degraded performance and mitigating measures:
 - Degraded performance of cavity/ies \rightarrow reduced energy
 - − Degraded optics (quads, steerers) \rightarrow reduced beam quality
 - Operating with leaks
 - ...
- Built-in redundancy (e.g. need for installed spare cryo-modules)
- Maintainability:
 - Radioactive cool-down time
 - Warm-up/cool-down .Time and reliability. Need for partial or complete warm-up of strings to replace built-in components or even one cryo-module
 - Accessability of components for regular maintenance or repair
- Design complexity of compared solutions
- Operational complexity (e.g.cryogenics with 1.7% slope)
- Installation and commissioning
- Coping with incidents (MCI). Loss of beam and/or insulation vacuum :
 - helium leaks
 - Air leaks
- Cost differences between options
- - ...

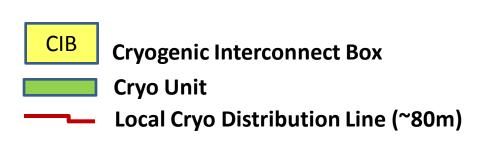

Goals

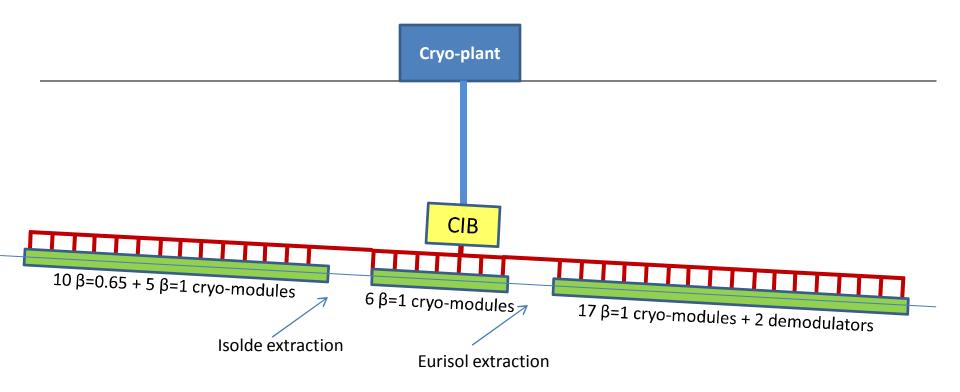

- Primary goals:
 - Identify the main operational and intervention scenarios for the cryogenics and vacuum systems of the SPL
 - Elaborate an exhaustive technical and economical comparison between single "continuous" cryostat and "segmented" cryostat with cryo distribution line
 - Possibly reccomend a choice between the two options
 - Define a "baseline" cryogenic distributions scheme and vacuum sectorisation
 - Elaborate, if necessary, a list of further developments for making a choice
- Other goals:
 - Identify advantages for alternative sectorisation schemes (intermediate solutions)
 - Technical comparison between layouts with warm and cold magnets
 - Identify other machine architectures to be explored for an improved sectorisation (e.g. alternative optic schemes)

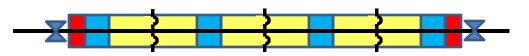

Background information on sectorisation schemes

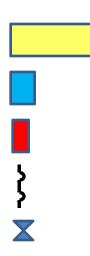










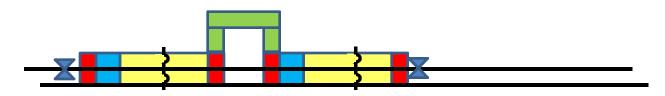


"continuous" cryostat

- "Long" and "continuous" string of cavities in common cryostat
- Cold beam tube
- "straight" cryogenic lines in main cryostat
- common insulation vacuum (between vacuum barriers, if any present)

String of cryo-modules between TSM

Technical Service Module (TSM)


Cold-Warm Transition (CWT)

Insulation vacuum barrier

Warm beam vacuum gate valve

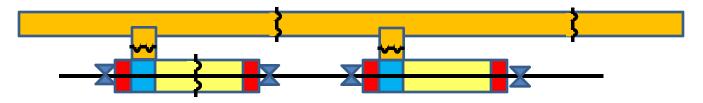
"bridged" cryostat

- Variant of the continuous cryostat
- Warm beam zones, 2 CWT at every cryo-module
- cryostat "bridges" between adjacent cryo-modules
- "bent" cryogenic lines through "bridges" \rightarrow CDL not needed
- common insulation vacuum (between Vacuum Barriers, if any present)

Cryostat "bridge" with integrated cryo-lines

Single cryo-modules

Technical Service Module (TSM)


Cold-Warm Transition (CWT)

Insulation vacuum barrier

Warm beam vacuum gate valve

"segmented" cryostat

- Cryostat is "segmented": strings of (or single) cryo-modules, 2 CWT each
- Warm beam zones
- Cryogenic Distributio Line (CDL) needed
- Individual insulation vacuum on every string of cryo-module (Vacuum Barriers, w.r.t. CDL)

- String of (or single) cryo-modules
- Technical Service Module (TSM)
- Cold-Warm Transition (CWT)
- Insulation vacuum barrier
- Warm beam vacuum gate valve